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Finite element modeling to predict procedural success of
thoracic endovascular aortic repair in type A
aortic dissection
Xun Yuan, MBBS, MMED,a,b Xiaoxin Kan, BSc, MSc,c Xiao Yun Xu, PhD,c and
Christoph A. Nienaber, MD, PhDa,b
ABSTRACT

Objective: Thoracic endovascular aortic repair (TEVAR) is recommended for type
B aortic dissection and recently has even been used in selected cases of proximal
(Stanford type A) aortic dissections in scenarios of prohibitive surgical risk. Howev-
er, mechanical interactions between the native aorta and stent-graft are poorly un-
derstood, as some cases ended in failure. The aim of this study is to explore and
better understand biomechanical changes after TEVAR and predict the result via
virtual stenting.

Methods: A case of type A aortic dissection was considered inoperable and
selected for TEVAR. The procedure failed due to stent-graft migration even with
precise deployment. A novel patient-specific virtual stent-graft deployment model
based on finite element method was employed to analyze TEVAR-induced changes
under such conditions. Two landing positions were simulated to investigate the
reason for stent-graft migration immediately after TEVAR and explore options
for optimization.

Results: Simulation of the actual procedure revealed that the proximal bare metal
stent pushed the lamella into the false lumen and led to further stent-graft migra-
tion during the launch phase. An alternative landing position has reduced the local
deformation of the dissection lamella and avoided stent-graft migration. Higher
maximum principal stress (>20 KPa) was found on the lamella with deployment
at the actual position, while the alternative strategy would have reduced the stress
to<5 KPa.

Conclusions: Virtual stent-graft deployment simulation based on finite element
model could be helpful to both predict outcomes of TEVAR and better plan future
endovascular procedures. (JTCVS Techniques 2020;4:40-7)
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Virtual stent-graft deployment simulation to pre-
dict outcome of TEVAR.
t

CENTRAL MESSAGE

TEVAR in TAAD needs optimiza-
tion to benefit more patients.
Virtual stent-graft deployment
simulation can predict TEVAR-
induced biomechanical changes
and assist intervention planning.
PERSPECTIVE
TEVAR in TAAD remains challenging due to
anatomical complexity and device limitation.
Image-based computational simulation of stent-
graft deployment can potentially be used to pre-
dict the immediate outcome of TEVAR and opti-
mize endovascular procedures in the future.

See Commentary on page 48.
Video clip is available online.
Aortic dissection is a life-threatening condition with an
incidence of 2.6 to 3.5 cases per 100,000 person-years.1,2

According to current guidelines, the standard care for prox-
imal aortic dissection is surgery. However, even with mod-
ern techniques, perioperative mortality is 15% to 30% in
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Abbreviations and Acronyms
CT ¼ computed tomography
ECG ¼ electrocardiogram
TEVAR ¼ thoracic endovascular aortic repair
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elderly patients with comorbidities.3 To date, endovascular
strategies have emerged for managing various aortic pathol-
ogies,4,5 have been established for treatment of distal (Stan-
ford type B) aortic dissections, and recently even been used
in selected cases of proximal (Stanford type A) aortic dis-
sections.6,7 Acute type A aortic dissection usually requires
urgent replacement of the ascending aorta8-10; selected
cases, however, may qualify for thoracic endovascular
aortic repair (TEVAR) in scenarios of prohibitive surgical
risk.11,12 TEVAR, where applicable, may potentially lower
the procedural/in-hospital mortality risk, particularly as the
technology improves.13 However, due to the complexity in
anatomic structure and mechanical motion in the ascending
aorta, there is currently no designated ascending aorta stent-
graft available.14 In addition, interactions between the
native aorta and stent-graft and resulting changes in aortic
wall stress, hemodynamic, and aortic root motion are
unknown.

Virtual stent-graft deployment simulation is a computa-
tional approach based on finite element method, which can
mimic biomechanical interactions between stent-graft and
aorta during a TEVAR procedure by using preinterventional
computed tomography (CT) angiogram and provide quanti-
tative prediction of stent-graft position and wall stress.15

Virtual stent-graft simulation models have been reported
and applied to abdominal aortic aneurysmdemonstrating ac-
curacy and potential as a interventional planning tool.16,17

