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Five hypoxia and immunity related 
genes as potential biomarkers 
for the prognosis of osteosarcoma
Dachang Liu1, Ziwei Hu3, Jie Jiang2, Junlei Zhang1, Chunlong Hu1, Jian Huang3 & 
Qingjun Wei1,3*

Osteosarcoma accounts for a frequently occurring cancer of the primary skeletal system. In 
osteosarcoma cells, a hypoxic microenvironment is commonly observed that drives tumor growth, 
progression, and heterogeneity. Hypoxia and tumor-infiltrating immune cells might be closely 
related to the prognosis of osteosarcoma. In this study, we aimed to determine the biomarkers and 
therapeutic targets related to hypoxia and immunity through bioinformatics methods to improve the 
clinical prognosis of patients. We downloaded the gene expression data of osteosarcoma samples 
and normal samples in the UCSC Xena database and GTEx database, respectively, and downloaded 
the validation dataset (GSE21257) in the GEO database. Subsequently, we performed GO enrichment 
analysis and KEGG pathway enrichment analysis on the data of the extracted osteosarcoma hypoxia-
related genes. Through univariate COX regression analysis, lasso regression analysis, multivariate 
COX regression analysis, etc., we established a predictive model for the prognosis of osteosarcoma. 
Five genes, including ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A, were found by screening. In 
particular, we analyzed the immune cell composition of each gene based on the five genes through the 
CIBERSORT algorithm and verified each gene at the cell and tissue level. Our findings are valuable for 
the clinical diagnosis and treatment of this disease.

Abbreviations
DEGs  Differentially expressed genes
GO  Gene ontology
KEGG  Kyoto encyclopedia of genes and genomes
OS  Overall survival
PCA  Principal component analysis

Osteosarcoma is a highly aggressive and malignant common non-hematopoietic primary sarcoma of the bone. 
It has a poor prognosis and high incidence and is one of the primary causes of cancer-related deaths. Currently, 
the clinical outcome of patients with osteosarcoma cannot be improved significantly. Therefore, identifying new 
biomarkers and new therapeutic targets might improve the prognostic outcomes of  osteosarcoma1.

Hypoxia, a common phenomenon in solid tumors, plays a vital role in the occurrence and development of 
tumors. Furthermore, it is related to treatment resistance and poor  prognosis2. Hypoxia increases the risk of 
invasion, metastasis, treatment failure, and mortality in most solid tumors, including  osteosarcoma3,4. The rapid 
growth of tumors causes the spatial disordering of the blood vessel network such that the distance between 
capillaries exceeds the diffusion range of oxygen, resulting in hypoxia with limited diffusion. Additionally, the 
microvascular network of the tumor is temporarily absent, and stable blood flow causes fluctuating hypoxia 
with limited  perfusion5,6.

Previous studies have implicated hypoxia in the progression of several cancers, such as hepatocellular 
 carcinoma7. Hypoxia is also closely related to the occurrence and progression of osteosarcoma, and hypoxia 
can enhance the metastasis ability of osteosarcoma by affecting the microenvironment of  osteosarcoma8,9. The 
hypoxic environment activates multiple transcription factors in tumor cells and induces several downstream 
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signaling molecules to regulate cell proliferation, motility, and  apoptosis10. Hence, genes related to hypoxia have 
a prognostic value.

The tumor microenvironment (TME) is a new area of research and contributes to the interaction between 
tumor cells and immune  cells11. Extensive research on the TME has demonstrated that tumor-infiltrating immune 
cells (TIICs) play an important role in the  TME12,13. The TIICs in the TME can either inhibit or promote the 
development of tumors. Thus, they play a vital role in tumor dispersion, recurrence, metastasis, and response to 
 immunotherapy14. Studies have shown that  CD8+ T cells, monocytes, and M2 macrophages are involved in the 
establishment of the immune microenvironment of  osteosarcoma15. The simultaneous increase in macrophage 
and B cell infiltration indicates that patients with osteosarcoma have a better prognosis. Type 2 T helper cells 
and effector memory  CD8+ T cells affect the metastasis and the chemotherapeutic responsiveness of osteosar-
coma  cells16. Therefore, identifying potential prognostic biomarkers related to tumor-infiltrating immune cells 
is necessary to improve the existing treatment strategies and select the most appropriate treatment method for 
patients with  osteosarcoma17.

In this study, we analyzed the gene expression profile data of osteosarcoma, normal samples, and hypoxia-
related genes to obtain the differential genes of hypoxia-related osteosarcoma. Subsequently, we constructed a 
predictive model for the prognosis of osteosarcoma through univariate COX regression analysis, Lasso regres-
sion analysis, and multivariate COX regression analysis and screened five genes related to the prognosis of 
osteosarcoma, which included ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A. Furthermore, we performed 
Kaplan–Meier (KM) survival analysis on patients based on the high and low expression of specific genes and the 
high-risk and low-risk scores, respectively, and analyzed the proportion of 22 TIICs collected from the samples 
with available osteosarcoma prognostic datasets using the CIBERSORT algorithm.

Additionally, cytokines, chemokines, and growth factors considerably affect the microenvironment of osteo-
sarcoma through the interaction with tumor cells, thereby contributing to the pathogenesis and progression of 
 osteosarcoma18. Therefore, we analyzed the relationship between these five genes and the cytokines that were 
positively related to osteosarcoma. To aid clinical medication, we also studied the drug sensitivity of these five 
genes. We also evaluated the accuracy of these five genes as new prognostic biomarkers of hypoxia and immune 
cell infiltration in osteosarcoma at the cellular and histological levels.

