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Purpose of review

Adulttype diffuse gliomas are highly heterogeneous tumors. Bulk transcriptome analyses suggested that the
composition of the tumor microenvironment (TME) corresponds to genetic and clinical features. In this
review, we highlight novel findings on the intratumoral heterogeneity of IDH-wildtype and IDH-mutant
gliomas characterized at single-cell resolution, and emphasize the mechanisms shaping the immune TME

and therapeutic implications.

Recent findings

Emergent evidence indicates that in addition to genetic drivers, epigenetic mechanisms and
microenvironmental factors influence the glioma subtypes. Interactions between glioma and immune cells
contribute to immune evasion, particularly in aggressive tumors. Spatial and temporal heterogeneity of
malignant and immune cell subpopulations is high in recurrent gliomas. IDH-wildtype and IDH-mutant
tumors display distinctive changes in their myeloid and lymphoid compartments, and D-2HG produced by

IDH-mutant cells impacts the immune TME.

Summary

The comprehensive dissection of the intratumoral ecosystem of human gliomas using single-cell and spatial
transcriptomic approaches advances our understanding of the mechanisms underlying the
immunosuppressed state of the TME, supports the prognostic value of tumor-associated macrophages and
microglial cells, and sheds light on novel therapeutic options.
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Adult-type diffuse gliomas are brain tumors with
aggressive behavior characterized by cell migration
into the brain parenchyma, thereby precluding cura-
tive surgical resection. Survival and quality of life of
patients remain dismal with current standard of care
consisting of surgery followed by adjuvant radiation
and chemotherapy. In the current classification (WHO
CNSS5), isocitrate deshydrogenase (IDH1/2) mutations
and 1p/19q codeletion along with histology define
three major categories of adult diffuse gliomas:
glioblastoma grade IV (IDH-wildtype); astrocytoma
grade 2—4 (IDH-mutant without 1p/19qg-codeletion);
and oligodendroglioma grade 2-3 (IDH-mutant and
1p/19g-codeleted) [1] (Fig. 1). Of these, glioblastomas
are the most aggressive tumors with patients having
a median overall survival of 15 months. Patients with
low-grade IDH-mutant gliomas have a more favour-
able prognosis, but these tumors invariably progress,
recur as higher grades, and become resistant to ther-
apy. It is increasingly recognized that the tumor
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microenvironment (TME) is a key factor of tumor
progression and response to immunotherapies. Here
we discuss the latest findings regarding the intratu-
moral heterogeneity of gliomas, with focus on the
composition of the immune TME, highlight therapeu-
tic implications, and provide research perspectives.
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INTRATUMORAL HETEROGENEITY OF IDH-

KEY POINTS WILDTYPE GLIOMAS
o High intratumoral heterogeneity and environmental Bulk transcriptome profiling of The Cancer
stimuli define aggressive and recurrent gliomas. Genome Atlas (TCGA) glioma cohort suggested

four tumor subtypes: proneural, neural, classical,
and mesenchymal, characterized by defined
genetic drivers [2]. Deconvolution analyses of the

e Dynamic competition of resident and infiltrating
macrophages occurs during glioma progression.

o Distinctive changes in the immune TME are linked to the immune cell composition of these tumors, revealed
IDH mutation status. that the mesenchymal subtype, which exhibits the
o Cellextrinsic D-2HG impinges upon the function of worst prognosis, is enriched in neutrophils and
immune cells. tumor-associated macrophages (TAMs) [3]. This

enrichment involves NF1 deficiency in malignant
cells, which promotes chemoattraction of TAMs
[3]. Longitudinal analyses showed that recurrent
tumors increase the TAM population whereas
temozolomide-related hypermutation correlates
with enrichment of CD8+ T cells [3]. However,
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FIGURE 1. Adulttype diffuse glioma classification (WHO CNS5). The main genetic alterations of IDH-wildtype and IDH-
mutant tumors and their corresponding histological appearance are indicated. IDH, isocitrate dehydrogenase.
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these findings await confirmation, as it is possible
that hypermutation might correlate with enrich-
ment of CD8+ T cells in specific subpopulations
(e.g. pediatric patients with CMMRD) rather than
in temozolomide-related contexts. Previous bulk
RNA-seq studies suggested that transition from
proneural to mesenchymal subtype occurs with
disease recurrence and resistance to treatment.
However, it was not until the advent of powerful
single-cell RNA sequencing (scRNA-seq) that a more
accurate assessment of the intratumoral heteroge-
neity of gliomas, including malignant and immune
cells, has been enabled.