Similar approaches have been applied to type B aortic dis-
sections in an attempt to identify factors leading to retro-
grade type A dissection following TEVAR.18 However,
virtual stent-graft deployment simulation of TEVAR for
proximal aortic dissection is challenging due to complex
anatomical structure and nonlinear contact relationship
between stent-graft and ascending aorta. So far, there is no
published study of patient-specific virtual stent-graft
deployment simulation in type A aortic dissection yet. We
report a retrospective study of a failed TEVAR in DeBakey
II dissection caused by subsequent migration post-
procedure. The migration following stent-graft deployment
was reproduced using a virtual simulation model in an
attempt to understandwhy the procedure failed. An alternate
deployment scenario was simulated to explore possibilities
of avoiding migration.
CASE REPORT
An 80-year-old man was admitted with sudden onset of

severe chest pain radiating to neck and jaw lasting for
13 hours after presenting to the emergency department of
a district general hospital. He had a history of arterial hyper-
tension, bilateral nephrolithiasis and reduced renal func-
tion, and a recent hernia repair. Electrocardiogram (ECG)
showed rapid atrial fibrillation, right bundle branch block,
and t-wave inversion on leads V2-V6, I, II, III, and aVF
(Figure 1) reflecting left ventricular hypertrophy due to
long standing hypertension. Troponin I had risen to
269 ng/L and then levelled off. A diagnostic CT angiogram
revealed a proximal aortic dissection (DeBakey II), prompt-
ing transfer to intensive care unit and further on to a tertiary
care aortic centre for surgery. Upon transfer, the patient
developed pyrexia with episodes of rigor likely to be caused
by infected venous leg ulcers that led to the decision to
delay swift surgical repair and rather monitor the patient
closely under broad spectrum antibiotic coverage, careful
blood pressure adjustment and a reduced dose of 2.5-mg
bid apixaban.
A follow-up ECG-gated contrast-enhanced CT angio-

gram a week later showed stability of the confined dissec-
tion (DeBakey II) with no signs of progression, one single
entry tear and no aortic valve dysfunction; coronaries
were not compromised by the aortic dissection (Figure 2,
A). In agreement with the patient and in view of both comor-
bidities and age, an operation was again deferred (Euro-
SCORE [European System for Cardiac Operative Risk
Evaluation] II 47.86% and Society of Thoracic Surgeons
score 53.694%) while the patient stayed under close ambu-
latory surveillance. On the second follow-up scan 3 weeks
later, expansion of the false lumen to>60 mm was noted
with no other concomitant changes. Subsequent multidisci-
plinary team decision recommended an endovascular
approach with placement of a suitable compliant stent-
graft to cover the single entry, as the distance between cor-
onaries and the brachiocephalic branch was sufficient to
accommodate a 45-3 100-mm GORE C-TAG Active Con-
trol device (W. L. Gore & Associates, Inc, Flagstaff, Ariz).
Thus, 43 days after the onset of the DeBakey II dissec-

tion, a TEVAR procedure was conducted with the patient
under general anesthesia. Using femoral access and a
22F DrySeal introducer, we positioned a 45- 3 100-mm
GORE C-TAG Active Control precisely in the ascending
aorta guided by fluoroscopy and transesophageal echocardi-
ography to cover the tear without obstructing aortic side-
branches under low pressure conditions induced by rapid
right ventricular pacing at 180 bpm. After successful launch
of the semi-opened device under image overlay, the subse-
quent angiogram revealed that the stent-graft migrated sec-
onds after deployment with its distal end being dislodged
into the false lumen (Figure 2, B). Although hemodynami-
cally stable, no second stent was placed in the absence of
any landing zone left, in favor of swift elective surgery.
The patient stayed in hospital as he developed intermittent
complete heart block requiring dual chamber pacing in
JTCVS Techniques c Volume 4, Number C 41



FIGURE 1. Electrocardiogram at admission shows rapid atrial fibrillation, right bundle branch block, and t-wave inversion on leads V2-V6, I, II, III, and

aVF, reflecting left ventricular hypertrophy due to long standing hypertension.
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DDD mode. One week later, successful surgery was per-
formed by removing the stent-graft under conditions of
28�C hypothermia and antegrade brain perfusion and re-
placing the ascending aorta/hemiarch with a 32-mm
Gelweave graft (Vascutek Terumo, Scotland, United
Kingdom) with sidearm. The postoperative course was
complicated by both temporary respiratory and kidney fail-
ure, requiring prolonged ventilation and intermittent renal-
replacement therapy, eventually leading to full recovery on
oral diuretics and anticoagulation.

Next-generation deoxyribonucleic acid sequencing and
bioinformatic copy number analysis of a 62 gene sub-
panel associated with aortopathy and connective tissue dis-
orders failed to reveal any pathogenic sequence variants or
copy number changes.

