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SUMMARY

The ubiquitin-proteasome system is the major
pathway for protein degradation in eukaryotic cells.
Proteins to be degraded are conjugated to ubiquitin
chains that act as recognition signals for the 26S pro-
teasome. The proteasome subunits Rpn10 and
Rpn13 are known to bind ubiquitin, but genetic and
biochemical data suggest the existence of at least
one other substrate receptor. Here, we show that
the phylogenetically conserved proteasome subunit
Dss1 (Sem1) binds ubiquitin chains linked by K63
and K48. Atomic resolution data show that Dss1 is
disordered and binds ubiquitin by binding sites char-
acterized by acidic and hydrophobic residues. The
complementary binding region in ubiquitin is com-
posed of a hydrophobic patch formed by I13, I44,
and L69 flanked by two basic regions. Mutations in
the ubiquitin-binding site of Dss1 cause growth de-
fects and accumulation of ubiquitylated proteins.

INTRODUCTION

The ubiquitin-proteasome system (UPS) is themajor pathway for

protein degradation in eukaryotic cells, regulating most cellular

processes, including cell division, signal transduction, and

development (Finley, 2009). Before degradation, proteins are

conjugated to ubiquitin chains that act as recognition signals

for the 26S proteasome, a large proteolytic complex that de-

grades substrate proteins (Finley, 2009).

Although proteasome function has been extensively studied,

our knowledge of how this particle recognizes ubiquitylated sub-

strates remains incomplete. Since the identification of the first

intrinsic proteasomal ubiquitin receptor, Rpn10, studies have

identified a group of so-called UBL-UBA domain proteins that

act as transient, extrinsic proteasome substrate receptors

(Deveraux et al., 1994; Seeger et al., 2003; Su and Lau, 2009;Wil-

kinson et al., 2001). More recently, an additional novel intrinsic
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receptor, Rpn13, was identified (Husnjak et al., 2008; Schreiner

et al., 2008). However, budding yeast cells, deleted for the

UBL-UBA domain proteins and mutated in both the Rpn10 and

Rpn13 ubiquitin-interacting regions, are still viable (Husnjak

et al., 2008). Moreover, ubiquitin conjugates still bind to 26S pro-

teasomes lacking the ubiquitin-interacting regions of Rpn10 and

Rpn13 (Peth et al., 2010). As proteasome function is essential, at

least one additional ubiquitin receptor remains to be discovered

(Saeki and Tanaka, 2008). Here, we present structural, biochem-

ical, and genetic data that the disordered and multifunctional

protein Dss1 (known as Sem1 in budding yeast), is another ubiq-

uitin-binding subunit of the 26S proteasome.

RESULTS

Ubiquitin Binding to Rpn10 Is Not Essential for Viability
In fission yeast, substrate recognition by the 26S proteasome is

accomplished by two intrinsic proteasome subunits, Rpn10 and

Rpn13, and two extrinsic UBL-UBA domain proteasome cofac-

tors, Rhp23 and Dph1 (Finley, 2009; Hartmann-Petersen et al.,

2003; Sakata et al., 2012; Wilkinson et al., 2001) (Figure 1A).

Studies have shown these receptors to be functionally redun-

dant (Husnjak et al., 2008; Peth et al., 2010; Wilkinson et al.,

2001). It was previously demonstrated, both in budding and

fission yeast, that the gene for the UBL-UBA domain protein

Rad23 (Rhp23 in fission yeast) functionally overlapped with

the gene encoding the 26S proteasome ubiquitin receptor

subunit Rpn10. Specifically, only a double deletion mutant

(rpn10Drhp23D) displayed severe growth defects (Wilkinson

et al., 2001). In addition, Rhp23 variants unable to bind ubiquitin

or the proteasome could not rescue the growth defects of the

double mutant, implying that substrate recognition was at least

partly responsible for the observed phenotypes (Wilkinson

et al., 2001). Therefore, we asked whether lack of the ubiquitin-

or proteasome-binding functions of Rpn10 contribute to the

severe phenotype of the rpn10Drhp23D double mutant. To this

end, we cloned constructs of rpn10 that lacked the ubiquitin

interaction motif (UIM), Rpn10DUIM, or the N-terminal protea-

some-binding region, Rpn10DN82 (Figure 1B) (Seeger et al.,

2003). The constructs were integrated into both rpn10D and

rhp23D strains. These strains were then crossed, and the ability
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Figure 1. The Rpn10 UIM Is Not Responsible

for the rhp23Drpn10D Synthetic Lethality

(A) Substrate recognition by the 26S proteasome is

mediated via intrinsic receptors that are subunits

(Rpn10 and Rpn13) and extrinsic receptors that are

UBL-UBA domain cofactors (Rhp23/Rad23 and

Dph1/Dsk2). The substrate is depicted as a black

thread, and ubiquitin is depicted as a gray sphere.