It turned out that four cellular malignant states
coexist in a given tumor: neural, progenitor-like
(NPC-like) oligodendrocyte progenitor-like (OPC-
like), astrocyte-like (AC-like), and mesenchymal-like
(MES-like) [4] (Fig. 2a). These states, with the excep-
tion of MES-like are reminiscent of neurodevelop-
mental programs as they express astrocytic,
oligodendroglial, and stem progenitor cell signa-
tures to some extent. Importantly, it was shown
that in addition to genetic drivers, the predomi-
nance of one state over the others defines the tumor
subtype [4]. Evidence supporting dynamic intercon-
version between these states was provided in line-
age-tracing experiments using a genetic mouse
model and patient-derived xenografts, in which
one single cell gives rise to the four archetypal
subtypes [4].

This switching model argues for a dynamic plas-
ticity of four different cell states, and contrasts with
two other scRNA-seq studies supporting the cancer
stem cell (CSC) hypothesis, in which a cellular hier-
archy prevails [5,6%7"]. Indeed, a signature of qui-
escent (nonproliferative) CSCs was identified,
which differs from the transcriptional signatures
of the four archetypal cellular states [6"]. Impor-
tantly, chemotherapy exerts selection pressure on
CSCs, and may account for therapy resistance to
antimitotic drugs and temozolomide [6%7], thus
emphasizing the need to target the right cells.
Regardless of the cell of origin and the defined
genetic drivers, the question remains about the
factors that influence the plasticity and outcomes
of glioblastoma cells.

Multiomics analyses of glioma cells at single-cell
resolution revealed that intratumoral epigenetic
diversity (but not genomic alterations alone)
accounts for adaptive changes to environmental
stimuli such as hypoxia and irradiation, leading to
cell-state transitions [8",9""]. Additional character-
ization of glioblastomas by spatially resolved tran-
scriptomics showed that inflammation and
hypoxia, as well as changes in metabolic activity
and the neural environment contribute to the tran-
scriptional heterogeneity that characterizes the four
cellular archetypes [11"]. In particular, expression of
potassium channels and metabotropic glutamate
receptors are important for the transition between
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FIGURE 2. Intratumoral heterogeneity of glioma cells and immune-evasion mechanisms in the mesenchymal-ike subtype. (a)

The four cellular archetypes present in a given glioma, and their corresponding genetic drivers are indicated. Additional
factors influencing the proportion of the MES-like state such as chromosome instability (CIN), hypoxia, irradiation, and a
senescent environment are also indicated. (b) Induction of MES-like glioma cells by MES-like macrophages. MES,

mesenchymal-like.
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OPC-like and NPC-like tumors, whereas hypoxia
leads to genomic instability in MES-like subtype
[10™]. Moreover, age-related changes in the neural
environment promote enrichment in the MES-like
subtype [10™], a finding consistent with the fact that
age is the main risk factor for glioblastoma develop-
ment. Senescence in malignant cells also contrib-
utes to the development and heterogeneity of these
tumors [11%,12%]. Of note, a transcriptional signa-
ture of senescence correlated with poor prognosis in
human patients, whereas treatments with a seno-
lytic agent improved the survival of mice bearing
gliomas [11%], and efficiently eliminated preirradi-
ated tumors [127]. Therefore, targeting of senescent
cells appears as a novel therapeutic option.