Materials and methods
Data download. The expression profiles of osteosarcoma specimens and their corresponding survival 
data were downloaded from the UCSC Xena database (http:// xena. ucsc. edu/). Additionally, the gene expres-
sion profiles of normal samples were obtained from the GTEx database (https:// www. gtexp ortal. org/ home/). 
Subsequently, log2(x + 1) conversion on all gene expression data was performed. We downloaded the hypoxia-
related genes in Gene Set Enrichment Analysis (GSEA, https:// www. gsea- msigdb. org/ gsea/ index. jsp). We used 
the R (version 4.0.2, R core team, Vienna, Austria, https:// www.r- proje ct. org/) program to construct figures and 
perform all statistical analyses.

Differentially expressed genes (DEGs) and functional annotation of hypoxia-related 
genes. To identify the differentially expressed genes between osteosarcoma and normal tissues, we used 
the Limma  package19 to identify DEGs in the gene expression matrix using the thresholds of FDR < 0.05 and 
|logFC|> 1. Additionally, pheatmap, edgeR, and ggplot2 packages were used to construct the volcano and heat 
maps of the filtered DEGs. Subsequently, based on the GSEA database, we extracted hypoxia-related genes in the 
expression matrix. We performed differential expression analysis of hypoxia-related genes, and the cut-off value 
was set as logFC > 0 and FDR < 0.05. Gene Ontology (GO) analysis is a commonly used method for annotat-
ing the functions of genes and gene products, including molecular functions, biological pathways, and cellular 
 components20. The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a useful resource for gene func-
tion system analysis and related high-level genomic function  information21,22. Next, we used the clusterProfiler 
 package23, the org.Hs.eg.db package, the enrichplot  package23, and ggplot2. The GOplot  package24 was used to 
perform  GO25 and KEGG enrichment  analysis21 on the DEGs.

Constructing the prognostic model of osteosarcoma. First, we performed univariate Cox regres-
sion analysis to analyze the survival time and survival status of the patient. The selection condition was P < 0.01 
obtained from the univariate Cox regression analysis. Next, we screened the eligible genes for the second step of 
the analysis, i.e., we used the Lasso method to improve the model accuracy and obtain the most important genes 
to improve its prediction. In the third step, multivariate Cox regression analysis was performed for screening 
the genes obtained in the second step, based on the threshold of P < 0.05. Finally, the genes and risk scores of the 
prognostic model of osteosarcoma were obtained.

ROC analysis. We used the survival package and the survminer package to categorize the patients into two 
groups (low-risk and high-risk groups).

Difference analysis and principal component analysis of high-risk and low-risk groups of model 
genes. First, we used the reshape2 package and the ggpubr package (https:// github. com/ kassa mbara/ ggpubr) 
to analyze the differential expression of genes that were used to build the model based on different risk groups 
(high-risk and low-risk groups). Next, we used the ggplot2 package to analyze the principal components of the 
different risk groups (high-risk and low-risk groups).

http://xena.ucsc.edu/
https://www.gtexportal.org/home/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.r-project.org/
https://github.com/kassambara/ggpubr
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Prognostic analysis. Patient death was used as the endpoint of prognostic analysis. We used the survival 
package and the survminer package to divide patients into two groups (high-risk and low-risk groups) accord-
ing to the different risk values obtained from the model. Next, we conducted survival analysis and plotted the 
analysis results of the two groups as Kaplan–Meier survival curves. We divided the data into two groups (high-
expression and low-expression groups) according to the expression of a single gene. Finally, we conducted a 
survival analysis of the two groups of patients. The survival package was used to plot the Kaplan–Meier survival 
curve based on gene expression.

Risk curve, survival status, and risk heat map. We used the pheatmap package to analyze the risk 
among all the patients. First, we sorted the results of the analysis according to the level of the model gene risk 
score. Then, we constructed the risk curve diagram, the risk survival state diagram, and the risk heat map.

Predicting the survival probability of patients with osteosarcoma. We predicted and tested the 
risk of the model using the rms package and presented the results in the form of graphs. To evaluate the accuracy 
of the model, we plotted a calibration graph. We constructed a nomogram to predict the patient’s risk.

Estimation of the proportion of immune cell types and immune composition of the model 
genes. First, the CIBERSORT algorithm was used for predicting and quantifying the proportions of immune 
cells. CIBERSORT is an approach adopted for characterizing cell composition in complicated tissues from its 
gene expression profile. This can subsequently be applied to estimate immune cell numbers within human oste-
osarcoma  specimens26. CIBERSORT implements a machine learning method called Support Vector Regres-
sion (SVR), which combines feature selection and powerful mathematical optimization techniques to improve 
deconvolution  performance27. Studies have demonstrated that CIBERSORT is more accurate than other meth-
ods in solving mixtures of closely related cell subpopulations and unknown cell types (such as solid tissues)26. 
We selected samples with P < 0.05 for the next analysis. The scores of immune cell types of each analyzed sample 
added up to 1. Finally, we analyzed the immune cell composition of each sample based on the five genes used to 
construct the model.

