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ABSTRACT

Most pathogens initiate their infections at the human mu-
cosal surface. Therefore, mucosal vaccination, especially
through oral or intranasal administration routes, is highly
desired for infectious diseases. Meanwhile, protein-based
antigens provide a safer alternative to the whole pathogen
or DNA based ones in vaccine development. However, the
unique biopharmaceutical hurdles that intranasally or
orally delivered protein vaccines need to overcome before
they reach the sites of targeting, the relatively low im-
munogenicity, as well as the low stability of the protein
antigens, require thoughtful and fine-tuned mucosal vac-
cine formulations, including the selection of immunos-
timulants, the identification of the suitable vaccine delivery
system, and the determination of the exact composition
and manufacturing conditions. This review aims to provide
an up-to-date survey of the protein antigen-based vaccine
formulation development, including the usage of im-
munostimulants and the optimization of vaccine delivery
systems for intranasal and oral administrations.

KEYWORDS mucosal vaccine, protein antigen,
adjuvant, immunostimulant, vaccine delivery system

INTRODUCTION

As the most effective way to reduce diseases, vaccination
has undergone a long way in human history. Ever since 1796
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when Edward Jenner used cowpox virus vaccine to prevent
smallpox, vaccination has been widely used in diseases in-
cluding small pox, diphtheria, tetanus, yellow fever, pertus-
sis, Haemophilus influenza type b disease, poliomyelitis,
measles, mumps, rubella, typhoid, rabies, anthrax, rotavirus,
shingles, meningococcal, pneumococcal disease, Japanese
encephalitis, varicella, rotavirus, lyme disease, tuberculosis,
hepatitis and influenza (Jariyapong et al., 2013). The vaccine
development evolves from natural exposure, to empirical
inactivated/attenuated pathogens, and finally to subunit
antigens that are structure-function properly designed
nowadays (Dormitzer et al., 2012; De Gregorio and Rap-
puoli, 2014).

Most pathogens initiate their infections at the mucosal
surface of the respiratory, gastrointestinal and urogenital
systems (Marasini et al., 2014). As the first defense line for
human body, mucosal immunity is highly desirable to provide
an efficient and long-lasting protection against pathogen in-
vasion. Yet, most commercial vaccines are delivered sys-
temically, which only induces humoral immune protection
without pathogen-specific mucosal immunity. Therefore,
mucosal vaccination is highly advantageous for infectious
diseases that is inhaled, ingested or sexually transmitted
such as influenza (Tamura and Kurata, 2004), coronaviruses
(Liu et al., 2011), HIV (Rappuoli and Aderem, 2011), etc. The
reader is referred to several reviews describing the mucosal
vaccine development against diverse infectious diseases
and even cancers (Holmgren and Czerkinsky, 2005; Neutra
and Kozlowski, 2006; Lycke, 2012).

Generally, several factors should be considered for an
efficient and safe mucosal vaccine development, including
the antigen, adjuvant, formulation, administration route and
animal model for efficacy and safety evaluation. An effective
vaccine often contains the following components: 1) antigens
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for eliciting specific adaptive immune response; 2) im-
munostimulants to stimulate the innate immune system and
3) delivery systems for the right-place and right-time vaccine
delivery (Pashine et al., 2005). Although virus- and DNA-
based antigens may be more effective, safety concerns re-
main due to the existence of gene-coding materials, which
may revert to virulent disease-causing states. Protein anti-
gens present a quite promising alternative for vaccine de-
velopment, due to the following characteristics: 1) absence of
infectious materials like coding genes, 2) capability of in-
ducing antigen-specific antibodies, 3) possibility for chemical
modification and 4) the readiness for large scale manufac-
turing for a looming pandemic. However, most protein-based
antigens have the limitation of physiological instability and
low immunogenicity, which demand both potent immunos-
timulants and efficient delivery systems to accomplish ef-
fective vaccine products.

Here, we review the up-to-date achievement of mucosa
prophylactic vaccine development with protein-based anti-
gens to defend against various infectious diseases, including
tetanus, influenza, hepatitis, SARS, MERS, HIV, etc. The
field is vast and this review merely concentrates on the re-
cent, relevant and most studied protein antigens, adjuvants
and delivery systems for oral and intranasal vaccinations.

IMMUNOLOGICAL AND BIOPHARMACEUTICAL
ASPECTS OF INTRANASAL AND ORAL
VACCINATION

Vaccines are delivered through various administration
routes, including parenteral routes like intramuscular or
subcutaneous injection, and mucosal routes through in-
tranasal, oral, vaginal or rectal tract. Mucosal vaccination
has several foreseeable advantages: 1) needle free and
better patient compliance; 2) strong mucosal immunity be-
sides systemic immune responses, which provides the first
barrier against those infections initiating at the mucosal
surface; 3) potential to overcome the barrier of the pre-ex-
isting immunity caused by previous parenteral vaccinations
(Belyakov et al., 1999).

Intranasal and oral vaccinations are the most attractive
administrative routes among various mucosal administra-
tions, largely due to their better patient compliance. Nasal
delivery is preferred due to: 1) the highly vascularized mu-
cosal surface area of 150 cm® from the naso-pharyngeal
compartment for vaccine uptake, 2) the ability to induce
immune protection at local nasal, interconnected oral and
distant mucosal sites such as vaginal and colorectal regions,
and 3) relatively low dose to achieve required immunity,
compared with other routes (Almeida and Alpar, 1996; Ol-
szewska and Steward, 2001; Holmgren and Czerkinsky,
2005). Oral delivery is advantageous considering its superior
patient compliance, easy administration and mass immu-
nization capacity (Marasini et al., 2014), especially when it
comes to the plant-derived protein antigens and veterinary

vaccines. For example, plant-derived recombinant protein
vaccines are more efficient and cost effective for oral ad-
ministration, without protein purification or complicated for-
mulating steps as algae-based oral recombinant vaccines
(Specht and Mayfield, 2014). Meanwhile, plant-derived pro-
tein antigens are suggested to be used as boosting vaccines
by just orally feeding animals with the antigen-expressing
food, where the priming can be realized with conventional
vaccinations (Lamphear et al., 2004; Pogrebnyak et al.,
2005).

The mucosal surface is protected by the large and spe-
cialized innate and adaptive mucosal immune system. In-
nate immune system plays an important role in fighting
against initial infections and facilitating generation of adap-
tive immune response, while adaptive immune system is
vital for providing protection against previously encountered
pathogens. The mucosal immunization occurs at the induc-
tive sites called the mucosa-associated lymphoid tissue
(MALT), which contains B cells, T cells and antigen pre-
senting cells (APCs) for specific immune response initiation
(Holmgren and Czerkinsky, 2005; Lawson et al., 2011). The
MALT is covered by a follicle-associated epithelium, com-
prising epithelium cells, lymphoid cells and a minor portion of
microfold/membraneous (M) cells (Fig. 1). M cells are gen-
erally recognized as the antigen uptaking cells from the lu-
men of intestinal/nasal mucosa and transport antigens to the
underlying APCs in MALT. Upon infection or vaccination,
precursor cells (B cell, T cell and dendritic cells) in inductive
sites can be activated, and then migrate and populate the
local or remote mucosa sites through the common mucosal
immune system to realize the systemic immune protection.
Most mucosal response occurs at the local initiation and
adjacent interconnected mucosa. As an exception, in-
tranasal vaccination could induce IgA secretion not only at
local nasal and adjacent oral mucosa surface, but also re-
mote vaginal and rectal regions (Holmgren and Czerkinsky,
2005).

Similar to systemic immunization, mucosal vaccination
can be accomplished through three steps (Fig. 1): 1) efficient
antigen sampling and uptake; 2) antigen processing and
presentation by APCs; and 3) B and T cells activation, pro-
duction of effector cells and generation of their memory
counterparts. The production of neutralizing antibodies is
vital for humoral immune response in clearing extracellular
infections. Distinguished from systemic vaccination, mucosal
vaccination normally induces strong secretory IgA response
to defend the viral infection at the mucosal surface, besides
producing systemic serum IgG to neutralize the newly gen-
erated viruses (Renegar et al., 2004). Cellular immune re-
sponses involve the activation of CD4" and CD8" T cells.
CD4" T cells can activate and differentiate into different
functional effector cells: type-1 (Th1), type-2 (Th2) and type-
17 (Th17) (Khader et al., 2009). The production of Th1 is
induced by interleukin-12 (IL-12), and Th1 effector cells can
produce interferon-y (IFN-y) and mediate cellular response
against intracellular pathogens. Th2 effector cells produce
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Figure 1. Schematic illustration of mucosal immunity. Ag:
antigen; M: M cells; SIgA: secretory IgA.

IL-4 and regulate humoral immune responses. The Th17
effector cells are generated in the presence of IL-23, char-
acterized by the production of IL-17 and critically involved in
the defense against pathogens at the mucosa surfaces
(Khader et al., 2007; Khader et al., 2009). Activated CD8" T
cells (cytotoxic T lymphocytes, CTLs) have cytolytic effect
and also mediate the production of cytokines like interferon-y
(IFN-y) and tumor necrosis factor-a (TNF-a) (Seder and Hill,
2000). CTL responses are critical for the protection against
intracellular infections. An optimal mucosal vaccine formu-
lation, including the appropriate combination of antigens,
immunostimulants and delivery carriers, should be able to
induce a comprehensive series of protective immune re-
sponse, as demonstrated by the production of various anti-
bodies (IgG, IgA, etc.), Th1, Th2, Th17, CTLs and relevant
cytokines (Fig. 1).