(B) The domain organization of full-length (FL)

Rpn10, Rpn10DUIM (deleted of the UIM domain to

abolish ubiquitin binding), and Rpn10DN82 (82-

residue N-terminal deletion to abolish proteasome

binding) (Seeger et al., 2003).

(C) In vivo assay of rpn10D and rhp23D deletion

strains transformed to express the indicated con-

structs. The two strains were crossed to generate

a double deletion. Following crossing, 10,000

spores were plated onmedia that selected for both

deletion mutants and the expression vector.

See also Figure S1.
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of the Rpn10 constructs to rescue the growth defects of the

rpn10Drhp23D double mutant were assayed by plating and

selecting for the relevant spores. Surprisingly, this revealed

that the Rpn10DUIM construct rescued the growth defects as

efficiently as the full-length construct (Figure 1C; Figure S1A

available online), while the Rpn10DN82 proteasome-binding

mutant did not (Figure 1C). This implies that loss of Rpn10 ubiq-

uitin binding does not contribute to the severe phenotype of the

rpn10Drhp23D double mutant.

The fact that the rhp23Drpn10DUIMmutant is viable is consis-

tent with previous work, suggesting that the vWA domain has

some unknown facilitator function in the UPS (Mayor et al.,

2007; Peth et al., 2010; Verma et al., 2004) and shows that other

proteasomal substrate receptors functionally overlap with

Rpn10 and Rhp23. Currently, the remaining known receptors

and shuttle proteins are the UBL-UBA protein Dsk2 (Dph1 in

fission yeast) and Rpn13 (Rpn13a and Rpn13b in fission yeast)

that associate with both ubiquitin and the proteasome. To test

these candidates genetically, null mutants were constructed

for each and subsequently crossed to create the appropriate

genetic backgrounds. We postulated that, if either of these

receptors functionally overlapped with Rpn10 and Rad23,

then deletion of its gene in the rpn10Drhp23D background

should prevent rescue of the rpn10Drhp23D phenotype by the

Rpn10DUIM construct. Surprisingly, the Rpn10DUIM construct

once again rescued the dph1Drpn10Drhp23D triple (Figure S1B)

and rpn13aDrpn13bDrpn10Drhp23D quadruple deletion mu-

tants (Figure S1C). This implies that neither Dph1 nor Rpn13

were responsible for the rescue of the rpn10Drhp23D growth de-

fects by Rpn10DUIM. Therefore, we considered other candi-

dates that could have yet uncharacterized substrate recognition

capabilities. Such candidates should either be proteasome sub-

units or proteasome-associated proteins and would be ex-

pected to display synthetic phenotypes with mutants in rpn10

or rhp23. When searching the Saccharomyces Genome Data-

base, we found that the proteasome subunit, called Sem1 in

budding yeast (Funakoshi et al., 2004; Sone et al., 2004) and

Dss1 in humans and fission yeast (Jossé et al., 2006), fulfills

these criteria.
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Dss1 Is a Ubiquitin Binding Protein
To assess if Dss1 functions as a proteasomal ubiquitin receptor,

we first tested its ability to interact directly with ubiquitin chains.

We performed an in vitro ubiquitin-binding assay using gluta-

thione S-transferase (GST)-Dss1 and K48- and K63-linked ubiq-

uitin chains. GST-Rhp23 was included as a positive control.

Indeed, under these conditions, GST-Dss1 efficiently interacted

with both K48 and K63 ubiquitin chains, while GST alone did not

(Figure 2A).

In general, ubiquitin receptors recognize ubiquitin via a

conserved hydrophobic patch around Ile44 (Husnjak et al.,

2008). To test if Dss1 also binds ubiquitin via this hydrophobic

area, we assayed the ability of Dss1 to interact with the I44A

ubiquitin mutant. Compared to wild-type ubiquitin that clearly in-

teracted with Dss1, I44A ubiquitin did not efficiently associate

with Dss1 or Rhp23 (Figure 2B). This suggests that the ubiquitin

Ile44 patch is important for efficient Dss1 and Rhp23 binding.