Correlation analysis of osteosarcoma-related cytokines. We performed a correlation analysis to 
assess the relationship of the five genes, including ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A, with eight 
cytokines closely related to osteosarcoma, including VEGF, IL-17, IL-6, IL-8, IL-1Ra, TNF-α, IL-34, and TGF-β. 
We obtained a correlation heat map using the R language and constructed the graphs for the statistically signifi-
cant correlation analyses (P < 0.05).

Drug sensitivity analysis. We investigated the relationship between the five genes and drug sensitivity to 
better guide the clinical use of drugs. We downloaded all the data related to drug sensitivity from the CellMiner 
database. We used the "impute", "limma", "ggplot2" and "ggpubr" packages of the R programming language to 
analyze the relationship between the five genes and drug sensitivity.

Cell culture and treatment. The human osteosarcoma MG63 cell line was provided by Dr. Junlei Zhang 
of Guangxi Medical University, and the human osteosarcoma SJSA-1 cell line and normal human hFOB1.19 
osteoblasts were provided by Otwo Biotech Co. Ltd. (Shenzhen, China). All the cells were cultivated in DMEM 
F12 medium (Gibco, Shanghai, China) containing 10% fetal bovine serum (FBS; Tianhang, Zhejiang, China) 
and 1% (v/v) Penicillin/Streptomycin (Solarbio, Beijing, China). The cells were incubated at 37 °C with 5%  CO2. 
The medium was replaced every two days.

Quantitative polymerase chain reaction (qPCR). The HiPure Total RNA kit (Magen, China) was used 
for extracting the purified RNA from osteoblasts and osteosarcoma cells for qRT-PCR. Next, cDNA was pre-
pared with 1 μg of the extracted RNA by reverse transcription using the cDNA synthesis kit (Takara, China). The 
FastStart Universal SYBR Green Master Mix (Roche, Germany) was used to perform qRT-PCR with the Light-
Cycler 480 Sequence Detention System (Roche, Germany) under the following conditions—the initial 10 min at 
95 °C, then 15 s at 95 °C for 45 cycles, followed by 60 s at 60 °C. β-actin (Sangon Biotech, China) was used as an 
internal control, and the  2−ΔΔCT method was used for data analysis. The analysis of each gene was repeated three 
times. The primer sequences of the target genes are listed in Table 1.

Western blot analysis. Western blot analysis. We performed a detailed protein-level validation of the 
ST3GAL4, TRIM8, and STC2 genes that differed significantly between osteosarcoma and the normal controls 
in the PCR results. The β-actin antibody and high sensitive plus ECL luminescence reagent were obtained from 
Sangon Biotech, China; the ST3GAL4 antibody, TRIM8 antibody, STC2 antibody and Vinculin antibody were 
obtained from Proteintech. The antibody diluent was purchased from Biyuntian, China. The cells were lysed 
with RIPA buffer (Beyotime, China) containing protease inhibitor at 4 °C for 30 min. An equal amount of pro-
tein samples of hFOB1.19 cells, MG63 cells, and SJSA-1 cells were separated by SDS-PAGE and transferred to the 
PVDF membrane (Millipore, Germany). The samples were rinsed with the Tbst buffer solution, incubated with 
the primary antibody for 12 h, washed with the Tbst buffer solution, incubated with the HRP-labeled secondary 
antibody (Sangong Bioengineering Co., Ltd., China) for 1 h, incubated with the high sensitive plus ECL lumines-
cence reagent for 2 min, and analyzed using the Ultra-sensitive multifunctional imager (Amersham Pharmacia 
GE, America) to visualize the protein. β- actin was used as an internal control for the TRIM8 gene. Vinculin was 
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chosen as an internal control for the ST3GAL4 and STC2 genes as the protein molecular weights of these genes 
are similar to those of β-actin.

Immunohistochemistry. To verify the accuracy of the analysis, we used immunohistochemistry to char-
acterize the selected genes based on osteosarcoma and the adjacent tissues by tissue staining. The ST3GAL4 
antibody used for immunohistochemical staining was obtained from Proteintech (https:// www. ptgcn. com, cata-
log number: 13546–1-AP), while the TRIM8 antibody was obtained from Absin (https:// www. absin. cn, item 
number: abs128180). The STC2 and TRPS1 antibodies were obtained from Abcam (https:// www. abcam. cn, item 
number: ab255610; ab209664) and the FAM207A antibody was procured from NOVUS (https:// www. novus bio. 
com, Item No.: NBP1-90,676). Both the osteosarcoma tissue section and the normal tissue section adjacent to 
the cancer were treated by performing a series of steps such as dewaxing, antigen retrieval by microwave, seal-
ing, primary antibody incubation, and secondary antibody incubation. Finally, the stained osteosarcoma tissue 
section and the adjacent cancer tissue section were observed under a microscope. Normal tissues were sectioned 
and their protein expression was determined.

Ethics approval and consent for participation. The present work was approved by the Ethics Commit-
tee from the First Clinical Affiliated Hospital of Guangxi Medical University.

Consent for publication. The co-authors in this work provided the consent for publication.

RESULTS
Data downloading and analysis of differentially expressed genes. We downloaded the expression 
profile data of 88 osteosarcomas and their corresponding survival data from the UCSC Xena database (https:// 
xena. ucsc. edu/). The GTEx database (https:// www. gtexp ortal. org/) was used to download the expression profile 
data of 396 normal samples (normal controls). A total of 2,678 hypoxia-related genes in 41 hypoxia-related gene 
sets were downloaded from the GSEA database. We performed a differential analysis of 54,751 genes in the gene 
expression matrix composed of 88 tumors and 396 normal samples and obtained 359 DEGs, which were visual-
ized as heat maps and volcano maps (Fig. 1A,B). Subsequently, we extracted hypoxia-related gene expression 
profile data and performed differential analysis to obtain 359 upregulated hypoxia-related DEGs.