Pathogen microbes often have specific molecular char-
acteristics known as pathogen-associated molecular pat-
terns (PAMPs), which can be recognized by pathogen
recognition receptors (PRRs) on mucosal epithelial cells and
APCs. PRRs are generally membrane-bound receptors such
as toll-like receptors (TLRs), nucleotide-binding and
oligomerization domain (NOD)-like receptors (NLRs), and
C-type lectin receptors (CLRs) (Kanzler et al., 2007; Dev-
riendt et al., 2012; Park, 2014). The sensory of PAMPs on
pathogens by PRRs on DCs is passed to T and/or B cells
through altering the release of cytokines, the expression of
co-stimulatory molecules and the up-regulation of integrins
for adhesion. To improve the potency of vaccines, im-
munostimulants targeting these PRRs are often used as
adjuvants to activate and prepare the immune system for
reacting to specific antigens. Immunostimulants could be
PAMPs or their derivatives, endogenous cytokines and other
empirical molecules or materials, details to be discussed in

section ADJUVANTS FOR MUCOSAL VACCINES WITH
PROTEIN ANTIGENS.

Before antigens being processed and presented by APCs,
the first requirement in mucosal vaccination is to guarantee
efficient antigen transportation through the mucosal epitheli-
um from the mucin to the MALT. This is realized by endocy-
tosis (receptor-mediated or not) of antigens at the apical
membrane and exocytosis at the basolateral membrane by M
cells and other enterocytes (Neutra et al., 1996; Lawson
et al., 2011; Reineke et al., 2013). One way to improve the
transcytosis of vaccine by M cells or other epithelial cells is to
incorporate the M/epithelial cell-specific ligands or pathogen-
exploited molecules in the vaccine formulation. Once the
vaccine reaches the MALT underlying the mucosa epitheli-
um, efficient uptake, processing and presentation of antigens
are demanded for APCs including macrophages, dendritic
cells (DCs) and B cells. DCs, as the key APCs that bridging
the innate and adaptive immune systems, are found to prefer
the intake of vaccines formulated into pathogen-like
nanoparticles (Elamanchili et al., 2007; Klippstein and Pozo,
2010; Hamdy et al.,, 2011). Thus, quite a number of
nanoparticular vaccine delivery systems based on different
biomaterials have been explored to target the PRRs on DCs
and mimick the pathogen properties to enhance immune re-
sponses (Demento et al., 2011; Park, 2014). Mature DCs can
then potently activate the naive T cells and act as the primary
initiator of the immune response against specific antigens
(Banchereau and Steinman, 1998). All the aforementioned
properties and functions of epithelial cells, M cells and DCs
are widely exploited in various mucosal targeting strategies
as discussed in section VACCINE FORMULATIONS:
MATERIALS AND DELIVERY SYSTEMS.

PROTEINS AS AN EMERGING CLASS OF ANTIGENS

Antigens are the central elements of vaccines, which are
used to induce the antigen-specific immune memory. Cur-
rently, there are various types of antigens, including 1) whole
inactivated pathogens or mixtures; 2) live-attenuated or-
ganisms; 3) vector-based recombinant vaccines; 4) subunit
vaccines including DNA, RNA, isolated/recombinant pro-
teins, glycoproteins and carbohydrates. Most commercially
available vaccines fall into the first and second categories
containing genetic materials of pathogens, with only a few
exceptions that include protein-based subunits such
as virus-like particles (VLPs), detoxified toxoids/toxins and
polysaccharide-protein  conjugates  (http://www.fda.gov/
BiologicsBloodVaccines/Vaccines). Approved vaccines are
generally administered systemically, except for a few mu-
cosal vaccines comprising whole inactivated or live-at-
tenuated pathogens, such as intranasal influenza vaccine
(FluMist from Medlmmune, LLC) and oral vaccines against
polio (oral polio vaccine), cholera (oral cholera vaccine), ty-
phoid fever (Vivotif), adenovirus (no trade name from Barr
Labs, Inc) as well as rotavirus infections (ROTARIX from
GlaxoSmithKline Biologicals).
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Live viral vectors are widely used as delivery systems in
mucosal vaccination, including adenovirus, attenuated in-
fluenza virus, Venezuelan equine virus, bacillus Calmette-
Gue rin and poxvirus vectors (Prevec et al., 1989; Caley et al.,
1997; Hiroi et al., 2001; Gherardi and Esteban, 2005; Huang
et al., 2009; Wang et al., 2009). Besides viral vectors, nucleic
acid-based vaccines such as plasmid DNA and RNA, are also
being developed. However, the inactivated/attenuated
pathogens, vector- and DNA-based vaccines are always
limited for use due to difficulties in microorganism culturing
and some safety concerns such as the possibility of reverting
to the virulent state in immunocompromised hosts, as well as
potential adverse effects including allergic and autoimmune
reactions. In contrast, vaccines with protein antigens are in-
trinsically safer than the whole pathogen-based and DNA-
based antigens due to the absence of genetic materials.
Furthermore, the technical maturation in mass production of
specific peptides and recombinant proteins has substantially
lowered the hurdle of developing protein/peptide-based
therapeutics and vaccines (Degim and Celebi, 2007). There-
fore, pathogen proteins and epitope peptides provide a
promising alternative for antigen development. For example,
the Nabel group reported that ferritin nanoparticle based HA
delivery system demonstrated a more potent and broader
immune protection against influenza than the inactivated
virus. In this vaccine delivery system, HA mimics its natural
trimeric conformation as in the virus (Kanekiyo et al., 2013).

Currently there have not been any approved oral or in-
tranasal protein vaccines yet, but extensive efforts have been
reported on mucosal vaccination with protein-based antigens
against various infectious diseases such as influenza
(Yoshikawa et al., 2002; Tamura and Kurata, 2004; Petersson
et al., 2010; Rose et al., 2012), plaque (Eyles et al., 1998;
Tripathi et al., 2006), tetanus (Jaganathan et al., 2005),
diphtheria (Alpar et al., 2001; Singh et al., 2006), hepatitis B
(Borges et al., 2007; Borges et al., 2008), HIV (Morris et al.,
2000), SARS-CoV (Pogrebnyak et al., 2005) and MERS-CoV
(Zhang et al., 2014), etc. Besides proteins from pathogens,
model proteins antigens such as ovalbumin (OVA), 3-galac-
tase (B-gal) and bovine/human serum albumin (BSA/HSA)
are often used in the vaccine formulation development.

Influenza viruses infect host cells through two surface
glycoproteins: hemagglutinin (HA, of a head region HA1 and
a highly conserved stalk region HA2) and neuraminidase
(NA). Annual influenza pandemics occur as the antigenic
properties of HA and NA changes. Thus, both proteins serve
as potential candidates as influenza vaccine antigens for
intranasal immunization (Yoshikawa et al., 2002). On the
other hand, the matrix proteins (M1 & M2), whose amino acid
sequences are highly conserved among human influenza A
viruses, are exploited to design broad-spectrum influenza
vaccines (Mould et al., 2000; Sui et al., 2010).

Envelope surface glycoprotein 120 (gp120) and trans-
membrane glycoprotein 41 (gp41) of HIV mediate HIV infec-
tion by interacting with the CD4 receptors of the host cell.
Thus, these two proteins and their short sequence fragments

are often used as antigens for HIV vaccine development
(Lema et al., 2014).

Tetanus toxoid (TT) is a 150 kDa protein produced by
bacterium Clostridium tetani, which causes tetanus. Diph-
theria toxoid (DT) is a 535-amino acid protein secreted by
the pathogen bacterium Corynebacterium diphtheria, which
causes diphtheria. Both toxins as the main disease-causing
contributors are exploited as antigens in the vaccine devel-
opment against tetanus and diphtheria (Alpar et al., 2001).

Fraction 1 (F1) capsular protein of 17.5 kDa and virulence
(V) protein of 35 kDa are virulent subunits produced by
Yesinia pestis which causes the plaque disease. Vaccines
based on F1 and V protein display protective immunity in
both bubonic and pneumonic animal models (Williamson
and Oyston, 2013).

The surface antigen of the hepatitis B virus (HBsAg) is a
viral envelope protein. It has been successfully used in hu-
man vaccines to induce effective immune protection against
hepatitis B (Krugman, 1982; McAleer et al., 1984). HBsAg
assembles into VLPs after recombinant expression in hosts
like yeasts (McAleer et al., 1984).

There are two novel coronaviruses emerged in this cen-
tury: severe acute respiratory syndrome coronavirus (SARS-
CoV) and Middle East respiratory syndrome coronavirus
(MERS-CoV). Both cause acute respiratory distress syn-
dromes and lead to high mortality. The receptor binding
domain of the spike protein of SARS-CoV/MERS-CoV is a
promising antigen candidate since it binds to the human
host-cell receptor, angiotensin-converting enzyme 2/dipep-
tidyl peptidase 4 (Li et al., 2003; Wong et al., 2004; Graham
et al, 2013; Lu et al., 2013; Zhang et al., 2014). Orally
feeding mice with tomato juice expressing the N-terminal
fragment of SARS-CoV spike protein induce SARS-CoV-
specific IgA production (Pogrebnyak et al., 2005).

Different protein antigens can be fused to generate
combined vaccine antigens against two or more diseases at
the same time. For instance, enhanced and cross protective
immunity against both influenza and respiratory syncytial
virus (RSV) is realized by intramuscular vaccination with
fusion subunit protein of influenza virus hemagglutinin (HA)
and RSV fusion (F) protein (Turner et al., 2013). Protein
antigens are widely exploited in vaccine development to
protect against infectious diseases, but they are seriously
limited by the generally low stability and immunogenicity to
induce concerted humoral and cellular immune responses.
Thus, an optimal formulation (including the selection of im-
munostimulants) and an ideal delivery route are critically
important for protein-based vaccines.

ADJUVANTS FOR MUCOSAL VACCINES
WITH PROTEIN ANTIGENS

Subunit protein antigens are much safer alternatives to the
whole pathogen or viral vector-based antigens since they
have lower risk of causing diseases, but the immunogenicity
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is often compromised at the same time. This necessitates
the use of adjuvants in protein vaccines to improve the hu-
moral, cellular and mucosal immune responses (Marciani,
2003). Adjuvants in this review specifically refer to im-
munostimulants or immune-potentiators, substances that
stimulate the immune system by activating or increasing the
activity of its components.