ROLES OF TAMs IN IMMUNE EVASION
AND TUMOR PROGRESSION

In addition to the microenvironment and the genetic
drivers, reciprocal crosstalks between malignant cells
and TAMs contribute to the aggressive phenotype of
MES-like tumors [13%14"]. Serial transplantation
experiments of CSCs from MES-like tumors showed
that these cells are endowed with immune-evasive
properties via demethylation of IRF8, CD73, and PD-
L1 [13%]. This epigenetic immunoediting process
leads to the establishment of a myeloid-enriched
TME deemed to play immunosuppressive roles. In
coculture experiments, TAMs were found to stimulate
transcriptional changes responsible for immune-eva-
siveness cells in CSCs, whereas in glioma-bearing
mice, pharmacological elimination of TAMs resulted
in increased survival and clearance of immune-evad-
ing tumors [13"]. TAMs can directly induce the MES-
like state of glioblastoma cells through a mechanism
involving macrophage-secreted oncostatin M (OSM),
a well known epithelial-to-mesenchymal transition
inducer, which binds the cognate receptor (OSMR)
expressed by malignant cells to activate STAT3 signal-
ing [14"]. Intriguingly, TAMs from MES-like tumors
also display a mesenchymal-like phenotype probably
induced by ligands produced by MES-like cancer cells
that bind cognate receptors expressed by TAMs [14"]
(Fig. 2Bb).

TAM'’s phenotype and function are determined
by ontogeny and environmental cues. Functional
specificity or heterogeneity in TAMs has been
addressed through scRNA-seq analyses of CD45+
or CD11b+ cells from GL261 tumors and human
glioblastomas, which enabled an in-depth charac-
terization of the myeloid compartment [15"%,16"].
New subsets of dendritic cells, monocyte-derived
macrophages (MDMs), and border-associated mac-
rophages (BAMs) were uncovered for the first time.
Analysis of newly diagnosed and recurrent tumors
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showed that the myeloid compartment is highly
dynamic [15"]. Elegant experiments of GL261
tumors growing in Cx3cr1CreER:R26-YFP mice (to
fate-map microglia) and in Ccr2 knockout mice
(MDMs recruitment is prevented) demonstrated
that brain resident macrophages such as microglia,
are outnumbered by MDMs upon recurrence [15"].
Enrichment in pro-inflammatory and proliferative
microglial cells has also been reported in high-grade
glioblastomas in the contexts of the SETD2 muta-
tion and EGFR overexpression [17,18]. The largest
scRNA-seq study to date to characterize myeloid
cells in human gliomas confirmed the MES-like
phenotype of TAMs and hypoxia subtypes [19™].
Signatures of TAMs were used to interrogate TCGA
and scRNA-seq data, and indicated that immuno-
suppressive MDMs and inflammatory microglial
cells correlate with worse and better prognosis,
respectively [19%"]. This study highlighted the
S100A4 protein in myeloid cells as a novel immu-
notherapy target [19%"].

IDENTIFICATION OF KEY LIGAND-
RECEPTOR PAIRS

With regard to the composition of infiltrating T cells
in IDH-wildtype gliomas, a combined scRNA-seq
and T-cell receptor-sequencing analysis identified
a subpopulation of CD8+ T cells expressing the
inhibitory receptor CD161, which binds to CLEC2D
expressed by malignant and myeloid cells to inhibit
antitumoral activity [20%]. Indeed, genetic inactiva-
tion of KLRB1 (the gene-encoding CD161) or block-
ade of CD161 resulted in enhanced Kkilling activity
by T cells in vitro and improved survival in vivo [20"].
Thus, the authors suggest that targeting the
CLEC2D-CD161 axis may synergize PD-1 blockade
to enhance the antitumor function of distinct T-cell
populations. Further analyses of spatially distinct
regions revealed high regional heterogeneity of
malignant and immune cells, and highlighted
ligand-receptor interactions among glioma, mye-
loid cells, and T cells [19*%]. Similarly, a longitudinal
study showed high heterogeneity of genomic alter-
ations, neoantigens, and T-cell clones in recurrent
tumors [21™]. The spatiotemporal heterogeneity of
the immune infiltrates emphasizes dynamic
changes over time and the presence of tumor niches
where the proximity (intercellular distances) is crit-
ical for immune cell activation/repression.