Scrutinizing the Dss1 sequence left us unable to identify any

resemblance to known ubiquitin-binding sites (UBSs) or do-

mains (Husnjak and Dikic, 2012). Structural prediction analyses

of Dss1 suggested it to belong to the intrinsically disordered pro-

teins (IDPs) (Figure 2C) (Uversky, 2011). PONDR (Obradovic

et al., 2003), but not IUPred (Dosztányi et al., 2005), predicted

that a short stretch in the Dss1 C terminus is structured (Fig-

ure 2C). To probe this further, we analyzed Dss1 by hetero-

nuclear nuclear magnetic resonance (NMR) spectroscopy.

Assigned Ca chemical shifts relative to random coil shifts (Fig-

ure 2D) (Kjaergaard et al., 2011), combined with a low-dispersion
15N,1H-heteronuclear single quantum correlation (HSQC) spec-

trum (Figure 2E; Figure S2A), conclusively identified Dss1 as

intrinsically disorderedwith a single, transiently populated a helix

from F55 through K66. Successive addition of excess ubiquitin

and analysis by NMR uncovered two distinct UBSs, identified

from chemical shift perturbation analyses. Titration analyses

with increasing amounts of ubiquitin disclosed the strongest

binding to ubiquitin by binding site I (UBS-I), which is located

at D38–D49 (dissociation constant, KD, = 50 ± 30 mM) and dis-

closed the second and weakest site, UBS-II, located at D16–

N25 (apparent KD > 1 mM) (Figure 2F; Figures S2B and S2C).
rs
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These UBSs are conserved and located in the disordered region

of Dss1 (Figure S3). Notably, both sites have a similar sequence,

characterized by a series of hydrophobic residues flanked by

acidic residues (Figure S3).

Dss1 Binds a Hydrophobic and Positively Charged Area
on Ubiquitin
We subsequently mapped the corresponding interaction sur-

face on ubiquitin by NMR, using 13C,15N-labeled ubiquitin

(Figure 3). The perturbations of peak intensities of ubiquitin,

imposed by addition of Dss1 (Figure 3A), mapped consistently

to the surface-exposed common hydrophobic binding surface

of ubiquitin involving the b sheet and the hydrophobic residues

I13, L69, and I44 (Figures 3B–3D) but is also extended to the C

terminus, resembling the binding site exploited by the E2 ubiq-

uitin-conjugating enzyme Cdc34 (Arrigoni et al., 2012; Choi

et al., 2010; Spratt and Shaw, 2011). Several positively charged

residues located on the same surface were also significantly

perturbed, whereas no perturbations were seen on the oppo-

site face of ubiquitin (Figure 3C). A representation of the elec-

trostatic surface of ubiquitin revealed a tripartite binding site

of a hydrophobic patch flanked by two positively charged re-

gions (Figures 3E and 3F). This directly mirrors the architecture

of the UBSs identified in Dss1 (Figure S3). Moreover, the size of

the interaction surface and the length of each UBS in Dss1

strongly suggest that the two UBSs bind independently

to each their ubiquitin moiety. Of note, we observe that, de-

pending on the linkages, there are unequal distances from

the Dss1 binding site on ubiquitin to a second Dss1 binding

site on a linked ubiquitin, suggesting that Dss1 may express

a preference in the selection of different lysine-linked ubiquitin

chains.

Ubiquitin Binding Is Important for Dss1 Function
As expected from the NMR data, mutation of either UBS-I (L40A,

W41A, W45A) or UBS-II (F18A, F21A, W26A) clearly reduced

binding to ubiquitin, and no ubiquitin binding was observed for

Dss1 mutated at both sites (Figure 4A). Consistent with UBS-I

being the stronger of the two binding sites, mutation of this site

also had a greater effect on ubiquitin binding (Figure 4A).