Immunostimulants are compounds or macromolecule
complexes that can boost, maintain and potentiate the im-
mune response of antigens (Garcia and De Sanctis, 2014).
They are generally used to target the innate immune re-
sponse, which further facilitate the evolution of the adaptive
immune response (Pashine et al., 2005; Reed et al., 2009)
and mediate the balance between humoral and cellular im-
munity (Brunner et al., 2010). The immunostimulating con-
tribution of immunostimulants in a vaccine is affected by the
antigen, the formulation and the administration routes. For
example, TLR agonists (including FSL-1, poly I:C, CpG B,
MPL/LPS, Pam3CSK4 and R848), NLR ligand (such as
muramy! dipeptide (MDP)), the GM1 ganglioside receptor
ligand and cholera toxin B, are evaluated as sublingual,
nasal and intradermal adjuvants for HIV gp140, TT and OVA
vaccine in mice. It is suggested that different adjuvants show
different immunological effects upon administration through
different routes (Bal et al., 2012; Buffa et al., 2012).

Adjuvants are considered as components of vaccine
products and are not licensed separately. Currently licensed
adjuvants, including alum (aluminum sulfate or phosphate),
MF59 (squalene droplets with two surfactants), AS04 (alu-
minum hydroxide and monophosphoryl lipid A), AS03
(squalene, tween 80 and a-tocopherol) and virosomes (lipid
and hemagglutinin), were selected and developed em-
pirically. Here we review adjuvants that have been studied
with protein-based vaccines for intranasal and oral admin-
istration in humans/animals (summarized in Table 1 and
Table S1), such as cholera toxin (CT), heat-labile enterotoxin
(LT), alum, MPLA, dsRNA polyriboinosinic-polyribocytidylic
acid (poly I:C), surf clam microparticles, Eurocine® adju-
vants, compound 48/80 (C48/80), a-galactosylceramide (a-
GalCer), bis-(3',5")-cyclic dimeric adenosine/guanosine/i-
nosine monophosphate (c-di-AMP/GMP/IMP), muramyl
dipeptide (MDP) and saponin-containing botanical extracts.

Alum

Alum based adjuvants have been used for around 80 years
since it can elicit humoral immune response upon systemic
injection. Adjuvants alum and liposomes showed synergistic
effect in enhancing immune response of DT and TT after oral
administration in rabbits and monkeys (Mirchamsy et al.,
1996). Generally, alum is a weak immunostimulant for pro-
tein antigens in the mucosal vaccines with few successful
reports (Malik et al., 2012). Moreover, it is hindered for po-
tential use in vaccine development of intracellular pathogens
and tumors due to its incapability in inducing potent Th1 and
CTL responses (Marrack et al., 2009; Reed et al., 2009).

Bacteria toxins and their detoxified derivatives

Two bacterial toxins, cholera toxin (CT, of two subunits-CTA
and CTB) from various strains of Vibrio cholerae, the heat-
labile enterotoxin (LT) from enterotoxigenic strains of
Escherichia coli and the detoxified mutant like LTK63, are
used as typical mucosal adjuvants in vaccines of protein
antigens. They are known to increase the epithelium per-
meability, modulate the vaccine uptake by APCs and the
responses of lymphocytes (Cox et al., 2006). Although the
use of their non-toxic mutants as adjuvants is still attractive
for improving immunogenicity of antigens (Morris et al., 2000;
Moschos et al., 2004; Stephenson et al., 2006), these adju-
vants have not been approved in human intranasal vaccines
due to the danger of redirection of antigens to the central
nervous systems and causing inflammatory responses such
as Bell's Palsy (van Ginkel et al., 2000; Mutsch et al., 2004;
Lewis et al., 2009). Nevertheless, their potency as mucosal
adjuvants puts them as gold evaluation standard in many
vaccine development researches.

Bacterial glycolipid

Monophosphoryl lipid (MPL), derived from the lipopolysac-
charide (LPS) of Salmonella Minnesota, is a PAMP that can
induce both humoral and cellular immune responses after
systemic and mucosal vaccinations (Mata-Haro et al., 2007).
LPS as the adjuvant for OVA in N-trimethyl chitosan (TMC)
nanoparticles induce higher IgG1 and IgA titers after in-
tranasal vaccination in mice than that without LPS (Bal et al.,
2012). Similarly, the encapsulation of MPLA together with
OVA in PLGA nanoparticle increases the antigen-specific
immune responses in mice after oral administration com-
pared to the one without MPLA (Sarti et al., 2011). MPLA is
the first TLR ligand (TLR4) approved for human vaccine, as
a component of AS04 in the vaccine formulation against
HPV and HBV (Kanzler et al., 2007; Mata-Haro et al., 2007).
Apart from AS04, MPL is also the component in several
adjuvants such as AS01, AS02, AS15 and GLA-SE clinically
tested in human vaccines (Maisonneuve et al., 2014).

Bacterial peptidoglycan

Muramyl dipeptide (MDP) is a peptidoglycan constituent of
both Gram-positive and Gram-negative bacteria. It is a
PAMP and can activate the NLRs which in turn lead to
cytokine activation. However, the use of MDP as the ad-
juvant has been limited to veterinary vaccines due to its
pyrogenic effects in human (Lemesre et al., 2007,
Maisonneuve et al., 2014). After intranasal vaccination in
mice, MDP adjuvanted OVA in TMC nanoparticles induce
higher IgG1 and IgA titers than that without adjuvants (Bal
et al., 2012). It has been suggested that the loading effi-
ciency of small substances like immunostimulant MDP in
TMC nanoparticles may decrease when co-loaded with
large, water-soluble molecules like protein OVA,
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Table 1. Summary of promising adjuvants tested for protein antigens in this review

Classifications

Representative adjuvants

Properties, advantages and/or disadvantages

Alum

Bacterial toxins
and their
derivatives

Bacterial
glycolipids

Bacterial
peptidoglycan

Bacterial second

messengers

Synthetic
bacterial DNA

and viral dsRNA

Virosomes

Synthetic small
organic
molecules

Plant derived
molecules

Polymers from
crustaceans’
shell

Cytokines

Combinations

Aluminium salts (@numerous licensed products,
constituents of AS04 @Fendrix)

Cholera toxin (@cholera vaccines), Heat-labile enterotoxin**

LPS and its derivative MPL/MPLA (@Cervarix, Supervax,
Pollinex Quattro et al., components of AS01, AS02, AS04,
AS15 et al.)

MDP*

c-di-AMP/IMP/GMP

CpG***, Poly I:.C*

Virosomes (@Epaxal, Inflexal V)

Imidazoquinoline (@Aldara), C48/80, Vitamin E TPGS*,
a-GalCer**

Saponin (especially QS21***), Eurocine**

Chitosan, Surf clam microparticles

IL-1, IL-12**, TNF and mutants

ASO01***, AS02 ***, AS04 (@Fendrix), AS15**

NLRP3 pathway, show depot effect, stimulation/
prolongation of Ag uptake through APCs, well
sourced safe material available for vaccine
applications, efficient in generating antibody
responses, but not in inducing Th1 and CTL
responses.

PAMP, bind to GM1 gangliosides receptors on
mucosal cells, generate potent and broad
immune response, serve as gold standards for
adjuvant potency investigation, show the
safety issue of causing facial paresis after
intranasal administration.

PAMP, TLR pathway, activate APCs and induce
cytokine cascades, induce potent humoral and
cellular immunity, MPL has been proven non-
toxic and used in complex formulations such
as oil-in-water emulsion, liposomes and
adjuvant combinations with alum and QS21.

PAMP, NLR pathway, induce cytokine
production, induce both humoral and cellular
immunity, limited to veterinary vaccines since it
is too pyrogenic for human use.

Bind STING, induce potent humoral and cellular
immune responses.

PAMP, TLR pathway, induce potent humoral and
cellular immunity.

PAMP, unknown pathway, mimic characters of
virus without carrying the viral genes, highly
immunogenic and also act as Ag delivery
system.

Different molecules activate the immune
response through various mechanisms, induce
systemic and mucosal immunity.

QS21, as a component of AS01, AS02, AS15
et al., is a potent immunostimulant to both
humoral and cellular immunity.

Chitosan is mucoadhesive and behaves as both
the immunostimulant and the antigen delivery
material.

Regarded as less toxic since they are human
innate substances.

ASO01 (liposomes, MPL, QS21), AS02 (oil-in-
water emulsions, MPL, QS21), AS04 (alum,
MPL, @Fendrix), AS15 (liposomes, MPL,
CpG, QS21), make use of the synergistic
effects of different adjuvants.

The current status in clinical study of the adjuvants are indicated by * (phase 1), ** (phase 2),

*kk

(phase 3), and @ (licensed product with trade

names). The table only summarizes the general adjuvants in protein-based vaccines mentioned in this review. More information regarding to
the detailed investigation reports can be found in the Table S1.

presumably caused by the increased leakage of MDP
through diffusion channels generated by the leakage of
OVA during the formulation preparation (Mathew et al.,

2014).

Bacterial second messengers

Bacterial second messengers such cyclic di-nucleotides
(e.g. c-di-AMP and c-di-GMP) are suggested as promising
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mucosal adjuvants. They are reported to interact with the
transmembrane protein stimulator of interferon genes
(STING), which then increases the production of type | in-
terferons and further drives the adaptive immune response
(Ishikawa et al., 2009; Burdette et al., 2011; Shaw et al.,
2013). Studies of intranasal delivery of model protein anti-
gens such as recombinant influenza nucleoprotein (rNP), 8-
Gal and OVA together with the adjuvant c-di-AMP/IMP in
mice suggest them as potent mucosal adjuvants, especially
when cellular immunity is desired (Ebensen et al., 2007;
Libanova et al., 2010; Ebensen et al., 2011; Sanchez et al.,
2014). C-di-GMP can enhance the immune response in mice
for H5N1 virosomes after sublingual, intranasal and intra-
muscular administrations (Pedersen et al., 2011).