THE IMMUNE TME IN IDH-MUTANT
GLIOMAS

The IDH enzyme catalyses the conversion of isoci-
trate to a-ketoglutarate (a-KG), whereas IDH1/2
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FIGURE 3. Effects of the IDH1/2 mutation. Enzymatic activity of IDH-wildtype produces a-ketoglutarate, whereas neomorphic
IDH1/2 mutations produce D-2-hydroxyglutarate (D-2HG). Canonical examples of a-ketoglutarate-dependent enzymes and
consequences of their inhibition by high levels of D-2HG are also indicated. IDH, isocitrate dehydrogenase.

mutations, which are frequent in diffuse gliomas,
convert a-KG to D-2-hydroxyglutarate (D-2HG) [22]
(Fig. 3a). It is believed that such accumulation
drives cellular transformation by inhibiting «-KG-
dependent dioxygenases [23], ultimately leading
to widespread hypermethylation, blocking of cell
differentiation and defective collagen maturation
[24-28] (Fig. 3b). Moreover, IDH-mutant cells
present dysregulation of the metabolic profile and
redox state promoting glycolysis and enhancing the
production of reactive oxygen species [29]. Strik-
ingly, IDH-mutant, SDH-mutant, and FH-mutant
tumors, which accumulate the oncometabolites
D-2HG, succinate, and fumarate, respectively, do
not only display epigenomic reprogramming but
also exhibit a cold immune microenvironment [30].

Seminal studies using scRNA-seq of bulk tumors
uncovered essential differences in the tumor archi-
tecture of IDH-wildtype and IDH-mutant gliomas
[9%%,31,32]. On one hand, malignant cells from IDH-
mutant tumors follow a hierarchical organization
with cycling stem-like cells giving rise to noncycling
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astrocyte-like and oligodendrocyte-like lineages
[97",31]. On the other hand, high-grade tumors
undergo changes in the myeloid compartment with
increased abundance of macrophages over microglia
[32]. Initial analyses of the immune cell composi-
tion using TCGA bulk RNA-seq data, as well as
experiments in syngeneic glioma models demon-
strated a downregulation of immune-related signal-
ing pathways and chemotaxis factors in IDH-
mutant compared with IDH-wildtype gliomas
[33,34]. Recent analyses of TCGA and immunohis-
tochemical validations, confirmed a low expression
of T-cell markers in IDH-mutant glioma, and
revealed significant enrichment of CD4+ naive T
cells and a reduction of memory T cells [35]. Low
numbers of dendritic cells and immunosuppressive
cells, including Tregs (Foxp3+) and TAMs (CD163+)
were also shown, particularly in oligodendroglio-
mas [36]. Additional evaluation of the Chinese
Glioma Genome Atlas (CGGA) cohort revealed
higher infiltration of natural killer (NK) cells [37].
Moreover, IDH-mutant gliomas exhibit DNA
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hypermethylation of the CD274 promoter leading
to low expression of the immune ligand PD-L1
[36,38,39].

Two important studies using fluorescence-acti-
vated cell sorting followed by RNA-seq or CyTOF
analyses of immune cells further confirmed that
IDH-wildtype gliomas are more infiltrated by
CD8+ and CD4+ T-cell subsets (including Tregs),
as well as by MDMs, whereas IDH-mutant tumors
display a high proportion of microglial cells and a
high monocyte/MDM ratio. NK cells display imma-
ture and cytotoxic phenotypes in IDH-wildtype and
IDH-mutant gliomas, respectively [40™",41""]. Estab-
lishing the differences in the abundance and func-
tionality of the immune cell populations between
these tumor types is crucial for the designing of
efficient immunotherapeutic strategies.