METHODS AND RESULTS
Virtual Stent-Graft Deployment Simulation

A detailed biomechanical analysis of the TEVAR proced-
ure was performed using a virtual stent-graft deployment
simulation model based on the finite element method.19

The preinterventional CT angiogram images were
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processed to reconstruct the 3-dimensional patient-
specific aortic geometry and the dissection lamella. Ethical
approval was obtained from local Ethics Committee, and
written consent was given by the patient. The aortic wall
was assumed to have a uniform thickness of 1.5 mm and
its mechanical behavior was described using second or-
dered Ogden hyperelastic model fitted to the circumferen-
tial tensile test data of aortic tissue,20 whereas the
dissection lamellar was assumed to have linear elastic ma-
terial properties with non-uniform thickness as extracted
from ECG-gated CT angiographic images. Details of the
constitutive models and mechanical properties are provided
in Table 1. The preinterventional aorta model was meshed
using C3D4 elements for the virtual stent-graft simulation.
The proximal end and distal ends of the aorta model were
fixed in all directions.

The stent-graft model was created by following the
design specification of the device (45- 3 100-mm GORE
C-TAG Active Control) used in the TEVAR procedure
consisting of 2 components: a nitinol metallic stent and
e-polytetrafluoroethylene fabric. A mathematical equation
describing the geometry of the metallic stent skeleton was



FIGURE 2. Periprocedural images of an inoperable patient with type A aortic dissection managed by thoracic endovascular aortic repair. A, 3-dimentional

reconstruction of a computed tomographic angiogram with type A aortic dissection showing a single large entry tear; B1, true and false lumens opacified

using digital subtraction angiography; B2, transesophageal echocardiogram showing true and false lumen and the lamella (asterisk); C1, postintervention

3-dimentional computed tomographic angiogram showing stent-graft migration and the proximal part of stent-graft pushing into the false lumen best seen on

the 2-dimentional image (C2).
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TABLE 1. Material parameters and constitutive law used in the

virtual stent-graft simulation model

Part name Material property

Aortic wall Second-ordered Ogden model

W ¼ P2

i¼1

2mi

a2
i

ðl�ai

1 þ l�ai

2 þ l�ai

3 � 3Þ
m1 ¼ 1.274 MPa, a1 ¼ 24.074,

m2 ¼ �1.211 MPa, a2 ¼ 24.073

Dissection lamella Young’s modulus: Elamellar ¼ 277 KPa

Poisson’s ratio: n ¼ 0.49

Metallic stent Young’s modulus (austenite):

Estent ¼ 51,700 MPa

Poisson’s ratio: n ¼ 0.3

Graft Young’s modulus: Egraft ¼ 55.2 MPa

Poisson’s ratio: n ¼ 0.46
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developed based on the detailed dimensions of the stent-
graft device (Figure 3, C). While the fully crimped state
of the stent-graft was not simulated, the stent skeleton
was assumed to have elastic material properties in austenite
phase at body temperature,15 whereas the stent-graft fabric
was modeled as a cylindrical tube with a thickness
of 0.1 mm with linear elastic material properties.21 The
metallic stent and stent-graft fabric were assembled
together according to specific design considerations.

The initial geometric configuration used in the computa-
tional simulation was based on the preinterventional CT
angiogram, whereas the stent-graft positioning was based
on the angiographic image during the TEVAR procedure.
Simulation of stent-graft deployment was controlled by
the deformation of a virtual catheter; the virtual stent-
FIGURE 3. Patient-specific finite element model analysis. A, Fluoroscopic vie

image of the stent-graft in the ascending aorta with virtual adaptation to the aort

nario I, which simulates the actual thoracic endovascular aortic repair procedur

scenario II, which assumed a more proximal positioning by 10 mm. C, The math

the design details of the stent-graft device. The blue wire represents the nitinol m

Expanded polytetrafluoroethylene.
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graft was crimped from its stress-free state to the diameter
of the delivery catheter. Both proximal landing position
and assumed curvature of the virtual stent-graft were
simulated before removing the virtual catheter. The virtual
stent-graft landing position was selected from the fluoro-
scopic image acquired at semi-open stage before TEVAR
launch, as shown in Figure 3, A. Two different landing po-
sitions were simulation. Scenario I corresponds to the posi-
tion adopted in the actual procedure. To understand the
influence of stent-graft proximal landing position on its
biomechanical performance, scenario II was simulated
where the landing position was moved toward the aortic
root by 10 mm (Figure 3, B). Simulation results were veri-
fied by comparing the simulated stent-graft position with
the real stent-graft position shown in the digital subtraction
angiography after stent-graft launch.