Synthetic bacterial DNA and viral dsRNA

The CpG motif is considered as PAMPs since it is abundant
in microbial genomes but not in vertebrates. Synthetic CpG
oligonucleotide is a TLR9 agonist that can induce IL-12
production in APCs and subsequently stimulate antigen-
specific Th1-mediated cellular immune responses, involving
CTLs (Krieg et al., 1995; Klinman et al., 2004). It was used in
clinical tests as a component of HBV and anthrax prophy-
lactic vaccines (Kanzler et al., 2007). CpG has been sug-
gested as a suitable adjuvant in intranasal and oral
vaccination for protein antigens such as HBsAg (McCluskie
and Davis, 1998), TT (McCluskie et al., 2000; Eastcott et al.,
2001) and HIV peptides (Pun et al., 2009; Buffa et al., 2012)
as tested in mice. Poly I:C is a synthetic analogue of double
stranded viral RNA, which activates TLR3 in macrophages
and DCs to further promote strong T cell priming (Trumpf-
heller et al., 2008). It is suggested as a potent and potential
adjuvant for nasal influenza vaccine with antigen HA as
evidenced by the induced comparable immune response
from both CpG and the standard adjuvant CTB, and also by
the cross-protection observed in mice after intranasal vac-
cination (Ichinohe et al., 2005). Similarly, it plays a vital role
in efficiently inducing systemic and mucosal immune pro-
tection against human parainfluenza viruses (HPIVs) after
intranasal vaccination in mice with oligomannose-coated li-
posomes (OMLs) encapsulating the full-length HA-NA (HN)
protein antigen (Senchi et al., 2013).

Virosomes

Not only small molecules, polymers and subunits of mi-
crobes can act as immunostimulants too. Virosomes
assembled from membrane lipids and proteins of influenza
virus can also act as vaccine adjuvants to enhance immune
responses. Intranasal vaccination of mice with simian-hu-
man immunodeficiency virus-VLP (SHIV-VLP) antigens and
influenza virosomes adjuvants induce comparable humoral
and cellular immune response as that with the adjuvant CpG
(Kang et al., 2004).

Synthetic small organic molecules (imidazoquinoline,
compound 48/80, vitamin E TPGS, glycolipid
a-galactosylceramide)

Imidazoquinolines, such as imiquimod or gardiquimod, are
synthetic TLR7/8 agonists. Imiquimod is able to induce bal-
anced humoral and cellular immune responses when co-
delivered with HBsAg in chitosan nanocapsules upon in-
tranasal vaccination in mice (Vicente et al., 2013). Com-
pound 48/80 (C48/80), a mast cell activating compound, is
shown to be a safe and effective nasal adjuvant in mice co-
administered with a botulimun neurotoxin A (BoNT/A) im-
munogen-Hcbtre and in rabbits co-administered with re-
combinant HA (Meng et al.,, 2011; Staats et al., 2011).
Vitamin E TPGS (d-a-tocopheryl polyethylene glycol 1000
succinate), a water soluble vitamin E derivative, is suggested
as a promising nasal vaccination potentiator when encap-
sulating the DT together with PCL and tested in mice (So-
mavarapu et al., 2005). Alpha-galactosylceramide is a
natural glycolipid derived from murine sponge and now is
mainly chemically synthesized. It can be presented by APCs
to potently activate natural killer T (NKT) cells, and modulate
T cell immunity through efficient activation/maturation of DCs
(Kawano et al., 1997). Courtney et al. reported that repeated
dosing of a-galactosylceramide intranasally or orally induced
potent systemic and mucosal immune response in mice with
HIV gp120 epitope peptides as antigens (Courtney et al.,
2009).

Plant derived molecules (saponins and lipids)

Saponins are plant-derived chemical compounds with var-
ious biological and pharmaceutical activities. They are am-
phipathic with hydrophilic glycoside moieties and lipophilic
triterpene derivatives. Saponin extracts can stimulate Th1
immune response and CTL production against antigens,
which suggests them as potential adjuvants for vaccines
against intracellular pathogens and tumor cells. Yet, they are
restricted from human vaccination usage due to their toxicity,
instability and haemolytic effects. A purified fraction of QS,
QS21 was used in clinical trials (Skene and Sutton, 2006;
Sun et al., 2009a). The purified QS has been approved and it
is commercially used in veterinary vaccines like bovine
respiratory syncytial virus vaccine (Ellis et al., 2005). A semi-
synthetic saponin analog GPI-0100 is a potent mucosal
adjuvant to induce systemic and mucosal immune re-
sponses after subcutaneous and intranasal administration in
mice for the non-fibril adhesin hemagglutinin B (HagB)
(Zhang et al., 2003). In the intranasal immunization, the
potency of GPI-0100 was found to be only second to LT and
its mutants, while higher than other tested adjuvants such as
MPLA, alum and CTB. Subunit (HA) influenza vaccines with
Eurocine® adjuvants of plant lipids (mono-olein, oleic acid,
lauric acid, soybean oil) could induce protective immunity
upon intranasal administration in mice (Petersson et al.,
2010).
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Polymers from crustaceans’ shell (e.g., chitosan)
or particles from surf clam

Chitosan is a de-acetylated derivative of the polysaccharide
chitin, which is extracted from crustaceans’ shells. As a
mucoadhesive polymer, it prolongs the mucosal residence
and increases the uptake of vaccines by APCs. Chitosan-
containing vaccines have been subjected to human clinical
trials, suggesting its low-toxicity (lllum et al., 2001; Moschos
et al., 2004). Sui et al. reported that influenza M1 vaccine
using chitosan as the adjuvant induced cross-protection
against influenza virus infection after intranasal vaccination
in mice (Sui et al., 2010). Surf clam microparticles (SMP),
processed from surf clam shells, was reported to induce
humoral and mucosal immune response when intranasally
administered with influenza HA vaccine in mice (Ichinohe
et al., 2006).

Human endogenous proteins like cytokines

Interleukin (IL)-12 is a cytokine secreted by APCs upon
antigenic stimulation. IL-12 can potently induce the produc-
tion of IFN-y by NK and T cells, and lead to T cell develop-
ment into Th1 cells (Trinchieri, 1995). Boyaka et al. reported
IL-12 as an effective adjuvant in intranasal immunization in
mice with antigen TT (Boyaka et al., 1999). Cytokines of IL-1
family as adjuvants was found to be able to increase the HA-
specific IgG titers in serum and IgA titers at mucosal surface
after intranasal immunization in mice compared to the one
without IL-1 (Kayamuro et al., 2010). Tumor necrosis factor
(TNF) family members including TL1A, TNF-a and the mu-
tant could induce antigen-specific IgG and mucosal IgA re-
sponses after intranasal administration in mice with antigen
OVA or HA (Kayamuro et al., 2009). The reader is referred to
the review by Wang X. et al. for more discussions on the
innate endogenous adjuvants (Wang and Meng, 2014)

Adjuvant combinations

Various adjuvants can be combined in one formulation to
exploit their synergy in activating the immune system.
Several adjuvants used in systemic administrations (either
licensed or in clinical trials) are developed with immunos-
timunlants combinations such the adjuvant system series
(AS01, AS02, AS04, AS15) from GlaxoSmithKline con-
taining two or more components of alum, MPL, QS21 or
CpG. Moschos et al. reported that adjuvants chitosan and
the NLR ligand-MDP contribute synergistically to increase
immunogenicity of recombinant H. pylori urease (rUre)
after intranasal vaccination in mice (Moschos et al., 2004).
Co-adjuvanting of c-di-GMP with chitosan showed bal-
anced Th immune responses in mice for H5N1 vaccine
with antigen HA after intranasal administration (Svindland
et al., 2013).

VACCINE FORMULATIONS: MATERIALS
AND DELIVERY SYSTEMS

Unlike small molecules, proteins are macromolecules con-
taining primary, secondary, tertiary and even quaternary
structures with labile bonds and specific side-chain orienta-
tions. Harsh biological conditions (e.g., proteolytic and harsh
gastric pH) could cause protein denaturation and degrada-
tion, which could further reduce their biological activities and
even generate adverse immunogenicity. Therefore, the
usage of delivery system and/or immunostimulants is
critically important in facilitating the induction of potent and
long-lasting immune protection after mucosal vaccination.
For example, F1 and V subunit antigen of Y. pestis can in-
duce humoral and mucosal immunity after intranasal ad-
ministration in mice when co-encapsulated in PLA
microsphere, or co-administrated using CTB as adjuvants,
but not with free soluble F1 and V forms and in absence of
adjuvants (Eyles et al., 1998).

Although the appropriate particle size for optimal mucosal
vaccination remains to be determined, particulate antigens
generally present more immunogenicity in mucosal vaccines
than their soluble counterparts (Challacombe et al., 1992;
Igartua et al., 1998; Singh and O’Hagan, 1998; Koping-
Hoggard et al., 2005; Park et al., 2013; Smith et al., 2013;
Marasini et al., 2014; van Riet et al., 2014; Zhao et al., 2014).
Despite the limited mechanistic understanding of their be-
haviors in vivo, particulate delivery systems offer several
benefits for mucosal vaccines, including: 1) prevention of
antigen degradation, 2) elevated concentration of antigens in
the vicinity of mucosa tissues, 3) prolonged residence and
release time of vaccines, 4) co-delivery of antigens and
adjuvants, 5) receptor-ligand mediated targeting delivery,
and 6) acting as an immune-potentiator at the same time
(Zhao et al., 2014). These functions could be optimized
through adjusting their controllable properties such as sizes,
geometry, surface properties, molecular patterns, antigen
loading, surface decoration with functional molecules and
antigen-release kinetics (Bachmann and Jennings, 2010).