Although, the IDH-mutated status was suggested
to shape the TME, IDH-mutant astrocytomas and
oligodendrogliomas differ in some genetic altera-
tions, and exhibit different prognoses. In this regard,
evaluation of TCGA and CGGA data indicated that
immune infiltration is higher in astrocytomas than
oligodendriogliomas [42]. Further analysis of bulk
tumors using a combination of scRNA-seq and scA-
TAC-seq approaches revealed a significant overex-
pression of chemotaxis factors CSF1 and FLT3LG in
ATRX-mutated astrocytomas, and upregulation of
CD163, a marker of immunosuppressive myeloid
cells [43""]. The causal role of the ATRX loss-of-func-
tion in shaping the myeloid compartment was con-
firmed in the SB28 mouse glioma model [43"]. Thus,
the effect of this genetic driver is reminiscent of the
impact of NF1 deficiency in MES-like glioblastomas
and raises the question whether genes affected by the
codeletion 1p/19q that characterize IDH-mutant oli-
godendriogliomas (e.g. CSF1 encoded in 1p and TGF
in 19q) account for TME changes.

Preclinical studies also explored how D-2HG
acting in glioma cells could affect the TME
[44,45]. Using a sleeping beauty transposon system
to model IDH-mutant astrocytoma, it was shown
that ATRX loss enhances DNA damage response via
up-regulation of the ATM signaling pathway, which
in turn was explained by D-2HG-induced hyperme-
thylation of histone 3 (H3) [44]. The IDH mutation
was also associated with hypermethylation of the
activating mark H3K4me3 in the promoter region of
the gene encoding granulocyte-colony stimulating
factor (G-CSF) in CSCs [45]. Hence, CSC production
of G-CSF was responsible for an expansion of imma-
ture granulocytic myeloid cells infiltrating the TME
[45]. These results suggest that compared with IDH-
wild type glioma, the overall low level of immune
infiltrates in IDH-mutant gliomas involves altered
expression of effectors acting on the recruitment or
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the differentiation of infiltrating immune cells via
D-2HG-driven epigenetic alterations in malignant
cells. Nevertheless, as this oncometabolite accumu-
lates to millimolar levels in the TME [46,47], it may
also affect the phenotypic and functional properties
of immune cells.

Recent in-vitro studies provided evidence for the
uptake of D-2HG by cells typically residing in the
TME, via the sodium-dependent dicarboxylate
transporter 3 (SLC13A3) [35] or the glutamate trans-
porter SLC1A1 [48%] (Fig. 4). Increased D-2HG levels
were also found in T cells isolated from acute mye-
loid leukaemia (AML) patients harbouring IDH2
mutations [49], and in CD11b+ cells from an
IDH-mutant mouse model [50"]. Treatments with
D-2HG used at nontoxic albeit high concentrations
(>5mmol/l) reduce IL-12 secretion and preclude
LPS-induced glycolysis in dendritic cells [51], and
prevent LPS-induced activation in murine microglia
by affecting the AMPK/mTOR/NF-kB-signaling
pathway [52]. In endothelial cells, D-2HG fuels
mitochondrial respiration and angiogenesis [48%].

With respect to cultured T cells, D-2HG pro-
motes a metabolic switch from aerobic glycolysis
towards oxidative phosphorylation in activated T
cells and favors the growth or differentiation of
Tregs [49]. In contrast, in-vivo studies using
GL261 cells overexpressing IDH wildtype or IDH
mutant showed decreased numbers of Tregs in
IDH-mutant gliomas [53] and impaired T-cell acti-
vation by reducing proliferation and cytokine pro-
duction [35]. Because the functional response of
immune cells depends on environmental signals
and cell-cell interactions, which may be prevented
in vitro, there is a need to characterize the effects of
D-2HG in vivo. In this regard, inhibition of the
enzymatic function of the IDH mutation increased
the CD4+ population and restored the antitumor
activity of T cells [35]. Moreover, this therapeutic
approach combined with PD-1 inhibition increased
overall survival [35,54""].