GO enrichment analysis and KEGG pathway enrichment analysis. The R programming language 
was used to analyze hypoxia-related differential genes and obtain the results of the GO enrichment analysis. We 
showed that the first 10 items (Fig. 1C) were primarily distributed in the mitotic nuclear division, nuclear divi-
sion, and extracellular matrix organization. The KEGG pathways were mainly enriched in the cell cycle, the Rap1 
signaling pathway, and the Hedgehog signaling pathway (Fig. 1D).

Construction of a prognostic model of osteosarcoma. After the preliminary univariate COX regres-
sion analysis, the remaining 165 hypoxia-related genes met the requirements of the study. Next, we performed 
Lasso regression analysis to further improve the accuracy of the model. Among the genes retained in the previ-
ous step, 22 genes met the conditions of Lasso regression analysis (Fig. 2A,B). Therefore, we selected those 22 
genes for the next analysis. Finally, we performed multivariate Cox regression analysis, and only five genes met 
our screening conditions, which included ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A (Fig. 2C). We cal-
culated the risk score for each sample and divided all cases into high-risk and low-risk groups according to the 
mean value of the risk score.

Difference analysis and principal component analysis (PCA) of the model genes in both 
groups. We next analyzed the expression of the genes used to construct the model in low-risk and high-risk 

Table 1.  The primer sequences used in the qRT-PCR experiments.

Gene Sequence(5′ to3′)

ST3GAL4-F AGT GAT AAG AAG CGG GTG CGA AAG 

ST3GAL4-R TTG GCA GGC TCA GCA GTT TGTC 

TRIM8-F TGG ACG CAG AGG TGA CAG TGG 

TRIM8-R GGG GTG TGA AGG GGA AGG AGTAG 

STC2-F AGG AGG AAG AGG AGG AGG AGG AAG 

STC2-R CCG CTC GGC ACA CAT GGT TC

TRPS1-F TCC AGT GAT GAC CTT CGC AAT GTG 

TRPS1-R CCA GGC TTG CTT GGG TGT ATGAC 

FAM207A-F GGA AGG ACT GGG CGT TCA TCAAC 

FAM207A-R ACC TCT CCT GAC GGA AGT GACAC 

β-actin -F CCT GGC ACC CAG CAC AAT 

β-actin -R GGG CCG GAC TCG TCA TAC 

https://www.ptgcn.com
https://www.absin.cn
https://www.abcam.cn
https://www.novusbio.com
https://www.novusbio.com
https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://www.gtexportal.org/
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groups. As shown in the violin plot (Fig. 2D), the expression of ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A 
genes in the high-risk group increased relative to that in the low-risk group (P < 0.05). The PCA plot (Fig. 2E) 
showed differences between the two groups. Most cases of the high-risk group were distributed on the right of 
the PC1 axis, while most cases of the low-risk group were distributed on the left of the PC1 axis; the two groups 
could be differentiated.

Subsistence analysis. We analyzed the survival data at different levels. We first plotted the Kaplan–Meier 
survival curve based on the high and low expression of the five genes used to construct the model. Figure 2F–J 
shows that the five-year survival rate of osteosarcoma cases with high expression of ST3GAL4, TRIM8, FAM207A, 
TRPS1, and STC2 was lower than that of low-expressing cases (P < 0.05). We next divided the patients into high-
risk and low-risk groups based on the high-risk and low-risk groups of the prognosis model. Figure 2K,L show 
that the survival rate of osteosarcoma patients in the high-risk group was considerably lower than that of the 
patients in the low-risk group (P < 0.001).

ROC diagnostic curve. To test the accuracy of the prognostic model, we constructed the ROC diagnostic 
curve to test the three-year survival probability. The area under the ROC curve (AUC) was 0.894, 0.989, and 
0.955 for one, two, and three years, respectively; all AUC values were greater than 0.05 (Fig. 3A). This further 
confirmed the accuracy of the model we constructed.

Risk chart display. We used the model to calculate the risk values of all cases and displayed them from 
low to high (Fig. 3D). The survival time of the patients in the low-risk group was generally longer than that of 
the patients in the high-risk group (Fig. 3E). The risk heat map (Fig. 3F) showed that the gene expression of 