For better understanding of the functional relevance of Dss1

and the importance of its ubiquitin-binding activity, a range of

yeast mutants was created and tested in growth assays under

various conditions. Expression of Dss1 or any of the Dss1 vari-

ants did not affect cell growth of wild-type cells (Figure S4A),

whereas deletion of the dss1+ gene resulted in a growth defect

that was especially pronounced at higher temperatures (Fig-

ure 4B). When introducing the Dss1 variants into the dss1D

strain, we observed that cells expressing Dss1, mutated at

both UBS-I and UBS-II, displayed a significant growth defect

(Figure 4B), while each of the single UBS mutants or wild-type

human Dss1 only partially restored growth (Figure 4B). Similar

effects were observed on media containing canavanine (Fig-

ure S4B), a drug that inhibits protein folding and induces cell

stress. Notably, these genetic effects correlated with the cellular

accumulation of ubiquitin-protein conjugates. Thus, ubiquitin-

protein conjugates accumulated in the dss1D strain, and this

accumulation was not affected by ectopic expression of Dss1
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mutated in both UBS-I and UBS-II (Figure 4C). Expression of

either Dss1 UBS-I or Dss1 UBS-II mutants partially reduced

the level of ubiquitin conjugates in the dss1D strain, while expres-

sion of wild-type S. pombe Dss1 or human Dss1 fully reduced

ubiquitin-protein conjugates to wild-type levels (Figure 4C).

We next analyzed if any of the Dss1 mutants were also

compromised in proteasome binding. We found that wild-type

Dss1, as well as individual Dss1UBS-I andDss1 UBS-II mutants,

all efficiently coprecipitated 26S proteasomes (Figure 4D). How-

ever, Dss1 mutated in both UBS-I and UBS-II failed to interact

with 26S proteasomes (Figure 4D). Hence, the strong phenotype

of Dss1 mutated in both UBS-I and UBS-II is likely caused by

both loss of ubiquitin binding and loss of proteasome binding.

In contrast, the intermediate phenotypes of Dss1 with single mu-

tations in UBS-II or, in particular, in UBS-I can likely be attributed

to a reduced ubiquitin binding since they still bind to the

proteasome.

Recently, Dss1 was shown to function in proteasome assem-

bly (Tomko and Hochstrasser, 2014). To assess the importance

of Dss1 on overall proteasome integrity, we isolated 26S protea-

somes froma dss1D strain and analyzed thembiochemically.We

found that proteasomes lacking Dss1 still efficiently interacted

with polyubiquitylated proteins (Figure S4C) and were proteolyt-

ically active (Figure S4D). This suggests that, structurally, 26S

proteasomes are not strongly affected by loss of Dss1 and that

the contribution of Dss1 to the proteasomal substrate binding

capacity in vitro is lower compared to the already known sub-

strate receptors. This agrees with previous in vitro activity

studies of purified proteasomes, lacking all known UBSs, which

suggest the existence of an additional low-affinity substrate

binding site (Peth et al., 2010). To further rule out that the

observed phenotype of the dss1 null mutant was not caused

by a general loss of 26S proteasome integrity, we performed

label-free quantitative mass spectroscopy, comparing 26S

proteasomes purified from wild-type, rpn10D, rpn10DUIM, and

dss1D cells (Figures S4E and S4F). In agreement with data

from budding yeast (Bohn et al., 2013; Tomko and Hochstrasser,

2014), loss of Dss1 caused a modest reduction in 26S protea-

some integrity (Figures S4E–S4G). Mutation of the Dss1 UBS-I

only slightly reduced the amount of Rpn10 in the 26S protea-

some (Figure S4H). Loss of Rpn10 was more disruptive, with

the amounts of 26S proteasomes being reduced to around

10% of that found in wild-type cells (Figures S4E–S4G).

Collectively, these data imply that ubiquitin binding is

important for the function of Dss1 in the 26S proteasome in vivo

and that Dss1 could be responsible for the viability of

the rhp23Drpn10DUIM strain (Figure 1C). This being the

case, then loss of Dss1 should impart growth defects in

the rhp23Drpn10DUIM strain. Indeed, spore viability of the

dss1Drhp23Drpn10DUIM strain was reduced compared to cells

expressing the full-length Rpn10 protein (Figures 4E and 4F).

When introducing wild-type Dss1 and the Dss1 UBS-I and

UBS-II mutants in the dss1Drhp23Drpn10DUIM strain, we found

that neither the Dss1 UBS-I mutant nor the Dss1 UBS-II mutant

was able to fully restore growth of the dss1Drhp23Drpn10DUIM

strain (Figure 4F), suggesting that the ubiquitin-binding function

of Dss1, described here, is important for proteasomal function

and cell viability.
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Figure 2. Dss1 Interacts Directly with Ubiquitin
(A) K48- andK63-linked ubiquitin chains (3 mg per assay) (input) were coprecipitated withGST-Dss1. GST andGST-Rhp23 proteinswere included as negative and

positive controls, respectively. The precipitated material was analyzed by SDS-PAGE and western blotting using antibodies to ubiquitin. Equal loading was

checked by staining with Coomassie brilliant blue (CBB).

