
Research Article
Identification of Hub Genes to Regulate Breast Cancer Spinal
Metastases by Bioinformatics Analyses

Yongxiong He,1 Yongfei Cao,2 Xiaolei Wang,1 Wu Jisiguleng,1 Mingkai Tao,1 Jianfeng Liu,1

Fei Wang,1 Lemeng Chao,1WenjunWang,1 Pengfei Li,1Haiping Fu,1Wei Xing,1 Zhibo Zhu,1

Yanqiang Huan ,1 and Hongwei Yuan 3

1Department of Spine Surgery, Inner Mongolia People’s Hospital, Hohhot, 010017 Inner Mongolia, China
2Trauma Orthopedic Department, Guizhou Provincial Orthopedics Hospital, No. 123 Shangchong South Road, Nanming District,
Guiyang City, Guizhou Province, China
3Department of Pathology, Inner Mongolia People’s Hospital, Hohhot, 010017 Inner Mongolia, China

Correspondence should be addressed to Yanqiang Huan; bonespine@163.com
and Hongwei Yuan; hongweiyuan2003107@126.com

Received 11 January 2021; Revised 17 March 2021; Accepted 29 March 2021; Published 12 May 2021

Academic Editor: Tao Huang

Copyright © 2021 Yongxiong He et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Breast cancer (BC) had been one of the deadliest types of cancers in women worldwide. More than 65% of advanced-stage BC
patients were identified to have bone metastasis. However, the molecular mechanisms involved in the BC spinal metastases
remained largely unclear. This study screened dysregulated genes in the progression of BC spinal metastases by analyzing
GSE22358. Moreover, we constructed PPI networks to identify key regulators in this progression. Bioinformatics analysis
showed that these key regulators were involved in regulating the metabolic process, cell proliferation, Toll-like receptor and
RIG-I-like receptor signaling, and mRNA surveillance. Furthermore, our analysis revealed that key regulators, including C1QB,
CEP55, HIST1H2BO, IFI6, KIAA0101, PBK, SPAG5, SPP1, DCN, FZD7, KRT5, and TGFBR3, were correlated to the OS time in
BC patients. In addition, we analyzed TCGA database to further confirm the expression levels of these hub genes in breast
cancer. Our results showed that these regulators were significantly differentially expressed in breast cancer, which were
consistent with GSE22358 dataset analysis. Furthermore, our analysis demonstrated that CEP55 was remarkably upregulated in
the advanced stage of breast cancer compared to the stage I breast cancer sample and was significantly upregulated in triple-
negative breast cancers (TNBC) compared to other types of breast cancers, including luminal and HER2-positive cancers,
demonstrating CEP55 may have a regulatory role in TNBC. Finally, our results showed that CEP55 was the most highly
expressed in Basal-like 1 TNBC and Basal-like 2 TNBC samples but the most lowly expressed in mesenchymal stem-like TNBC
samples. Although more studies are still needed to understand the functions of key regulators in BC, this study provides useful
information to understand the mechanisms underlying BC spinal metastases.

1. Introduction

Breast cancer (BC) had been one of the deadliest types of
tumors in women worldwide [1]. Almost 2.5 million patients
were diagnosed with BC in 2018 [1]. Distant metastasis is the
main cause of BC-related death, which happened in about
20% to 30% of BC patients [2]. Even though a series of novel
therapies were developed for BC, the median overall survival
for metastasis BC remained as short as about 40 months [3].
Thus, understanding the pathogenic mechanism of BC is still

urgent to identify novel biomarkers for the prognosis and
treatment.

Previous studies showed that more than 65% of
advanced-stage BC patients were identified to have bone
metastasis [4]. Sandor et al. found that nearly 70% of bone
metastasis occurred in the spine [5]. BC spinal metastases
lead to severe pain, paraplegia, and bladder and/or bowel
dysfunction. BC spinal metastases seriously impair the sur-
vival, mobility, and quality of life [6]. Emerging efforts were
paid to identify regulators involving BC metastasis. For
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instance, Bonapace et al. found that suppression of CCL2 sig-
nificantly suppressed BCmetastasis through the regulation of
angiogenesis [7]. LIFR was identified as a BC metastasis sup-
pressor through Hippo signaling [8]. A recent study revealed
that ULK1 phosphorylates Exo70 to suppress breast cancer
metastasis [9]. However, the molecular mechanisms involved
in the BC spinal metastases remained largely unclear.