Intranasal and oral administrations of vaccines using
particulate delivery systems are described in several reviews
(Sharma et al.,, 2009; Sun et al., 2009b; Marasini et al.,
2014). Here we focus on materials and vehicles that are
currently applied for the development of protein antigen-
based vaccines (summarized in Table 2 and Table S2), in-
cluding: 1) VLPs; 2) synthetic polymers such as poly lactic-
co-glycolic acid (PLGA), poly lactic acid (PLA), poly e-
caprolactone (PCL), poly (ethylene glycol) (PEG) coat-
ed/conjugated copolymers like PEG-PLGA, PEG-PLA and
PEG-PCL and polyethyleneimine (PEI); 3) natural polymers
or their derivatives such as chitosan and alginate; 4) lipid-
based vehicles, including liposomes, niosomes, bilosomes,
virosomes and immune-stimulating complexes (ISCOMs);
and 5) others, such as multiple antigen-presenting vaccine
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systems, hydrogels and inorganic vehicles such as gold
nanoparticles. These materials and vehicles are explored as
vaccine delivery systems to encapsulate, adsorb or conju-
gate protein antigens with/without adjuvants.

For more details of various delivery systems of vaccines,
the reader is referred to other reviews by Rydell et al. on
starch (Rydell et al., 2005), by Sahdev et al. on biomaterials
(Sahdev et al., 2014), by Tiwari et al. on liposomes (Tiwari
et al., 2010), by Hu et al. on ISCOMs (Hu et al., 2001), by

Barbara et al. on mucoadhesives (Baudner and O’Hagan,
2010), by Zhao et al. on VLPs (Zhao et al., 2013), by De-
mento et al. on PAMP-modified biomaterials (Demento et al.,
2011).

Virus-like particles (VLPs)

VLPs with a diameter of 20-100 nm, are pseudo-virons
self-assembled from viral envelope or capsid proteins.

Table 2. Summary of delivery vehicles for protein antigens discussed in this review

Properties, advantages and/or disadvantages

Classifications Representative materials
VLP VLP-HBV (@GenHevac B, Engerix-B, Recombivax HB),
VLP-HEV (@Hecolin), VLP-HPV (@Cervarix,
Gardasil), VLP-MuPyV, VLP-NV*
Synthetic PLGA, PLA, PCL, PEI and their PEGylated derivatives,
polymers Eudragits
Natural Chitosan, Alginate, Starch, Dextran, Hyaluronic acid, I'-
polymers PGA
Lipid based Liposome (@numerous licensed products), Niosome,
polymers Bilosome, Virosome (@Epaxal, Inflexal V), ISCOMs**,

MAP systems

Archaeosome

MAP—synthetic peptides

Hydrogel Cationic cholesteryl group-bearing pullulan (cCHP)*,
GelVac*
Inorganic Gold
particles
Receptor- UEA-1, RGD peptide, Ganglioside GM1 ligand, Co1, Fc,
ligand Mannose, IgG, Transferrin, Claudin-4
mediated
delivery

Mimick the particular, ordered and repetitive structural
nature of the virus, highly immunogenic, antigens can
be chemically conjugated onto or genetically inserted
into the VLPs, may have poor quality consistency for
VLPs generated from different hosts and batches for
incorporating hosts’ materials.

Biocompatible, biodegradable and generally regarded as
safe, well established formulation techniques for
chemical modification and particulate preparation with
polymers, protect the encapsulated antigens from
harsh environment, can be pH sensitive and suitable
for colon delivery (e.g. Eudragits coating), able to co-
deliver immunostimulants and antigens, loading
capacity may be limited due to intrinsic chemical
properties of polymers and antigens.

Natural resources, generally non-toxic, biocompatible,
biodegradable, mucoadhesive and immunostimulating
(e.g. chitosan), can work as delivery materials itself or
be coated on the surface of other delivery vehicles as
mucoadhesive materials.

Well established formulation techniques and surface
modification, enhance vaccine retention, mucosal
sampling, uptake and process by APCs, capable to
induce both humoral and cellular immune responses,
flexible encapsulation or adsorption of antigens and
adjuvants, loading capacity varies as the chemical
property like hydrophobicity of antigens and adjuvants
changes.

The dendritic scaffold itself (e.g. lysine-based dendrimer)
is non-immunogenic and biocompatible, can
incorporate multi-epitopes and multifunctional peptides
in one system to increase the antigen stability, uptake
and immunogenicity.

Prolong the mucosal clearance, efficiently trap protein
antigens in nano-gels; suitable for vaccine
lyophilization formulation.

Non-immunogenic, biocompatible and easy fabrication in
size and shapes.

Enhance mucosa permeability and increase specific
mucosal/immune cell uptake mediated by the receptor-
ligand interaction.

The current status in clinical study of the materials are indicated by * (phase 1), ** (phase 2), *** (phase 3), and @ (licensed product with trade
names). The table only summarizes the general delivery materials in protein-based vaccines mentioned in this review. More information
regarding to the detailed investigation reports can be found in the Table S2.
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They display structural characteristics of viruses but is not
infectious or replicating due to the lack of virus genes
(Scheerlinck and Greenwood, 2008). They are highly im-
munogenic due to the particular, ordered and repetitive
structural characters mimicking the nature of virus. The
constitution proteins can be produced with mammalian
cells, insect cells, yeast, bacteria and even plants through
recombinant DNA techniques (Santi et al., 2008; Zhao
et al., 2013).

Bearing these properties, VLPs are exploited as the de-
livery system for protein/peptide antigens, since they can
display multiple epitopes of infectious pathogens on the
surface of their constitution proteins via genetic fusion or
chemical conjugation. The fused influenza M2 extracellular
region and the HBV core protein can be efficiently expressed
in E. coli and spontaneously form VLPs after purification.
These VLPs induce efficient protective immunity against in-
fluenza virus in mice after intraperitoneal or intranasal ad-
ministration (Neirynck et al., 1999; De Filette et al., 2006;
Ibanez et al., 2013). The VLP assembled from recombinantly
modified capsid proteins of HEV was found to have HIV
immunogenicity since it incorporated the P18 peptide se-
quence from gp120 of HIV, but escaped the pre-existing anti-
HEV immunity because the epitopes of the HEV capsid
protein was mutated (Jariyapong et al., 2013). The VLP of
modular murine polyomavirus (MuPyV) was reported as an
efficient antigen delivery system for the peptide antigen of
group A streptococcus (GAS) since the fused antigen-VLP
successfully induced immune protection in mice upon in-
tranasal vaccination without adjuvants (Rivera-Hernandez
et al., 2013). VLPs derived from enteric pathogens like
Norwalk virus (NV) was believed to be a promising delivery
candidate for oral and intranasal vaccines (Mason et al.,
1996; Ball et al., 1998; Guerrero et al., 2001). Although most
VLPs do not necessarily need extra adjuvants in the vacci-
nation, researchers have shown that VLPs with immunos-
timulants such as detoxified CT, VLP-trapped nucleic acids,
GM-CSF or CD40 ligand induced better immune protection
(De Filette et al., 2006; Skountzou et al., 2007; Ibanez et al.,
2013).

VLPs have been licensed and commercialized in dis-
eases caused by hepatitis B virus (HBV) (Krugman, 1982;
Scolnick et al., 1984), human papillomavirus (HPV)
(Shank-Retzlaff et al., 2005; Deschuyteneer et al., 2010)
and hepatitis E virus (HEV) (Li et al., 2001; Wu et al.,
2012). Despite the successful usage and potent immunity,
VLPs as a delivery system for protein antigens are still
limited by the relatively complicated genetic modification
on protein fusion and the subsequently required structural
integrity characterization. Meanwhile, lipids and proteins
from the expression host may also be assembled into
VLPs. Thus, various expression systems could generate
differential VLPs despite the fact that they are assembled
primarily from the same viral protein (Grgacic and Ander-
son, 2006).

Particulate systems based on synthetic polymers
Polyesters (PLGA, PLA and PCL) based particular systems

PLGA is one of the most successfully adopted biodegrad-
able polymers for therapeutics and vaccine delivery. It em-
braces several attractive properties: 1) biodegradability and
biocompatibility, 2) generally regarded as safe when used in
drug delivery system for parenteral administration, 3) well-
developed techniques and methodologies to encapsulate
drugs with various physiochemical properties, 4) protection
of drugs from degradation, 5) controllable surface modifica-
tion and 6) controllable sustained release.

PLGA microspheres and nanoparticles have been ex-
plored as delivery systems for mucosal vaccine development
of protein antigens. PLGA microparticles containing OVA elicit
sustained OVA-specific humoral and mucosal immunity in
cattle after intranasal administration (Kavanagh et al., 2003),
and in mice after oral delivery especially when immunos-
timulant MPLA is co-encapsulated (Sarti et al., 2011). Multiple
oral vaccinations of OVA encapsulated in PLGA particles can
stimulate CTL immune response in mice, although not as ef-
ficient as the formulation of OVA with ISCOMs (Maloy et al.,
1994). Mansoor et al. reported that PLGA particles encapsu-
lating bovine parainfluenza virus type-3 (BPI3V) peptides or
proteins induced an early, gradually increasing humoral im-
mune responses via intranasal delivery, suggesting the ad-
vantage of slow and prolonged release of antigens in
particulate systems compared to those in the soluble form
(Mansoor et al., 2014). Two peptide antigens of bovine res-
piratory syncytial virus (BRSV) co-encapsulated in PLGA mi-
croparticles induced both mucosal immune response in upper
and lower respiratory tract and T-cell mediated immune re-
sponse in mice after a single-dose intranasal administration,
which is not observed with soluble antigens (Kavanagh et al.,
2013). Peptide antigens of malaria carried with PLGA mi-
croparticles induced stronger systemic immune response
compared to those absorbed to alum either orally or subcu-
taneously administered in mice, and meanwhile the Th1-me-
diated cellular immune response was only observed in the
previous formulation (Carcaboso et al., 2003). In another
study, recombinant envelope protein E2 of classical swine
fever virus (CSFV-E2) as the antigen was encapsulated in
PLGA microspheres, with rabbit serum albumin as the protein
stabilizer, for the mucosal and systemic vaccine development
(Brandhonneur et al., 2009). Immunization tests were realized
in rabbits through three routes (intranasal, oral and intramus-
cular) followed by an intradermal boost. The response after
intranasal administration was found to be more stable and
intense than that with the oral route.