(B) I44A and wild-type (wt) monoubiquitin (10 mg) (input) were coprecipitated with GST-Dss1. GST and GST-Rhp23 proteins were included as negative and

positive controls, respectively. The precipitated material was analyzed by SDS-PAGE and western blotting using antibodies to ubiquitin. Equal loading was

checked by staining with CBB.

(legend continued on next page)
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Figure 3. Dss1 Exploits a Tripartite Binding

Site on Ubiquitin

(A) Changes in peak intensities of ubiquitin in

response to Dss1 binding. The red dashed line

marks residues where the intensity decreased to

less than 35%, and the black solid line marks those

residues where the intensities are less than 10% of

the unbound. The red dots mark proline residues

not visible in the spectra.

(B and C) Changes in peak intensities of ubiquitin

by Dss1 addition mapped onto the 3D structure of

ubiquitin (Protein Data Bank ID 1D3Z) (Cornilescu

et al., 1998). The protein structure is shown in

green. Light blue indicate residues with peak in-

tensities decreased to less than 35%, and dark

blue decreased to less than 10%. (B) is oriented as

in (D) with the b sheet facing the viewer, and in (C),

the opposite side is shown with the a helix facing

the viewer.

(D) Ribbon representation of ubiquitin with the

same color coding as in (B) and with specific resi-

dues labeled. Three lysine residues, K11, K48, and

K63 of ubiquitin are shown in magenta sticks.

(E and F) Electrostatic surface representation of

ubiquitin, calculated using PyMOL. Negative

potentials are shown in red, positive potentials are

shown in blue, and uncharged regions are shown in

white. The tripartite Dss1 binding area is circled. (E)

has the same orientation as in (B), and (F) has the

same as in (C).

See also Figure S3.
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DISCUSSION

In this article, we demonstrate that Dss1 has a previously un-

charactized function as a ubiquitin-binding protein of the 26S

proteasome: unlike other receptors, Dss1 interacts with ubiquitin

via an unstructured UBS. Given the highly conserved nature of

the UPS and the dss1+ gene itself (47% identity between fission

yeast and human Dss1), and given that human Dss1 comple-

ments the phenotype of a fission yeast dss1D mutant, we pro-

pose that Dss1 acts as a ubiquitin receptor in all eukaryotes.

Most ubiquitin-binding proteins have well-defined and struc-

tured ubiquitin-binding domains or small motifs (Husnjak and

Dikic, 2012). This is in sharp contrast to proteins interacting

with the ubiquitin-like modifier SUMO that, in general, associate

via short motifs located in intrinsically disordered regions (Vogt

and Hofmann, 2012). The UBSs described here are both located
(C) PONDR (blue) and IUPred (red) sequence analysis predicted Dss1 to be largely

to be structured.

(D) Ca secondary chemical shifts of Dss1 confirm the predominantly disordered st

C terminus from F55 through K66 indicated by a blue bar.

(E) 1H-15NHSQC spectrum of Dss1 in the absence (red) and presence (blue) of a 50

from the HSQC spectrum on addition of ubiquitin.

(F) Plot of the per-residue calculated chemical shift perturbation (CSP) (see Supp

presence of a 50-fold molar excess of ubiquitin, revealing two UBSs, UBS-I and U

CSP and the average CSP plus 1 SD. Residues marked with an asterisk disappe

See also Figure S2.
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in the disordered region of Dss1. We suspect that other ubiqui-

tin-binding proteins may interact by a similar mechanism. In gen-

eral, disordered proteins are not well conserved in sequence

(Uversky, 2011), and by homology searches, we have not been

able to identify other proteins containing any Dss1-like UBSs.

However, we did note some similarity between the sites in

Dss1 and the UBSs found in the E2-3R family of E2 ubiquitin-

conjugating enzymes (Arrigoni et al., 2012) such as Cdc34

(Choi et al., 2010). Intriguingly, a recently described disordered

region of Cdc34 binds an area on ubiquitin similar to the area

we identified for Dss1 (Arrigoni et al., 2012; Choi et al., 2010;

Spratt and Shaw, 2011), suggesting that these binding regions

are required to be unstructured.