Figure 1.  Analysis of differentially expressed genes related to osteosarcoma and enrichment analysis of 
differentially expressed genes related to hypoxia. (A) The volcano plot of DEGs. The red dots indicate genes 
that have a high expression level, the green dots indicate genes that have a low expression level, and the black 
dots indicate genes that do not meet our requirements. (B) The heat map of DEGs. In the Type column, blue 
represents normal samples, and red represents tumor samples; red in the graph indicates genes with high 
levels of expression, while green indicates genes with low levels of expression. (C) The Gene Ontology (GO) 
enrichment analysis of hypoxia-related genes. Different color modules represent different GO terms. The color 
in the innermost circle represents the logFC value of the gene. (D) The top 10 Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways related to hypoxia. The different color modules on the right side of the graph 
represent different KEGG pathways; the left side represents genes, and the intensity of red indicates the logFC 
value.
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Figure 2.  Construction of a prognostic model for osteosarcoma and the survival analysis of the screened 
genes. (A) Ten-fold cross-validation of Lasso regression model adjustment parameter selection (nfold = 10). 
(B) The Lasso coefficient curve of the 22 genes that were included in the analysis. (C) The forest plot shows 
that the multivariate Cox regression analysis of STC2, TRPS1, ST3GAL4, TRIM8, and FAM207A is statistically 
significant (P < 0.05). (D) The violin plot shows the expression difference of the five genes in the high-risk group 
and the low-risk group. (E) The main component analysis chart; the red dots are high-risk patients and the 
blue dots are low-risk patients. (F–J) The survival curves were plotted based on the high and low expression of 
ST3GAL4, TRIM8, FAM207A, TRPS1, and STC2 genes, respectively. (K) A survival curve was plotted based 
on the high and low risks of the genes used to construct the model. (L) A survival curve was plotted in the 
validation dataset based on high and low risk for the genes used to construct the model.
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Figure 3.  The prediction of the survival probability of the patients with osteosarcoma and the correlation 
between the expression levels of the five genes in the risk model. (A) ROC diagnostic curve. The AUC values 
used to predict the survival for one, two, and three years were greater than 0.8. (B) The nomogram of the 
five genes that were used to predict the survival for one, two, and three years, based on the model. (C) The 
calibration chart represents the predicted overall survival for three years. There was a good agreement between 
the actual and predicted survival rates. (D) The cases are ranked from low risk to high risk. (E) A scatter plot 
based on the time of death and risk of each case. (F) Heat map of risk showing the expression of the five genes 
from low risk to high risk; they all rise in sequence.
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ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A increased from low-risk to high-risk groups, indicating that 
the five genes in this study were related to osteosarcoma.

Calibration chart and nomogram. To predict the 1-year, 2-year, and 3-year survival rates of patients with 
osteosarcoma, we used a nomogram (Fig. 3B) to add the values of various indicators in the figure to obtain the 
final score, which corresponded to the predicted survival rate. Next, to evaluate the accuracy of the constructed 
prognostic model, we made a calibration chart (Fig. 3C). The calibration chart showed a favorable agreement 
between the actual and the predicted survival.

Immune cell composition of each sample and immune cell composition and correlation heat 
map of the model gene. The results of the analysis using the CIBERSORT software showed that osteosar-
coma is related to a variety of immune cells. We constructed an immune cell composition map (Fig. 4A) and a 
correlation heat map (Fig. 4B) of the samples with statistically significant differences (P < 0.05). Among these, 83 
cases in Fig. 4A were statistically significant.

The violin plot showed that the immune cell composition based on ST3GAL4 (Fig. 5A1) activated the  CD4+T 
memory cells, plasma cells, and M0 macrophages (P < 0.05). Among them, ST3GAL4 gene expression was nega-
tively related to the plasma cells and activated mast cells (Fig. 5A2, R =  − 0.25, P = 0.018; Fig. 5A3, R =  − 0.29, 
P = 0.0061). ST3GAL4 showed a positive relationship with the M0 macrophages (Fig. 5A4, R = 0.27, P = 0.012). 
Among them, plasma cells and activated  CD4+T memory cells have important inhibitory effects on tumor growth. 

Figure 4.  Immune cell composition and correlation analysis of osteosarcoma. (A) The proportion of 22 
immune cells in osteosarcoma. (B) The correlation matrix between various immune cells; red represents positive 
correlation, and blue represents negative correlation, a darker color indicates stronger correlation.
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The M0 macrophages are closely related to the poor prognosis of osteosarcoma. The violin plot (Fig. 5B1) showed 
that TRIM8 gene expression was negatively related to resting mast cells (Fig. 5B2, R =  − 0.29, P = 0.0069). Resting 
mast cells can affect tumor growth by releasing inflammatory  mediators28. The violin plot (Fig. 5C1) showed 
that the STC2 gene expression was inversely proportional to  CD8+ T cells (Fig. 5C2, R =  − 0.35, P = 0.00077), 
which was statistically significant. The  CD8+ T cells can kill osteosarcoma cells directly. The violin plot (Fig. 5D1) 
showed that TRPS1 gene expression was inversely proportional to monocytes (Fig. 5D2, R =  − 0.24, P = 0.023). 
Monocytes could also mediate tumor cell apoptosis, including osteosarcoma. The violin plot (Fig. 5E1) showed 
that the FAM207A gene expression was inversely proportional to activated  CD4+T memory cells (Fig. 5E2, 
R = –0.28, P = 0.0092). Therefore, these five genes are closely related to the poor prognosis of osteosarcoma.

Correlation analysis of osteosarcoma-related cytokines. Correlation analysis revealed that 
ST3GAL4 and IL-34 were positively correlated. TRIM8 was positively correlated with VEGF, IL-34, and TGF-β, 
whereas STC2 was positively correlated with VEGF, IL-8, and IL-1Ra. FAM207A was positively correlated with 
IL-6 and TGF-β; TRPS1 was negatively correlated with TGF-β (Fig. 6A,B). The cytokines VEGF, IL-17, IL-6, 
IL-8, IL-1Ra, TNF-α, and IL-34 can promote the proliferation of osteosarcoma cells, and TGF-β exerts dual 
effects on tumors; they inhibit tumor growth in the early stage and promote tumor growth in the late stage. 
Therefore, the five genes including ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A promoted the growth of 
osteosarcoma by influencing osteosarcoma-related cytokines, which resulted in a worse prognosis.