Protein/Peptide-based vaccines with F1 or/and V anti-
gens of Y. pestis induced higher humoral and mucosal im-
mune response in mice upon intranasal administration using
PLGA/PLA microspheres as the delivery system compared
to the soluble antigens (Eyles et al., 2000; Alpar et al., 2001;
Tripathi et al., 2006). Vaccination through the intranasal route
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in mice induced and maintained long-lived protective im-
munity against the challenge of Y. pestis (Ulery et al., 2011).
The S. equi M-like protein (SeM) antigen was encapsulated
in PCL nanospheres containing mucoadhesive polymers
(chitosan or alginate) or absorption enhancers (spermine or
oleic acid) to develop the vaccine against equine infections
(Florindo et al., 2009). This vaccine formulation induced
higher immune response than the free antigens in mice after
intranasal administration. PCL nanoparticles encapsulating
DT induced higher DT-specific IgG response in mice after
intranasal immunization than PLGA/PLGA-PCL blend/co-
polymer nanoparticles, which was attributed to the increased
antigen uptake into cells with the more hydrophobic PCL
nanoparticles (Singh et al., 2006).

The surface properties of PLGA, PLA and PCL particles
can be modified with hydrophilic PEG or positively charged
chitosan/PEI to enhance the protein antigen delivery. For ex-
ample, OVA encapsulated PEGylated PLGA-based
nanoparticles prepared from mixed polymers of PLGA, PLGA-
PEG and PCL-PEG, was reported to induce OVA-specific IgG
response in mice after oral administration (Garinot et al.,
2007). Nanoparticles of PEG-PLA-PEG copolymers were re-
ported to be more efficient in the oral delivery of HBsAg and
induced higher systemic and mucosal immunity in mice than
PLA nanoparticles (Jain et al., 2010). Radio-labeled TT anti-
gens were loaded in PLA or PLA-PEG nanoparticles, for in-
tranasal administration in rats. It was found that the hydrophilic
PLA-PEG nanoparticles showed significantly increased sta-
bility in mucosal fluids and enhanced mucosa permeability of
antigens compared to the hydrophobic PLA nanoparticles
(Tobio et al., 1998; Vila et al., 2004). Meanwhile, PLA-PEG
nanoparticles performed better as a protein carrier in the
antigen transportation than the microparticles (Vila et al.,
2005). Chitosan modified PLGA microparticles showed pro-
longed residence time of particles on the intranasal mucosa
compared to the non-modified ones in rabbits. This HBsAg
encapsulated system induced humoral, cellular and mucosal
immunity in mice after intranasal administration (Jaganathan
and Vyas, 2006). Similarly, HBsAg encapsulated and PEI
modified PLGA microspheres induced enhanced immune
response in mice after pulmonary administration compared to
the non-modified ones (Thomas et al., 2009).

Polyethyleneimine based systems

Wegmann et al. suggested that PEI microparticles could
serve as a potent mucosal and systemic delivery system and
an intrinsic adjuvant for viral glycoprotein antigens (Weg-
mann et al., 2012; Sheppard et al., 2014). PEl was investi-
gated as a protein antigen delivery system to promote cross-
presentation through MHC | pathway using the antigen model
OVA (Chen et al., 2011). In their studies, robust antibody-
mediated protection was induced in mice and rabbits with a
single intranasal administration of influenza HA or herpes
simplex virus type -2 glycoprotein (HSV-2 gp) using PEI as
the nano-carrier and adjuvant (Wegmann et al., 2012).

Eudragits based systems

Oral delivery of protein vaccines or drugs targeting gut-as-
sociated lymphoid tissues (GALT) needs to surpass the
highly acidic and proteolytic environment in the GI tract
(Wang et al,, 2009). In this case, specific pH-sensitive
polymers like Eudragits are often adopted. Eudragits are
methacrylate-based polymers designed to dissolve at
specific pH ranges depending on the polymer chemistry. Liu
et al. reported a Eudragit S100 coated calcium alginate gel
beads for sufficient oral protein/peptide drug delivery to tar-
get the colon region. Before trapped into the alginate beads,
the peptide drug was first loaded into protecting liposomes
(Liu et al., 2003). Zhu et al. successfully delivered an HIV
Env epitope-based peptide antigen to the large intestine of
mice through oral administration (Zhu et al., 2012). This was
realized by encapsulating the peptide antigen in micro-sized
agglomerates of PLGA nanoparticles followed by granulation
with Eudragit FS30D, an enteric polymer that only dissolves
at pH above 7.0. Antigens in the Eudragit formulation given
orally induced comparable immune protection as the anti-
gens administered colorectally.

Particulate delivery system based on natural polymers
Chitosan

Chitosan and its derivatives have long been evaluated as a
suitable mucosal delivery material for protein/peptide drug
and gene therapy (Garcia-Fuentes and Alonso, 2012). Re-
cently chitosan based systems were also evaluated as po-
tential adjuvants and vaccine delivery systems for mucosa
vaccines (lllum et al., 2001; van der Lubben et al., 2001;
Muzzarelli, 2010; Kobayashi et al., 2013). As an immunos-
timulant, the ability of chitosan in inducing mixed Th1/Th2
immune response is still controversial depending on the
administration routes (Shibata et al., 2001; Porporatto et al.,
2005; Oliveira et al., 2012). The antigen TT in N-trimethyl
chitosan-mono-N-carboxymethyl  chitosan (TMC-MCC)
complex nanoparticles induced humoral and cellular immune
response in mice after intranasal administration (Sayin et al.,
2009). Vicente et al. reported a chitosan nanocapsule co-
delivery system, with an oily inner core carrying hydrophobic
immunostimulant imigimod and a cationic chitosan corona to
absorb anionic HBsAg on the surface. This co-delivery
system induced balanced humoral and cellular immune re-
sponse in mice after intranasal vaccination (Vicente et al.,
2013). Several aspects regarding to the properties of chi-
tosan might need to be improved, including the target
specificity, the even size distribution and the solubility in
physiological environment (Sahdev et al., 2014).

Alginate

Alginate is a biocompatible, biodegradable and mucoadhe-
sive polymer, which could also serve as a protein delivery
vehicle. Alginate coated chitosan nanoparticles could serve
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as a potential mucosal vaccine delivery system to prevent
loaded protein antigens from enzymatic degradation. In-
tranasal or oral delivery of recombinant HBsAg using this
system with CpG as the adjuvant efficiently elicits humoral
mucosal immune responses in mice (Borges et al., 2007;
Borges et al., 2008). Alginate microparticles were observed
to be effective for protein antigens delivery against respira-
tory diseases through intranasal administration but not the
oral route in cattle (Rebelatto et al., 2001). Chitosan
nanoparticles coated with lectinized alginate were found to
be an efficient oral delivery system for the antigen BSA in
targeting M-cells and successfully induced systemic and
mucosal immunity in mice (Malik et al., 2012). Tafaghodi
et al. evaluated the dry powder vaccine formulation of TT
encapsulated in alginate microspheres for intranasal immu-
nization in rabbits (Tafaghodi and Rastegar, 2010). Their
results suggest that alginate microspheres, with QS as the
adjuvant, and cross-linked dextran microspheres as an ad-
sorption enhancer, coordinately increase the titers of sys-
temic IgG and mucosal slgA.

Starch

Compared to intranasal immunization, oral vaccination with
polyacryl starch microparticles conjugating HSA (Wik-
ingsson and Sjoholm, 2002), DT (Rydell and Sjoholm, 2004)
or its non-toxic mutant (Rydell and Sjoholm, 2005) could
induce relatively stronger systemic and mucosal antibody
response in mice. These results suggested polyacryl starch
microparticles as a promising oral adjuvant for protein anti-
gens. Formaldehyde treatment of the DT mutant before
conjugation to microparticles induced better immune re-
sponse than the reversed order (Rydell and Sjoholm, 2005).
Unlike other microparticles which only protect protein anti-
gens from degradation, silicone grafted starch was observed
to facilitate the release of the encapsulated HSA and to in-
crease the mucosal immunogenicity after oral and intranasal
administration in mice (McDermott et al., 1998).

Dextran

Dextran, as a complex branched glucan product of microbial
fermentation, is mucoadhesive and can act as mucosa
permeation enhancer in protein vaccine delivery. For in-
stance, TT encapsulated in cross-linked dextran micro-
spheres (CDM) with the adjuvant CpG induced both potent
systemic IgG and mucosal IgA immune response in rabbits
after intranasal administration, while the alum absorbed TT
failed to induce potent mucosal IgA secretion (Sajadi Tabassi
et al., 2008).

Hyaluronic acid

Hyaluronic acid (or hyaluronan), a natural component of
cartilage, is a linear polysaccharide comprising repeating
disaccharide units of D-glucoronic acid and N-acetyl-D-

glucosamine. It participates in the immune reaction by
modulating the trafficking of leukocytes, the maturation of
epidermal DCs and the activation of T-cell in the antigen
presentation (Mummert, 2005). It has been explored for
protein vaccine delivery due to its excellent safety, biocom-
patibility, biodegradability, hydrophilicity and muco-adhe-
siveness (Sahdev et al., 2014). Intranasal administration of
influenza HA and the adjuvant of detoxified LT, by using an
esterified hyaluronic acid (HYAFF) microsphere system, in-
duced more potent immune response in mice, rabbits and
small-pigs than the conventional intramuscular immuniza-
tion. Meanwhile, the HYAFF microsphere formulation in-
duced higher antibody titers in vivo than the soluble mixed
antigen and adjuvant (Singh et al., 2001).