Previous studies in budding yeast have shown that cells lack-

ing all known proteasomal UBSs still remain viable (Husnjak

et al., 2008). The data presented here reveal that the same is
unstructured at physiological pH. PONDR predicted a short C-terminal stretch

ructure. Positive Ca secondary chemical shifts identify a-helical structure in the

-fold molar excess of ubiquitin. Residuesmarked with an asterisk disappeared

lemental Information) comparing identical samples of Dss1 in the absence and

BS-II, indicated by red bars. The horizontal dashed lines illustrate the average

ared from the HSQC spectrum on addition of ubiquitin.
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Figure 4. UBSs in Dss1 Are Required for Proteasome Function

(A) K48-linked (left panel) and K63-linked (right panel) ubiquitin chains (input) (3 mg per assay) were coprecipitatedwithGST-Dss1, GST-Dss1 UBS-Imutant (L40A/

W41A/W45A), GST-Dss1 UBS-II mutant (F18A/F21A/W26A), and GST-Dss1 UBS-I and UBS-II mutant (F18A/F21A/W26A/L40A/W41A/W45A). GST and GST-

Rhp23 proteins were included as negative and positive controls, respectively. The precipitated material was analyzed by SDS-PAGE and western blotting using

antibodies to ubiquitin. Equal loading was checked by staining with Ponceau S.

(legend continued on next page)
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true for fission yeast, but this viability, at least in part, depends on

Dss1. What happens to ubiquitylated substrates after reaching

the 26S proteasome, but prior to or during degradation, is still

an open question. For instance, we know little about the events

taking place during the initial substrate capture by Rpn10 and

Rpn13, localized at the tip of the regulatory particle, and the

translocation to the central ATPase ring. It is possible that sub-

strates are handed over from the outer receptors to an inner re-

ceptor more proximal to the ATPase ring. The localization of

Dss1 near the ATPase pore and the deubiquitylating subunit

Rpn11 (Bohn et al., 2013) would fit such amodel. The disordered

and flexible nature of Dss1 could then allow for interaction with

substrates presented in various orientations. However, like

most disordered proteins (Uversky, 2011), Dss1 is multifunc-

tional, even within the 26S proteasome, where it appears to

act both structurally and functionally. This complicates the inter-

pretation of the dss1D phenotypes. Recently, budding yeast

Sem1 was shown to play an important role in proteasome

assembly (Tomko and Hochstrasser, 2014). Specifically, Sem1

catalyzes incorporation of subunits Rpn3 and Rpn7 into the

19S regulatory complex through sites that overlap with UBS-I

and UBS-II in fission yeast Dss1. However, this function of

Sem1 becomes dispensable at later stages of proteasome

assembly. Although our proteomic analyses of dss1D 26S pro-

teasomes do not indicate that the level of Rpn3 or Rpn7 is

reduced compared to that of other subunits of the lid complex,

we also noted that Dss1, mutated in both UBS-I and UBS-II, is

not incorporated into 26S proteasomes. Notably, the Dss1

mutant in UBS-I alone was still incorporated into 26S protea-

somes but continued to display the temperature-dependent

growth defect and ubiquitin-conjugate stabilization. This sug-

gests that the phenotypes connected with the Dss1 ubiquitin-

binding activity is limited to that of the Dss1 UBS-I, which has

a much greater affinity for ubiquitin compared to UBS-II. How-

ever, Dss1 also has proteasome-independent functions,

including associating with DNA repair proteins (Yang et al.,

2002) and the transcription-export complex (Ellisdon et al.,

2012; Faza et al., 2009). We speculate that the ubiquitin-binding

activity of Dss1 may also play a functional role for these cellular

processes.

In conclusion, our studies suggest the intrinsically disordered

protein Dss1 as a ubiquitin receptor for the 26S proteasome in

fission yeast. Since Dss1 is phylogenetically conserved, we pro-

pose that Dss1 acts as a ubiquitin receptor in all eukaryotes.
(B) The dss1D strains transformed with the indicated expression constructs were

after 72 hr.

(C) The dss1D strains transformed with the indicated expression constructs w

Expression of the various Dss1 proteins was confirmed by blotting for the GFP t

(D) A dss1D strain was transformed with the indicated expression vectors for Ds

GFP. The precipitated material was analyzed by SDS-PAGE andwestern blotting u

expression was not visible in whole cell lysates but was clearly enriched in the p

(E) Plating assay of the dss1Drhp23Drpn10D strain with the indicated expression

was crossed to dss1Drhp23D cells to generate a triple deletion. Following cross

expression vector.