The virtual stent-graft deployment simulation was per-
formed with ABAQUS explicit solver (Dassault Syst�emes,
France). All contacts were modeled by using the general
penalty contact with a friction coefficient of 0.2 under the
Coulomb friction law.21 The ratio of the kinetic energy
and internal energy (ALLKE/ALLIE) was kept below
10% to ensure that the simulation was quasi-static. The
simulation took 30 hours for each scenario using a worksta-
tion with Duo Intel Xeon E5-2630 central processing units
(40 cores in total).
Patient-Specific Simulation Results
The simulation results of scenario I are shown in

Figure 4, A. The maximum principal stresses to the aortic
w of stent-graft positioning in semi-open stage before launch. B, Simulated

ic curvature. The orange circlemarks the proximal landing position in sce-

e, whereas the green circle simulates the proximal position of stent-graft in

ematical equation governed stent-graft geometry was created by following

etallic skeleton, whereas the yellow tube represents the graft fabric. e-PTFE,



FIGURE 4. Virtual stenting simulation results. A, Simulated description of various phases of stent-graft placement from left to right. B, Postinterventional

digital subtraction angiogram showing stent-graft migration. C, Virtual stent-graft deployment simulation of the actual procedure (scenario I). D, Virtual

stent-graft deployment simulation based on the assumption of stent-graft deployed 10 mm proximally (scenario II). The final configuration of stent-

graft in both scenarios are projected onto the postinterventional digital subtraction angiogram.
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wall and dissection lamella are displayed to analyze stress
redistribution during stent-graft deployment, where positive
and negative values correspond to tension and compression,
respectively. When the deployment was initiated, contact
between the proximal bare metal stent apexes and the
lamella led to local stress concentration (blue spot in
Figure 4, A), causing the dissection lamella to deform to-
ward the false lumen. This local deformation allowed the
proximal bare metal stent to further push into the false
lumen, as illustrated by the instantaneous snapshots
captured during simulation (Video 1). After the interaction
reached a stable state, the final stent-graft position obtained
from the scenario I simulation (Figure 4, C) was compared
with digital subtraction angiography acquired after stent-
graft deployment (Figure 4, B) demonstrating congruence.
Minor discrepancies were observed at the distal end of
stent-graft, which was likely caused by further stent-graft
migration under blood flow.
Results from the scenario II simulation showed less

deformation of stent-graft toward the false lumen and sug-
gested that the proximal end of the stent-graft would not be
pushed into the false lumen (Figure 4,D, Video 1). Compar-
ison of the maximum principal stresses between both simu-
lated scenarios revealed that the dissection lamella was
exposed to lower stress in scenario II than in scenario I.
High stresses (>20 KPa) were observed at the entry tear
of the lamella in scenario I, whereas scenario II simulation
revealed a maximum stress of 5 KPa at the same location.
JTCVS Techniques c Volume 4, Number C 45



VIDEO 1. Computational virtual stent-graft deployment simulation per-

formed by using finite element analysis. Scenario I was based on the pre-

TEVAR images and the simulation accurately predicted the actual result.

The proximal bare metal stent pushed the lamella into the false lumen

and led to further stent-graft migration during the launching phase. Sce-

nario II was based on the assumption that stent-graft would be deployed

10 mm proximally and close to the aortic root. In addition, the simulated

tissue stress maps revealed differences in the lamella with lower focal stress

in scenario II compared with scenario I. This might explain the failure in

this case (high stress combined with localized deformation caused stent-

graft migration during TEVAR). Video available at: https://www.jtcvs.

org/article/S2666-2507(20)30575-7/fulltext.
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DISCUSSION
Although endovascular procedures have recently been

applied with some success even to the ascending aorta in
various chronic scenarios,6 the technology appears not
ready for prime time for a number of reasons: first, there
are no dedicated endovascular devices available for specific
use in the ascending aorta addressing the challenges of the
anatomy and the 3-dimensional motion of the ascending
aorta; second, current devices should precisely fit between
coronary ostia and the brachycephalic trunk; and third,
the delivery of such device must be controlled and precise
to avoid major problems.