Gamma-polyglutamic acid

Gamma-polyglutamic acid (y-PGA) is a high molecular
weight polymer of glutamic acid, where the linkage is be-
tween the amino group and the carboxylate side chains. It is
a natural product of bacterial fermentation and is the major
constituent of a traditional Japanese food ‘natto’. It was ap-
plied for medicine and vaccine applications due to its good
biocompatibility and low cytotoxicity. The hydrophilic y-PGA
can be hydrophobically modified with L-phenylalanine ethyl
ester (L-PAE) to produce the amphipathic y-PGA-L-PAE.
OVA-encapsulated nanoparticles of y-PGA-L-PAE induced
OVA-specific antitumor immunity in mice after intranasal
vaccination (Matsuo et al., 2011). Although the results
showed similar total IgG titers between the immunization
with nanoparticle-encapsulated and free vaccines, the anti-
gen delivered with the y-PGA-L-PAE nanoparticle systems
efficiently induced antigen-specific Th1-dominant cellular
immune responses in spleens and lymph nodes. Recently, a
nanomicelle system self-assembled from cholesterol conju-
gated y-PGA derivatives was observed to be able to serve
as both mucus delivery and cellular-immunity-inducing ad-
juvant for the protein antigen OVA (Noh et al., 2013).

Lipid-based vehicles (liposomes, niosomes, bilosomes,
virosomes, archaeosomes and ISCOMs)

Besides the polymeric particulate delivery systems men-
tioned above, there is another large group of delivery vehi-
cles based on lipids. Lipid microparticles have been reported
as a successful intranasal delivery system for introducing
mucosal immune response with HBsAg in rats (Saraf et al.,
2006). Similar to the above-mentioned polymers, the lipid
microparticles could be prepared with soya lecithin with/
without stearylamine using double emulsion method. Yet,
most lipid-based vehicles were prepared in the form of li-
posomes for drug and vaccine delivery. According to the
source and properties of constituent materials, liposomes
could be further named as normal liposomes, niosomes,
bilosomes, virosomes, archaeosomes and ISCOMs.
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Liposomes

Liposomes are artificial vesicles of one or more layers of
phospholipids and an internal aqueous core. They have
been widely used for the delivery of therapeutics and vac-
cines due to their proven safety, biocompatibility and ease of
manufacturing (Torchilin, 2005). Depending on the hy-
drophilicity, hydrophilic antigens (proteins, peptides and
carbohydrates) can be entrapped within inner aqueous
cavity of the liposome, and hydrophobic antigens (lipopro-
teins and lipophilic adjuvants) can be inserted in the lipid
membrane. Besides, antigens and adjuvants can also be
conjugated or adsorbed to the liposome surface. Large
unilamellar liposomes (100 nm to 1 ym in diameter) are
generally more stable than their smaller counterparts (30—
100 nm) due to low curvature and less surface tension
(Dawidczyk et al., 2014).

DT and TT loaded liposomes induced neutralizing anti-
body response in rabbits and monkeys after oral adminis-
tration with the adjuvant alum (Mirchamsy et al., 1996). HA
loaded liposome system was used to deliver HBsAg in-
tranasally in mice, which showed higher mucosal uptake,
and stronger mucosal and cellular immune responses
compared to intranasally administered placebo or intramus-
cularly administered with the mixed HA and alum system
(Tiwari et al., 2011b). Lectin-UEA1 modified liposomes were
found to be able to mediate antigen targeting to M cells and
lead enhanced systemic and mucosal immune responses in
mice after oral or intranasal administration, compared to non-
modified ones encapsulating the fluorescent label or the
model antigen BSA (Clark et al., 2001; Li et al., 2011a; Li
et al., 2011b). IgG-coupled liposomes encapsulating HBsAg
were reported to induce both systemic and mucosal immu-
nity through escalating the antigen uptake by M cells upon
intranasal vaccination in mice, while the alum-adsorbed
HBsAg was unable to induce immune response when ad-
ministered intramuscularly (Tiwari et al., 2011a). Minato et al.
found that the dose of PEG-modified liposomes encapsu-
lating OVA significantly affected the balance between sys-
temic and mucosal immune responses in mice after oral
administrations (Minato et al., 2003). This was attributed to
different release rates on the intestinal mucosa surface.

Oligomannose-coated liposomes (OMLs) induced sig-
nificant systemic and mucosal immune responses in mice
after intranasal vaccination with encapsulated antigen OVA,
and such effect was absent in non-coated liposomes en-
trapping OVA or OVA alone (Ishii and Kojima, 2010). OMLs
encapsulating full-length HA-NA protein (OML-HN) induced
viral-specific systemic and mucosal immunity against human
parainfluenza viruses (HPIVs) in mice after intranasal vac-
cination with the presence of poly I:C (Senchi et al., 2013).
The synthetic oligomannose was suggested to be a useful
mucosal adjuvant since it embraced comparable efficiency
as CTB and acted as a possible M cell-targeting mucosal
adhesive material (Ishii and Kojima, 2010).

Niosomes and bilosomes

The non-ionic surfactant vehicle (NISVs or niosomes), of
non-biological origin, is a chemical/biological stable alterna-
tive to liposomes. They share similar hydrophathicity prop-
erties as liposomes and were explored for protein vaccine
delivery. Niosomes were used to deliver glycoprotein B (gBs)
or polylysine rich peptide DTK of herpes simplex virus (HSV)
intranasally in mice, which successfully induced humoral and
cellular immune protection against genital herpes (Cortesi
et al., 2013). Niosomes incorporating bile salts are termed
bilosomes. Bile salts in the lipid bilayers could stabilize
bilosomes against the bile acid in the gastrointestinal tract.
The inner aqueous space of bilosomes could entrap vaccine
antigens like proteins/peptides for efficient oral delivery,
which have been tested on HA (Mann et al., 2009), HBsAg
(Shukla et al., 2008; Shukla et al., 2010), DT and TT (Mann
et al., 2006; Shukla et al., 2011; Jain et al., 2014). The results
indicated that bilosomes could be a potential oral delivery
system for these protein antigens, since significant systemic
and mucosal immunity were observed in all tested bilo-
somes. The induced balance of Th1/Th2 response after oral
administration could be modulated through physically
modifying the size of bilosomes in the delivery vehicle, as
evidenced in the study with influenza antigen HA tested in
mice and ferrets (Mann et al., 2009).

Archaeosomes

Archaeosomes prepared from archaeal lipids is also be-
lieved to be a promising mucosal vaccine adjuvant and de-
livery system to encapsulate protein antigens. Protein
antigen OVA encapsulated in this system induced humoral
immune responses but no mucosal immunity after intranasal
administrations in mice (Patel et al., 2007). The addition of
multivalent cations like CaCl, was able to convert the protein
antigen loaded archaeosomes (100-200 nm in diameter)
into an archaeal lipid mucosal vaccine adjuvant and delivery
(AMVAD) system (Patel and Chen, 2010). The AMVAD is a
larger, aggregated structure (most with a diameter of less
than 5 pm) like a bunch of grapes. OVA encapsulated in the
AMVAD system could induce potent, long lasting and anti-
gen-specific humoral, mucosal (local and remote sites) and
CTL response in mice after intranasal immunization (Patel
et al., 2007; Patel et al., 2008). The AMVAD system was
believed to be a relatively safe vaccine delivery system for
intranasal administration as tested with 10-fold excess of
dose required for vaccine efficacy (Patel et al., 2008). The
AMVAD system could be advantageous to other liposomes
due to: 1) high loading efficiency for hydrophilic protein
antigens both inside the archaeosomes and in-between; 2)
increased stability against autoxidation since archaeal lipid
consists of saturated side chains instead of the unsaturated
forms; 3) no additional immunostimulating adjuvant is
required.

492 © The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn



Protein-based mucosal vaccine

REVIEW

Virosomes

Virosomes consist of viral surface proteins (e.g. HA and NA
from influenza virus) embedded in a lipid membrane with no
internal gene materials. Thus they have the cell fusion ac-
tivity but no replication ability, and can be explored as drug
and vaccine delivery vectors. Pederson et al. evaluated the
vaccination effect with H5N1 influenza virosomes through
sublingual, intranasal and intramuscular administration in
mice with the adjuvant c-di-GMP. Both sublingual and in-
tranasal vaccination induced better local mucosal and sys-
temic cellular immune responses than the intramuscular
administration, where the response with intranasal route was
stronger than that with the sublingual one (Pedersen et al.,
2011).

ISCOMs

Immune-stimulating complexes (ISCOMs) were documented
as both a delivery system and an immunostimulant for
the vaccine development. ISCOMs are 40 nm nano-vectors
of open cage structure and comprise cholesterol, phospho-
lipids and mixture of saponins extracted from Quillaja
saponaria Molina (Sanders et al., 2005; Skene and Sutton,
2006; Sun et al., 2009b). Vaccines of ISCOMs induced
systemic and mucosal immune responses upon intranasal
administration, incorporating protein antigens such as res-
piratory syncytial virus (RSV) envelope proteins (Hu et al.,
1998), Mycoplasma mycoides subsp. mycoides (MmmSC)
prtoein (Abusugra and Morein, 1999), and recombinant
HBsAg (Pandey and Dixit, 2010). Initially only hydrophobic
antigens like membrane proteins were incorporated in the
ISCOMs (Morein et al., 1984), but later ISCOMATRIX was
developed to mix with antigens to circumvent the incorpo-
ration dependence on antigen properties. ISCOM and
ISCOMATRIX can induce humoral and CTL responses
(controversial for ISCOMATRIX) (Scheerlinck and Green-
wood, 2008). Although the immunity potentiating mechanism
is presently unclear, ISCOMs have been suggested as a
potential intranasal and oral vaccine delivery system for
protein antigens (Mowat et al., 1999; Hu et al., 2001).

Other miscellaneous vaccine delivery systems
Multiple antigen-presenting vaccine systems

Tam developed the multiple antigenic peptide (MAP) system
using a non-immunogenic lysine-based dendritic scaffold to
improve the immunogenicity of subunit peptide vaccines
(Tam, 1988). The MAP system was found to be able to in-
crease the stability, uptake and immunogenicity of those
conjugated peptide antigens. To further improve the im-
munogenicity, components of various functions are incor-
porated into the MAP, such as helper T-cell epitopes,
immunostimulant lipid moieties and cell-penetrating peptides
(Fujita and Taguchi, 2011). Ali et al. reported F1-MAP (the B
and T epitopes of F1antigen carried by MAP) encapsulated

in PLGA microspheres induced strong humoral and mucosal
immune responses in mice after the intranasal vaccination,
which was significant higher than that with mixed short epi-
tope peptides without conjugation to the MAP. They also
found that the co-administration of the encapsulated adju-
vant CpG significantly increased the immunity of F1-MAP
against plague infections (Ali et al., 2013).