Drug sensitivity analysis. After the drug sensitivity analysis of the five genes, we found that they were 
closely related to the drug sensitivity of various drugs. Among them, ST3GAL4 showed a positive correlation 
with Vemurafenib, Dabrafenib, and ARRY-162, and a negative correlation with Brigatinib; TRIM8 showed a pos-
itive correlation with Dasatinib and Midostaurin, and a negative correlation with Nilotinib, Tamoxifen, Eribulin 
mesilatedeng, and other drugs; STC2 showed positive correlations with Acetalax, Bisacodyl, and other drugs, 
and negative correlations with Dabrafenib, Vemurafenib, and other drugs; TRPS1 showed a positive correlation 
with Fulverstrant, Acetalax, and Bisacodyl and a negative correlation with Trametinib; FAM207A showed a posi-
tive correlation with the drug sensitivity of Cladribine, Hydroxyurea, and other drugs (Fig. 6C).

Quantitative polymerase chain reaction (qPCR). We performed qRT-PCR to detect the expression of 
ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A genes in normal human osteoblasts (hFOB1.19) and osteosar-
coma cells (MG63 and SJSA-1) (Fig. 7A–E). The results showed that the expression levels of ST3GAL4, TRIM8, 
STC2, TRPS1, and FAM207A genes were significantly higher in the osteosarcoma cell line compared to that in 
the normal human osteoblasts.

Western blot analysis. We quantified the protein blots by the ImageJ software and found that the expres-
sion of ST3GAL4, TRIM8, and STC2 genes in both MG63 cells and SJSA-1 cells was higher than that in the 
hFOB1.19 cells, which further demonstrated that the expression of these three genes in osteosarcoma cells was 
higher than in osteoblasts (Fig. 7F). Uncropped blots are available in supplementary (Fig. S1).

Immunohistochemistry. We observed all the immunohistochemically stained tissue sections under an 
inverted microscope, and the immunohistochemical staining results showed that the osteosarcoma tissue sec-
tion and the paracancerous tissue section from the same patient were quite different, where the protein expres-
sion of the ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A antibodies was found to be significantly higher in 
osteosarcoma compared to the expression of the antibodies in paracancerous tissues (Fig. 7G–K). Among them, 
the ST3GAL4, STC2, and FAM207A antibodies are mainly located in the cytoplasm, the TRIM8 antibody is 
mainly located in the nucleus and cytoplasm, and the TRPS1 antibody is mainly located in the cell nucleus. Then, 
we used the Image J software to analyze the positive rate of protein expression in the immunohistochemically 
stained images of these five genes, and through paired sample t-test in IBM SPSS Statistics software, we found 
that the positive rate of protein expression of these five genes in osteosarcoma tissues was significantly higher 
than that in paracancerous tissues (Fig. 7L, P < 0.05).

Discussion
Osteosarcoma is a major public health concern because of its high incidence and a high degree of malignancy. 
Previous studies have demonstrated that the expansion of tumor cells depends on nutrient supply, and oxygen 
limitation is the primary factor controlling the formation of new blood vessels, glucose metabolism, survival, 
and the spread of tumors. Under hypoxic conditions, osteosarcoma cells can activate signal pathways that induce 
cell proliferation and angiogenesis to promote tumor growth rather than apoptosis. Additionally, hypoxia can 
induce osteosarcoma cells to transform into more aggressive types and increase their chemoresistance and 
metastatic  ability29,30.

In this study, the expression profiles and survival data for OS were obtained using the UCSC Xena database 
(https:// xena. ucsc. edu/) and the GTEx database (https:// www. gtexp ortal. org/ home). We downloaded the normal 
expression profile data. Additionally, we downloaded the GSE21257 dataset in the GEO database (https:// www. 
ncbi. nlm. nih. gov/ geo/) as a validation set for the prognostic model of osteosarcoma. We performed univariate 
Cox regression analysis, Lasso regression analysis, and multivariate Cox regression analysis to construct the 
osteosarcoma prognosis prediction model. We also performed principal component analysis and Kaplan–Meier 
survival analysis. A plot of the principal component analysis (Fig. 2E) based on the high-risk and low-risk groups 
showed that there was a separation between the patients in the high-risk and low-risk groups. The survival 