In addition, recent evidence demonstrated that
D-2HG drives an immunosuppressive myeloid state
by altering the tryptophan metabolism in MDMs via
activation of AHR [55"]. Pseudotime inference anal-
yses using scRNA-seq data of flow cytometry-purified
CD45+ cells from IDH-mutant and IDH-wildtype
GL261 gliomas confirmed the high monocyte/
MDM ratio previously observed in IDH-mutant
human tumors [40®"] and further revealed a high
monocyte/dendritic cell ratio [56%]. The authors sug-
gested an immature phenotype of monocyte-derived
cells upon D-2HG exposure. However, in-vitro
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FIGURE 4. Cellular uptake of D-2-hydroxyglutarate. Cell types able to take up D-2HG according to inwitro studies as well as
two of the transporters so far reported are indicated. D-2HG, D-2-hydroxyglutarate.

experiments revealed conflicting results with a pre-
vious study showing that neither differentiation, nor
antigen presentation of dendritic cells is affected by
D-2HG [57]. This further emphasizes the challenges
to characterize the effects of D-2HG on immune cell
function in vitro.

Collectively, these data argue against a simple
reduction of immune cell recruitment by chemo-
tactic factors. More investigation is required to spec-
ify the roles of D-2HG as immunomodulator of the
TME in IDH-mutant gliomas.

CONCLUSION

Although immunotherapy targeting the PD-L1/PD-
1 axis has achieved advances in various cancers,
phase III clinical trials failed to show efficacy in
newly diagnosed and recurrent glioblastomas. The
presence of dysfunctional T cells [58,59], as well as
suppressive cells such as Tregs and TAMs in the TME
may account for this lack of response. The compre-
hensive characterization of the immune TME at
single-cell resolution and experimental evidence
in mouse models point to prominent roles of TAMs
and their interactions with malignant and T cells
during tumor progression. Hence, focus on the mye-
loid compartment, and the immune checkpoints
expressed by these cells is highly encouraged in
order to uncover specific mechanisms leading to
the immunosuppressive TME.

800 www.co-neurology.com

TAMSs do not only offer a prognostic value but
also are potential targets for therapies aimed at
depleting/repolarizing these cells to a pro-inflam-
matory state thereby allowing effector T-cell infil-
tration and activation [60-63]. Nevertheless,
targeting the myeloid population should be more
specific as MDMs are more abundant in IDH wild-
type gliomas and recurrent tumors (regardless of
the IDH status) whereas microglial cells are the
major population in IDH-mutant gliomas. More-
over, the pro-tumorigenic role of nonparenchymal
macrophages, which are located in meninges, peri-
vascular niches, and even within the cerebrospinal
fluid, remains unexplored [64,65]. So far, a rela-
tively small number of human gliomas have been
profiled for scRNA-seq analysis of the TME. As more
data will be generated, a more complete atlas of
myeloid cells could help to identify novel subsets
that correlate with clinical outcomes. Efforts are
currently underway to better characterize TAM sub-
types, ligand-receptor pairs, and immune check-
points expressed by these cells [66]. It is becoming
clear that glioblastoma progression requires not
only genetic drivers but also microenvironment
interactions [9"%,10"%,11%,67"]. While most of the
work on immunoevading mechanisms and mye-
loid interactions has been done in MES-like gliomas
[13%,14%,18,67"], the immunomodulatory mecha-
nisms operating in low-grade and IDH-mutant glio-
mas remain largely unknown.
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Differences in the TME of astrocytomas and oli-
godendriogliomas suggested by bulk RNA-seq studies
[36,42,68,69] may be linked to their distinct progno-
sis and need to be ascertained using scRNA-seq. IDH-
mutant tumors are infiltrated by a low number of
immune cells. Although results from clinical trials
with IDH mutation inhibitors are promising [70],
preclinical studies suggest that this approach may
be more effective if combined with immunotherapies
(checkpoint blockade or IDH1R132H vaccines)
[35,54™]. Although cell-extrinsic effects of D-2HG
mediate some changes in the TME, the impact of this
oncometabolite on the epigenome of immune cells
remains unexplored. Hence, these are exciting times
to discover additional roles of D-2HG in the TME of
IDH-mutant gliomas.
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