Hydrogels

Nano-sized hydrogel of cholesteryl-group-bearing pullulan
(CHP) can trap protein drugs or antigens through non-ag-
gregating hydrophobic interaction and gradually release the
native drugs or antigens from its polymer network. Nochi
et al. and Kong et al. reported a cationic CHP (cCHP) nano-
gel as a successful adjuvant-free intranasal vaccine carrier
for protein antigens (BoHc/A, TT and PspA), which was
proved to induce antigen-specific immune protection against
infectious diseases in mice. Both groups found no vaccine
invasion into olfactory bulbs or the central nervous system
after intranasal vaccination, suggesting cCHP nanogels as
an effective and safe intranasal vaccine delivery system for
protein antigens (Nochi et al., 2010; Kong et al., 2013). An
inert in situ gelling polysaccharide (GelSite) extracted from
Aloe vera was used in a dry-powder vaccine formulation
(GelVac) for intranasal delivery of Norwalk VLPs (Velasquez
et al., 2011). In this study, GelVac formulation delayed the
mucociliary clearance and prolonged antigen exposure to
the immune effector sites due to the in-situ gelation at the
nasal mucosa.

Gold nanoparticles

Gold nanoparticles are used in delivering subunit vaccines
without inducing anti-gold antibodies (Chen et al., 2010).
They could promote immune response via different cytokine
pathways depending on the size and shape (Niikura et al.,
2013). The vaccine of TT loaded in chitosan-functionalized-
gold nanoparticles, with Quillaja saponaria extract as the
adjuvant, induced 28-fold immune response in mice after
oral administration compared to the one without using
nanoparticles as the delivery system (Barhate et al., 2013).
The vaccine of extracellular domain of M2 (M2e) conjugated
to gold nanoparticles with the adjuvant CpG induced pro-
tective immune response against influenza A virus after in-
tranasal administration in mice (Tao et al., 2014).

Receptor-ligand mediated vaccine delivery systems

Many receptors on the mucosal epithelial cells, M cells and
APCs have been explored for vaccine target-delivery with
antigens co-delivered with specific receptor-binding ligands,
such as lectins, bacterial adhesins, bacterial toxins, PAMPs,
other M-cell targeting ligands, antibodies and Fcs (Taka-
hashi, 2003; Sneh-Edri et al., 2011; Cruz et al., 2012; Dev-
riendt et al., 2012). Similarly, receptors on DCs have been
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targeted with DC-targeting proteins fused with cancer anti-
gen protein in cancer immunotherapy (Ma et al., 2014b).
These ligands can be fused to antigens directly or conju-
gated/absorbed to the surface of the delivery system (Ma
et al., 2014b).

For example, CD71 is a highly efficient transcytotic and
recycling transferrin receptor located on the nasal and
vaginal mucosal epithelium. Thus, transferrin was utilized as
a drug/vaccine conjugate to specifically target CD71 (Qian
et al., 2002; Mann et al., 2012). Transferrin conjugation to a
model HIV-1 trimeric gp140 antigen endowed the vaccine
with efficient mucosal targeting, especially through the in-
tranasal administration (Mann et al., 2012). Claudins are
considerably expressed on tumor cells and mucosal ep-
ithelium cells, thus they have been explored for targeting
delivery in tumor therapy and mucosal vaccination. OVA
fused to claudin-4 binding ligands induced both Th1- and
Th2-mediated immune response in mice, suggesting claud-
ing-4 targeting as an effective way for intranasal vaccination
(Nagase et al., 2013). Ad2F, an epithelial cell binding do-
main, was fused to a botulinum neurotoxin A (BoNT/A) im-
munogen-Hcbtre (Staats et al., 2011). The fused Ad2F-
Hcbtre induced higher antibody response in rabbits after
intranasal immunization compared to the non-fused Hcbtre
antigen alone.

Lectins such as UEA-1 can mediate mucosal targeting
delivery through binding to their receptors on the apical
membranes of M cells. Lectinized PLGA particles encapsu-
lating HBsAg enhanced the immune response after oral
administration compared to non-lectinized ones (Gupta
et al.,, 2007). CKS9 is an M-cell homing peptide identified
with phage display technique, which significantly increased
the M-cell mediated uptake of CKS9-surface modified chi-
tosan nanoparticles (CKS9-CS) (Yoo et al., 2010). PLGA
nanoparticles coated CKS9-CS significantly enhanced the
systemic and mucosal immune response of BmpB (protein
antigen of swine dysentery) vaccine after oral administration
(Jiang et al., 2014). RGD peptides were displayed on vac-
cine delivery system like PEGylated PLGA nanoparticles to
target apical side B-integrin of M cells using oral adminis-
tration in mice (Garinot et al., 2007). Other M-cell targeting
ligands, such as GM1 ganglioside and Co1, have also been
reported to induce increased systemic and mucosal immune
response for fused protein antigens after oral administration
in mice compared to the non-fused antigens (Kim et al.,
2006; Kim et al., 2010).

Protein Ag fused to IgG or Fc can specifically target IgG/
Fc-receptors constitutively expressed on APCs to enhance
humoral and cellular immunity (Nimmerjahn and Ravetch,
2008; Gosselin et al., 2009). PLGA nano-/micro-particles
were surface-modified with DC-targeting antibodies and
peptides to improve antigen presentation (Lewis et al.,
2012). Du et al. and Ma et al. successfully vaccinated mice
by inducing strong systemic antibody response through in-
tramuscular/subcutaneous administration of a recombinant
protein containing receptor-binding domain (RBD) of SARS-/

MERS-CoV spike protein fused with Fc of IgG (RBD-Fc) (Du
et al., 2007; Du et al., 2013b). Later, they reported that much
stronger local mucosal immune response was induced with
intranasal vaccination with the same RBD-Fc antigen than
subcutaneous immunization (Ma et al., 2014a). The RBD
fusion with Fc also conferred the RBD-Fc with dimeric con-
formation (Du et al., 2013a; Ma et al., 2014a), which may
improve the immunogenicity.

CONCLUSIONS AND PERSPECTIVES

Mucosal vaccine with protein antigens is a very promising
product format for future vaccine development, especially
considering the desired immunity protection at the mucosal
surface and the safety of protein antigens. However, the low
immunogenicity and weak stability of free protein antigens in
the relatively harsh mucosal fluid (such as nasal mucus and
gastric conditions), require an optimized vaccine formulation
to enhance immune protection. A wide range of particulate
delivery systems have been proven to be efficient in vaccine
delivery in animals and human. Co-administration of suitable
immunostimulants with protein antigens could facilitate and
enhance the generation of potent antigen-specific immune
protection. Therefore, a successfully designed vaccine
therapeutics is always an optimal combination of antigens,
immuno-potentiators, vaccine carriers, and an effective for-
mulation of the above, which is delivered through an ap-
propriate administration route.

Current research suggested that mucosal delivery of
properly designed formulation of protein-based antigens
could provide efficient humoral protection in animal models.
Nontheless, the detailed mechanism through which different
vaccine therapeutics actually generate and enhance the
vaccination protection is still awaiting to be investigated,
which could be realized by systemic comparation of the ef-
fect of various formulations and administation routes on the
same antigen. More specificly, how different delivery carriers
and immunostimulants, and their properties such as size,
geometry, in vivo kinetics and molecular patterns contribute
to the mucosal sampling, the vaccine uptake, process, pre-
sentation and finally lead to the desired immunity? Mean-
while, more research efforts are required to design mucosal
vaccines to induce strong cellular immunity, including the
Th1 and CTL responses, especially for diseases like tuber-
culosis, HIV and malaria where cellular immunity is crucial in
mediating protection.
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ABBREVIATIONS

APC, antigen presenting cell; BSA, bovine serum albumin; $-gal, B-
galactase; CoV, coronal virus; CpG, unmethylated deoxycytidyl-
deoxyguanosine oligonucleotide; CT, cholera toxin; DC, dendritic cell;
DT, diphtheria toxoid; EGFP, enhanced green fluorescent protein; gp,
glycoprotein; y-PGA, vy-polyglutamic acid; HA, hemaggluttinin;
HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HEV,
hepatitis E virus; HIV, human immunodeficiency virus; HPV, human
papillomavirus; IFN-y, interferon-y; IL-12, interleukin-12; ISCOM,
immune-stimulating complexes; LPS, lipopolysaccharide; LT, heat-
labile enterotoxin; MALT, mucosa-associated lymphoid tissue; MAP,
multiple antigenic peptide; M cell, microfold/membraneous cell; M
protein, matrix protein; MCC, mono-N-carboxymethyl chitosan;
MERS, middle east respiratory syndrome; MPLA, monophosphoryl
lipid A; NALT, nasal-associated lymphoid tissue; NA, neuraminidase;
OVA, ovalbumin; PAMP, pathogen-associated molecular pattern;
PCL, poly e-caprolactone; PEG, polyethyleneglycol; PEl,
polyethyleneimine; PLA, poly lactic acid; PLGA, poly lactic-co-
glycolic acid; poly I:C, polyriboinosinic-polyribocytidylic acid; PP,
Payer’s Patch; PSA, pig serum albumin; QS, Quilaja saponin; RSV,
respiratory syncytial virus; rUre, recombinant H. pylori urease; SARS,
severe acute respiratory syndrome; STING, stimulator of interferon
genes; Th1/2/17 cell, T helper 1/2/17 cell; TLR, Toll-like receptor; TMC,
N-trimethyl chitosan; TT, tetanus toxoid; VLP, virus-like particle.
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