Recently, microarray showed significant advances in the
understanding of pathological causes of human cancers. A
few studies have identified BC-related genes using public
datasets. For example, Tang et al. identified key genes
involved in BC brain metastasis using GSE100534 and
GSE52604 [10]. Zeng et al. identified key pathways in
response to trastuzumab treatment in BC using GSE22358
[11]. Here, we conducted an analysis of the GSE26338 dataset
to identify BC spinal metastasis-related key genes. This study
could provide novel information to identify biomarkers for
the prognosis and treatment of BC.

2. Material and Methods

2.1. Microarray Data. The microarray gene expression data-
set GSE26338 [12] was obtained from the GEO database.
Principal component analysis (PCA) was conducted to eval-
uate similarity among normal, BC, and BC spinal metastasis
samples. The clinical data of breast cancer patients were
obtained from previous studies [12, 13]. The limma R pack-
age was applied to identify differentially expressed genes
(DEGs). The normalization criteria include quantile normal-
ization. DEGs were identified with adjusted P value < 0.05
and ∣log 2 ðfold changeÞ ∣ >1.

2.2. Survival Analysis. The correlation between gene
expression and overall survival (OS) time was calculated using

the Kaplan-Meier Plotter (http://kmplot.com/analysis/index
.php?p=service&cancer=breast), which included gene expres-
sion data and survival information [14]. Results contained a
hazard ratio (HR) with a 95% confidence interval (CI) and log-
rank P value.

2.3. Bioinformatics Analysis of DEGs.GO and KEGG analyses
were conducted using the online DAVID system (https://
david.ncifcrf.gov/). Significant biological processes and path-
ways were identified with P < 0:05.

2.4. Constructing the PPI Network. In order to explore the
underlying mechanisms, we constructed PPI networks using
the STRING database (http://www.string-db.org/) and visu-
alized them using Cytoscape software.

2.5. Statistical Analysis. Statistical analysis was conducted
using Prism V5.0 software. The t-test was applied. P < 0:05
was regarded as significant.

3. Results

3.1. Screening of DEGs in Breast Cancer. GSE26338 was used
to identify DEGs in BC, which included 5 normal (NC) sam-
ples, 66 breast cancer (BC) samples, and 2 metastasis breast
cancer (MBC) samples. We then conducted principal com-
ponent analysis (PCA) to access the data quality of the
GSE26338 database. As presented in Figure 1(a), we showed
that the gene expression pattern of breast cancer and metas-
tasis breast cancer samples was highly different from that of
the normal tissues.

The genes with P value < 0.05 and the level that differed
by ≥2-fold between two groups were defined as DEGs. As
shown in Figure 1, a total of 317 DEGs were identified in this
study. Cluster analysis of 317 genes identified 4 DEG clusters
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Figure 1: Screening of differentially expressed mRNAs in BC spinal metastases. (a) PCA of GSE26338. (b) Hierarchical clustering showed
differentially expressed mRNAs in the progression of BC spinal metastases.
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in breast cancer according to their expression pattern in nor-
mal samples, breast cancer samples, and metastasis breast
cancer samples (Figure 1(a)). Cluster 1 included 74 DEGs,
whose expression was downregulated in BC andMBC samples
compared to NC samples (Figure 2(a)). Cluster 2 included 74
DEGs, whose expression was upregulated in BC and MBC
samples compared to NC samples (Figure 2(b)). Cluster 3
included 91 DEGs, whose expression was downregulated in
MBC compared to BC and NC samples and in BC compared
to NC samples (Figure 2(c)). Cluster 4 included 78 DEGs,
whose expression was overexpressed in MBC compared to
BC and NC samples and in BC compared to NC samples
(Figure 2(d)). These analyses suggested Cluster 1 and Cluster
2 may play a key role in the initiation of breast cancer. Cluster
3 and Cluster 4 may have a key role in both tumor initiation
and metastasis of breast cancer.

3.2. Construction of an Integrated PPI Network. Furthermore,
we constructed integrated PPI networks for Cluster 1, Cluster
2, Cluster 3, and Cluster 4 to understand the relationship
among DEGs in breast cancer using the STRING database.
As shown in Figure 3, we found that the Cluster 1 PPI net-

work contained 44 nodes and 53 edges, the Cluster 2 PPI net-
work contained 60 nodes and 281 edges, the Cluster 3 PPI
network contained 19 nodes and 95 edges, and the Cluster
4 PPI network contained 20 nodes and 95 edges. ISG15,
MX1, IFIT3, and SAMD9 were identified as key genes in this
network, which interacted with more than 10 DEGs.