https://xena.ucsc.edu/
https://www.gtexportal.org/home
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Figure 5.  Violin diagram and correlation diagram of immune cells. (A1) Violin diagram showing the difference in the degree of 
infiltration of 22 immune cells based on the ST3GAL4 gene in osteosarcoma; (A2–A4) indicate the correlation between ST3GAL4 
and three different immune cells. (B1) The difference in the infiltration of 22 kinds of immune cells based on the TRIM8 gene in 
osteosarcoma. (B2) The infiltration correlation between TRIM8 and resting mast cells. (C1) The difference in the infiltration of 22 
kinds of immune cells based on the STC2 gene in osteosarcoma. (C2) The correlation between STC2 and  CD8+ T cell infiltration. 
(D1) The difference in the infiltration of 22 kinds of immune cells based on the TRPS1 gene in osteosarcoma. (D2) The infiltration 
correlation between TRPS1 and monocytes. (E1) The difference in the infiltration of 22 immune cells based on the FAM207A gene in 
osteosarcoma. (E2) The correlation between STC2 and memory-activated  CD4+ T cell infiltration.
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Figure 6.  Correlation analysis of osteosarcoma-related cytokines and drug sensitivity analysis of five genes. (A) Heat map of the 
correlations between the five genes and osteosarcoma-associated cytokines, where red represents positive correlations and blue 
represents negative correlations. (B) The statistically significant correlation plots from the correlation analysis of the five genes 
and osteosarcoma-associated cytokines. (C) The drug sensitivity analysis of the five genes. "Cor value > 0" indicates that the gene 
is positively correlated with the sensitivity of the drug, and "Cor value < 0" indicates that the gene is negatively correlated with the 
sensitivity of the drug. When the relationship is positive, a higher expression value of the gene indicates stronger sensitivity of the 
corresponding drug. For a negative correlation, a higher gene expression value indicates weaker sensitivity of the corresponding drug. 
(" * " represents P < 0.05, " ** " represents P < 0.01, and " *** " represents P < 0.001).
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Figure 7.  ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A genes promote tumorigenesis in cells and patients. (A–E) 
Quantitative real-time PCR was performed to quantify the expression of ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A 
genes in osteosarcoma cell lines (MG63 and SJSA-1) and a normal osteoblast cell line. (F) Western blot was performed to 
quantify the expression of ST3GAL4, TRIM8 and STC2 genes in osteosarcoma cell lines (MG63 and SJSA-1) and a normal 
osteoblast cell line. (G–K) The relative expression of ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A genes, respectively, 
in the osteosarcoma tissue and the paracancerous tissues of the patient assessed by IHC. (L) The positive rates of ST3GAL4, 
TRIM8, STC2, TRPS1, and FAM207A genes in IHC pathology sections are quantified. (" * " represents P < 0.05, " ** " 
represents P < 0.01, and " *** " represents P < 0.001).
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analysis showed a shorter survival interval for patients in the high-risk group, and similar results were obtained 
from the survival analysis in the validation dataset GES21257 (Fig. 2L), which indicated that the prognostic 
model was highly accurate. Besides, the results of the ROC diagnostic curve analysis, risk prediction analysis, 
column line plot, and calibration plot further confirmed the predictive accuracy of the model constructed in 
this study for osteosarcoma. Next, we used the CIBERSORT software to analyze the immune gene composition 
of the gene expression profile data. We found that the ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A genes 
that we used to build the model were closely related to certain immune cells.

In this study, we conducted GO and KEGG analyses using hypoxia-related genes. We found that the GO 
entries were primarily distributed in the mitotic nuclear division, nuclear division, and extracellular matrix 
organization. Hypoxia is a vital physiological state promoting cancer invasion and progression. Besides, hypoxia 
can reduce anti-tumor immune activity and immunotherapy  response31. Tumor cells adapt to hypoxia and simul-
taneously enhance the aggressiveness and promote the treatment-resistant phenotype of the tumor. Hypoxia can 
alter gene expression and eventually alter proteomics. These changes have several vital impacts on different cell 
activities, and hence, limit patient  survival32. Tumor necrosis is considered to be an endpoint of serious chronic 
hypoxia. Due to the induction of hypoxia-related biomarkers, necrosis may enhance oxidative stress while altering 
the metabolic response. Additionally, hypoxia may also result in necrosis of the center of the tumor; in contrast, 
hypoxia causes apoptosis and suppresses necrosis during cancer  development33. Moreover, the KEGG analysis 
revealed that the pathways of the hypoxia-related genes were primarily related to the cell cycle, the Rap1 signal 
transduction pathway, and the Hedgehog signal transduction pathway. Hypoxia has become a central problem 
in cancer treatment due to its multiple effects in cancer cell genome instability, tumor angiogenesis, invasiveness, 
metastasis, resistance to cell death, and metabolism. Interestingly, the Hedgehog signaling pathway plays an 
important role in enhancing bladder cancer progression and  aggressiveness34. A group studied the occurrence, 
proliferation, and development of colorectal cancer through the Hedgehog signaling  pathway35. The above find-
ing was consistent with our results. We found that in addition to the hypoxia-related genes ST3GAL4, TRIM8, 
STC2, TRPS1, and FAM207A, the prognostic model constructed based on these five genes through multiple 
database analyses and screening showed that mortality was significantly higher in high-risk patients than in 
low-risk patients. Furthermore, the division between low-risk or high-risk groups led to different PCA clusters 
of the two groups. Figure 2E shows that the high-risk patients were separated from the low-risk patients. This 
further validated the model prediction accuracy for osteosarcoma in this study.

ST3GAL4 encodes for β-galactosidase α-2,3-sialyltransferase 4, which is involved in the biosynthesis of 
tumor antigens and is closely related to the occurrence and progression of  cancer36. There are few studies on the 
relationship between ST3GAL4 and osteosarcoma hypoxia and osteosarcoma immunity. Interestingly, ST3GAL4 
was negatively correlated with plasma cells and activated  CD4+T memory cells. Previous reports have shown that 
these immune cells have an important inhibitory effect on tumor growth. Among these, plasma cells are an active 
regulator of immune response and protect against malignant  tumors37. Activated  CD4+T memory cells play a 
key role in generating effective anti-tumor immunity through multiple mechanisms such as enhanced antigen 
presentation, co-stimulation, T cell homing, T cell activation, and effector  functions38. This finding is consist-
ent with our research. Moreover, studies have shown that M0-enriched clusters decrease the recurrence-free 
survival and worsen the prognostic immune  score39. Interestingly, our study found that ST3GAL4 is positively 
correlated with M0 macrophages. The M0 macrophages are closely related to the poor prognosis of melanoma, 
breast cancer, prostate cancer, and lung  adenocarcinoma39–42.