In our highly selective case such pre-conditions seem to
be fairly well met, given the contraindication for open
surgery, the suitable anatomy for a flexible device (45-
3 100-mm GORE C-TAG Active Control), and the modern
automatic release mechanisms supported by rapid right
ventricular pacing and low blood pressure for precise place-
ment. Nevertheless, the procedure failed as well docu-
mented in Figure 4, B. The important questions are now
how and whether this could have been predicted.

To explore the outcome before clinical application finite
element modelling of the interaction between an endovas-
cular device and surrounding anatomy was brought in.
Based on preinterventional CT angiogram images, virtual
stent-graft deployment simulation performed offline
46 JTCVS Techniques c December 2020
revealed interesting findings. The crown, proximal bare
metal stent was found to push against the dissection lamella
at the level of the proximal landing zone (Figure 4, C) with
high focal stresses in the tissue. High compression stress
and localized deformation of the dissecting lamella induced
by radial force of the stent-graft caused its migration during
the launching phase. The localized deformation further
reduced local contact pressure and friction between the
stent-graft and the dissecting lamella allowing the stent-
graft to slide on the lamella. After full deployment, high
local stress was still present around the entry tear facili-
tating the stent-graft to straighten after deployment as
shown by the mismatch between the digital subtraction
angiography in the follow-up CT angiogram (Figures 2,
C, and 4, B). Our simulation suggested that the proximal
landing zone was too close to the tear and the tissue too
vulnerable to support the radial force of a self-expanding
stent-graft.

By moving the proximal landing position about 10 mm
toward the aortic valve as simulated in scenario II, the pre-
dicted stress level in the dissecting lamella was much lower,
avoiding overstretching the dissection lamella and stent-
graft migration as predicted by the scenario I simulation.
Simulation of scenario II suggested the better strategy to
prevent stent-graft migration. Localized deformation and
stress concentration were reduced which would have
avoided migration and dislocation of the stent into the false
lumen. Meanwhile, the scenario II strategy reduced the risk
of further migration by decreasing the principal stress level
around the tear from 20 KPa (in scenario I) to<5 KPa.

The remarkable agreement between the simulation re-
sults of scenario I and the clinical outcome is promising
and suggests that our virtual stent-graft deployment simula-
tion method has the potential to not only predict changes in
biomechanical conditions induced by TEVAR but also to
improve planning of TEVAR procedure in the future. The
potential value of virtual stent-graft deployment simulation
has been well illustrated by this case study, demonstrating
that slight differences in stent-graft landing position can
determine the outcome of a given procedure.

In summary, biomechanical interactions between stent-
graft and native aorta play a vital role in determining the im-
mediate result of stent-graft deployment. These interactions
cannot be directly evaluated from anatomic dimensions.
Our virtual stent-graft deployment model has provided
new insights into the stent-graft behavior within dissected
aorta and successfully reproduced the immediate outcome
of TEVAR as observed in vivo; the model indicated that
TEVAR-induced changes in local biomechanical conditions
were responsible for stent-graft migration during the
launching phase. A modified deployment position was
simulated showing a lower risk of migration with improve-
ment in the local biomechanical environment.

https://www.jtcvs.org/article/S2666-2507(20)30575-7/fulltext
https://www.jtcvs.org/article/S2666-2507(20)30575-7/fulltext
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Limitations
The virtual stent-graft deployment simulation involves

several assumptions. These include a uniform wall thick-
ness and the use of an isotropic model for the aortic tissue.
Furthermore, the simulation was based on static images ne-
glecting the 3-dimensional motion of the aortic root and its
impact on interaction between the stent-graft and the aorta.
In addition, the initial patient-specific aorta model geome-
try was reconstructed from CT angiogram images, repre-
senting the configuration of the aorta under internal blood
pressure. However, the zero-stress configuration of aortic
tissue and pre-stress of the aorta were not considered in
this simulation model. The influence of pulsatile blood
flow and pulsating pressure was also neglected. Finally,
the mechanical properties of aortic tissue in the setting of
dissection are based on data in the literature rather than
patient-specific. Therefore, further improvement of the vir-
tual stent-graft deployment model and thorough validation
of the simulation results are needed before adoption for
real clinical scenarios.

CONCLUSIONS
The virtual stent-graft deployment simulation has shown

potential in predicting the immediate outcome of TEVAR
deployment by analyzing TEVAR-induced changes under
given biomechanical conditions in a patient-specific
manner. High stress concentration combined with localized
deformation was responsible for stent-graft migration
observed during TEVAR. As a potential tool for future in-
terventional planning and optimization the concept needs
further validation in a prospective clinical setting.
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