3.3. Function Annotation of DEGs in Cluster 3 and Cluster 4.
GO analysis showed that DEGs in Cluster 3 were involved in
the regulation of the molecular function, metabolic process,
response to stress, cell proliferation, regulation of cell prolif-
eration, programmed cell death, and apoptotic process
(Figure 4(a)). KEGG pathway analysis showed that DEGs
in Cluster 3 were related to the NOD-like receptor, Wnt,
Toll-like receptor, MAPK, Neurotrophin, and Cytosolic
DNA-sensing signaling (Figure 4(b)).

GO analysis showed that DEGs in Cluster 4 were
involved in the viral reproductive process, mRNA metabolic
process, viral reproduction, viral infectious cycle, multior-
ganism process, and translational initiation (Figure 4(c)).
KEGG pathway analysis showed that DEGs in Cluster 4 were
involved in the Toll-like receptor, RIG-I-like receptor,
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Figure 2: Cluster analysis of DEGs in BC spinal metastases. (a) Cluster 1 included 87 DEGs, whose expression was downregulated in BC and
MBC samples compared to NC samples. (b) Cluster 2 included 92 DEGs, whose expression was upregulated in BC and MBC samples
compared to NC samples. (c) Cluster 3 included 65 DEGs, whose expression was downregulated in BC compared to MBC and NC
samples and in MBC compared to NC samples. (d) Cluster 4 included 50 DEGs, whose expression was overexpressed in BC compared to
MBC and NC samples and in MBC compared to NC samples.
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Figure 3: Continued.
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Figure 3: Continued.
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mRNA surveillance, Cytosolic DNA-sensing signaling, Neu-
rotrophin, Jak-STAT, and ErbB signaling (Figure 4(d)).

3.4. The Abnormal Expression of Key DEGsWas Correlated to
Prognosis in Breast Cancer. Furthermore, the association
between the clinical outcome of patients with PCA and the
expression of key DEGs was analyzed using the Kaplan-
Meier Plotter. We found that higher expression of C1QB,
CEP55, HIST1H2BO, IFI6, KIAA0101, PBK, SPAG5, and
SPP1 and lower expression of DCN, FZD7, KRT5, and
TGFBR3 were associated with shorter overall survival time
in breast cancer (Figure 5).

3.5. Confirmation of the Abnormal Expression of Key DEGs
in Breast Cancer Using TCGA Database. Then, we ana-
lyzed TCGA database to further confirm the expression
levels of these hub genes in breast cancer. Our results showed
that C1QB was not significantly differentially expressed in
breast cancer and normal samples (Figure 6(a)). Mean-
while, we found that CEP55 (Figure 6(b)), HIST1H2BO

(Figure 6(c)), IFI6 (Figure 6(d)), KIAA0101 (Figure 6(e)),
PBK (Figure 6(f)), SPAG5 (Figure 6(g)), and SPP1
(Figure 6(h)) were significantly upregulated in breast cancer
compared to normal samples. However, KIAA0101
(Figure 6(i)), PBK (Figure 6(j)), SPAG5 (Figure 6(k)), SPP1
(Figure 6(l)), DCN (Figure 6(m)), FZD7 (Figure 6(n)),
KRT5 (Figure 6(o)), and TGFBR3 (Figure 6(p)) were sci-
entifically downregulated in breast cancer compared to
normal samples. These results were consistent with GEO
dataset analysis.

3.6. The Upregulation of CEP55 Was Correlated to the
Advanced Stage of Breast Cancer. Among these hub regula-
tors, we focused on CEP55, which was the most significantly
upregulated and was associated with the shorter overall sur-
vival time in breast cancer. In order to further confirm the
clinical importance of this gene, we analyzed the correlation
between CEP55 expression and clinical parameters using
TCGA database. As presented in Figure 7, our analysis
showed that CEP55 was remarkably upregulated in the
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Figure 3: Construction of DEG-mediated PPI networks in BC spinal metastases. (a) The Cluster 3 PPI network was identified in BC. (b) The
Cluster 4 PPI network was identified in BC.
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advanced stage of breast cancer compared to the stage I
breast cancer sample (Figure 7(a)). We next analyzed the
expression of CEP55 in breast cancer based on subclasses.
Our results showed that CEP55 was upregulated in luminal,
HER2-positive, and triple-negative breast cancers compared
to normal samples (Figure 7(b)). Further analysis showed
that CEP55 was significantly upregulated in triple-negative
breast cancers compared to other types of breast cancers,
including luminal and HER2-positive cancers, demonstrat-
ing CEP55 may have a regulatory role in TNBC. Thus, we
further analyzed the expression of CEP55 in different types
of TNBC. Our results showed that CEP55 was the most
highly expressed in Basal-like 1 TNBC and Basal-like 2
TNBC samples but the most lowly expressed in mesenchy-
mal stem-like TNBC samples (Figure 7(c)).