TRIM8 is a commonly expressed factor in the Trim series, which, besides governing innate immune response, 
regulates numerous biological processes, such as cell survival, differentiation, and  apoptosis43. According to 
previous reports, Trim8 regulates a wide range of biological processes, including development, differentiation, 
immune response, and  cancer44,45. However, literature on the role of Trim8 in osteosarcoma and hypoxia is 
poor. Our study found that TRIM8 was negatively correlated with resting mast cells. Similar studies have found 
that innate and adaptive immune response cells, such as resting mast cells, have extensive connections with the 
external environment, can release inflammatory mediators and other factors that affect tumor growth, and inhibit 
cancer  progression28,41. These observations are consistent with those found in our study.

STC2 codes for a glycoprotein associated with human cancer, which can enhance the aggressiveness of cancer. 
The expression of STC2 is strongly correlated with the development of human cancers and is a prognostic marker 
of renal, breast, and ovarian  cancers46. Current evidence suggests that the activation of STC2 gene expression 
usually occurs in hypoxia, which is a common feature in the tumor  microenvironment47. The change in the STC2 
expression plays a potential role in the carcinogenesis of breast cancer and ovarian  cancer48. A study predicted 
an association of STC2 with childhood osteosarcoma but with limited evidence. Here, we conducted a more 
detailed study and validated the expression of STC2 in  osteosarcoma49. According to reports,  CD8+T cells can 
directly kill tumor cells, including osteosarcoma 50. Additionally,  CD8+ T cells also show a positive prognostic 
value in stage I–III colon cancer  tumors51. We found that STC2 and  CD8+ T cells showed a significant negative 
correlation trend, indicating that STC2 promoted the occurrence and development of osteosarcoma by inhibit-
ing  CD8+ T cells.

TRPS1 is one of the most significant hits in breast cancer cell  lines52. Previous studies have shown the function 
of TRPS1 in tumorigenesis, such as colon  cancer53, gastric  cancer54, and breast  cancer55, and TRPS1 is particularly 
tightly associated with breast cancer formation and progression. However, there is no relevant report on hypoxia 
in osteosarcoma. Our results showed that TRPS1 was negatively correlated with monocytes in osteosarcoma 
(R = –0.24). Previous studies have shown that monocytes effectively kill tumor cells through antibody-dependent 
and antibody-independent mechanisms and also prevent the metastasis and spread of cancer  cells56,57. These 
studies also support our findings.

Only a few studies have been conducted on the protein-coding gene of FAM207A. For the first time, we con-
ducted research on FAM207A related to hypoxia and tumor immunity. We found that FAM207A interacts with 
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 CD4+ memory T cells and ST3GAL4, and their activation was negatively correlated with FAM207A expression 
(R = –0.28), indicating that FAM207A is a potential tumor biomolecular target.

Previous reports have shown that the cytokines VEGF, IL-17, IL-6, IL-8, IL-1Ra, TNF-α, IL-34, and TGF-β 
play a role in the development of osteosarcoma. Among these, VEGF, IL-17, IL-6, IL-8, IL-1Ra, TNF-α, and IL-34 
can promote cell proliferation in osteosarcoma; only TGF-β has a dual role in the tumor. In the early stage of 
cancer, TGF-β has an inhibitory effect on tumor growth, whereas it exerts a growth-promoting and invasion-pro-
moting effect in the late stage of  cancer18,58. We found that ST3GAL4, TRIM8, STC2, and FAM207A genes were 
positively correlated with VEGF, IL-6, IL-8, IL-1Ra, IL-34, and TGF-β cytokines. Therefore, we suggested that 
ST3GAL4, TRIM8, STC2, and FAM207A genes could regulate the immune microenvironment of osteosarcoma 
by influencing cytokines to promote tumor growth and invasion. TRPS1 was negatively correlated with TGF-β, 
possibly because TRPS1 suppressed the inhibitory effect of TGF-β during pre-tumor growth. Additionally, we 
performed a drug sensitivity analysis on these five genes and found that they have closely related sensitivity to 
numerous drugs. These findings provide a new reference for drug treatment of osteosarcoma.

Our findings suggested that ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A could be used as potential 
biomarkers for the prognosis of patients with osteosarcoma.

Our research had certain shortcomings. First, the sample size was insufficient; we used only 396 normal 
samples and 88 osteosarcoma samples. Second, we did not conduct sufficient experiments to confirm our conclu-
sions. Third, the mechanism of hypoxia and immune cell-related genes regulating osteosarcoma needs further 
investigation. In the future, basic experiments have to be performed with larger groups to further explore the 
underlying mechanisms of hypoxia and the effect of the tumor immune cell-related genes.

Conclusion
We studied the effects of hypoxia and immune-infiltrating cells in osteosarcoma and provided new insights. 
ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A are high-risk genes that are involved in the occurrence and 
development of osteosarcoma. These risk markers may be used as biomarkers to predict the prognosis of patients 
with osteosarcoma in clinical practice.
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