(F) Plating assays of the dss1Drhp23Drpn10D and dss1Drhp23Drpn10DUIM str

Figure 4E were quantified. Following crossing, 10,000 spores were plated under s

counted and normalized to the controls (Rpn10 FL and Dss1 wild-type). Data are

See also Figure S4.
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EXPERIMENTAL PROCEDURES

Yeast Strains and Protocols

All strains used for this work are listed in Table S1. The strains were all derived

from the S. pombe wild-type heterothallic 972h� and 975h+. Standard genetic

methods and media were used (Moreno et al., 1991).

Fission Yeast Expression Plasmids

The plasmids used for expression of rpn10+ and dss1+ in fission yeast were

pREP41 carrying the budding yeast LEU2 gene for selection and the nmt41

promoter or the pDUAL vector carrying ura4+ for selection and the nmt1 pro-

moter (Matsuyama et al., 2004).

Antibodies

Antibodies to Mts4/Rpn1 have been described elsewhere (Wilkinson et al.,

2001). Other antibodies were commercially available: flag (Sigma), green fluo-

rescent protein (GFP; Sigma), tubulin (Abcam), 20S proteasome MCP231

(Enzo), T7 (Bethyl), and ubiquitin (DAKO).

Protein Purification and Coprecipitation Assays

The 26S proteasomes, flag-tagged onMts4 (Rpn1), were purified as described

elsewhere (Verma et al., 2002).

Proteasome Assays

The proteolytic activity of affinity-purified 26S proteasomes with or without

Dss1 was measured in the presence or absence of 5 mM of the proteasome in-

hibitor Bortezomib (LC Laboratories) using the suc-LLVY-AMC substrate

(Enzo) as described elsewhere (Groll et al., 2006).

Mass Spectrometry

Detailed methods are provided in the Supplemental Information.

Purification of Recombinant Proteins and Coprecipitation Assays

All Dss1 proteins were expressed in Escherichia coli BL21 (DE3) from the

pGEX6P1 or pDEST15 vectors by standard methods. Harvested cells were

lysed by sonication in a buffer containing 12.5 mM Tris-HCl, pH 7.5,

37.5 mM NaCl, 1 mM phenylmethylsulfonyl fluoride and cOmplete Mini Pro-

tease Inhibitor Tablets (Roche). Following centrifugation at 13,000 3 g, the

cleared lysates were tumbled with glutathione-sepharose beads (GE Health-

care) for 1 hr at 4�C and extensively washed with the lysis buffer. Coprecipi-

tation assays were performed as described elsewhere (Wilkinson et al.,

2001). For the ubiquitin precipitation studies, 3 mg of K48- and K63-linked

ubiquitin chains (Boston Biochemicals) were used per precipitation in

100 ml buffer A, containing 12.5 mM Tris-HCl, pH 7.5, 37.5 mM NaCl. The

protein/bead ratio was adjusted to about 1 mg/ml, and 10 ml of beads

were used per assay. After 2 hr of tumbling at 4�C, the beads were washed

twice with 1 ml of buffer A with 0.5% Triton X-100 and once with buffer A.

Bound protein was eluted by boiling with SDS sample buffer. Some ubiquitin

blots were boiled for 30 min after transfer to enhance reactivity and blocked

with 5% BSA in PBS.
analyzed for growth on solid media at 30�C and 37�C. The pictures were taken

ere analyzed for the presence of ubiquitin-protein conjugates by blotting.

ag. Tubulin served as a loading control. wt, wild-type.

s1-GFP fusion proteins and used for immunoprecipitations with antibodies to

sing antibodies to the proteasome subunit Mts4/Rpn1 and GFP on Dss1. Dss1

recipitated material. FL, full-length.

constructs. The dss1Drpn10D strain transformed with the indicated constructs

ing, 10,000 spores were plated under selection for the deleted genes and the

ains with the indicated Rpn10 and Dss1 expression constructs, as shown in

election for the deleted genes and the expression vectors. Viable spores were

presented as mean ± SEM (n = 6).
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The T7-tagged Sic1-PY was purified and in vitro ubiquitylated as described

elsewhere (Kriegenburg et al., 2008).

NMR Samples and Recordings

Detailed methods are provided in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes four figures, one table, and

Supplemental Experimental Procedures and can be found with this article
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