4. Discussion

BC is the leading cause of mortality in females [1]. Distant
metastasis is the main cause of BC-related death. In the past

decades, there has been an urgent need to understand the
mechanisms underlying BC metastasis. p38-mediated
EZH2 phosphorylation could induce BC metastasis by
potentiating EZH2 binding to cytoskeletal regulators [15].
OTUD1 was also identified as a metastasis-repressing factor
[16]. Meanwhile, noncoding RNAs, including miRNAs and
lncRNAs, were also found to play crucial roles in BC metas-
tasis. miR-126 and miR-126∗ inhibited BC metastasis by
recruitment of inflammatory monocytes [17]. MALAT1
acted as a BC metastasis suppressor by preventing the inter-
action between YAP and TEAD. lncRNA NKILA suppressed
BC metastasis by blocking IκB phosphorylation [18]. How-
ever, the molecular mechanisms involved in the BC spinal
metastases remained largely unclear.

Recently, high-throughput methods were widely used to
identify disease-related genes. Harrell et al. identified metas-
tasis drivers involved in BC brain, lung, and liver metastases
using microarray analysis. Tang et al. identified key genes
involved in BC brain metastasis using GSE100534 and
GSE52604. Zeng et al. identified key pathways in response
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Figure 4: Bioinformatics analysis of DEGs in BC spinal metastases. (a, b) KEGG and GO analyses of DEGs in Cluster 3. (c, d) KEGG and GO
analyses of DEGs in Cluster 4.
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Figure 5: Continued.
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to trastuzumab treatment in BC using GSE22358. Here, we
conducted an analysis of the GSE26338 dataset to identify
BC spinal metastasis-related key genes. A total of 317 DEGs
were identified in this study. PPI networks were constructed
to identify key genes. Cluster analysis showed that Cluster 3
DEGs were downregulated and Cluster 4 DEGs were upreg-
ulated in BC compared to MBC and NC samples and in
MBC compared to NC samples, suggesting these DEGs play
more crucial roles in BC spinal metastases. Bioinformatics
analysis showed that Cluster 3 was involved in regulating
the metabolic process, response to stress, cell proliferation,
programmed cell death, and apoptotic process. Cluster 4
was associated with Toll-like receptor signaling and mRNA
surveillance.

Of note, BC lacks effective biomarkers for screening and
diagnosis. In the previous studies, a few DEGs were found
to be associated with the prognosis of BC. For instance, cyclin
E was found to correlate with poor disease-specific survival in
BC [19]. ME1 associates with poor prognosis in BC and pro-
motes Basal-like BC aerobic glycolysis. In order to explore
the prognostic value of these DEGs, we analyzed TCGA
database. We found that C1QB, CEP55, HIST1H2BO, IFI6,
KIAA0101, PBK, SPAG5, and SPP1 were upregulated, while
DCN, FZD7, KRT5, and TGFBR3 were suppressed in BC com-
pared to normal samples. Kaplan-Meier curve analysis showed
that higher expression of C1QB, CEP55, HIST1H2BO, IFI6,
KIAA0101, PBK, SPAG5, and SPP1 and lower expression
of DCN, FZD7, KRT5, and TGFBR3 were correlated to the
shorter OS time in BC. In addition, we analyzed TCGA data-
base to further confirm the expression levels of these hub
genes in breast cancer. Our results showed that these regula-
tors were significantly differentially expressed in breast can-
cer, which were consistent with GSE22358 dataset analysis.
These findings showed that key DEGs could serve as novel
biomarkers for BC.

Our above analysis identified a series of key DEGs in BC
spinal metastases. Furthermore, these key DEGs were

involved in regulating cancer pathways according to previous
studies. C1QB was dysregulated in melanoma [20]. CEP55
was a key factor of abscission, which was found to be upreg-
ulated and correlated with the tumor stage and prognosis in
multiple types of human cancers, including lung cancer
[21] and colon and liver cancer [22]. IFI6 was an antiapopto-
sis regulator in cancer cells [23]. Previous studies showed that
G1P3 (IFI6) was correlated to poor prognosis in BC, which
was consistent with our finding in this study [23, 24]. Very
interestingly, in breast cancer, IFI6 was revealed to promote
the metastatic potential of breast cancer cells through mtROS
[23]. KIAA0101 is a PCNA-associated protein, which was
overexpressed in the primary lung [25], liver [26], and pan-
creatic carcinomas [27]. In BC, the KIAA0101 knockdown
suppressed cancer cell growth by reducing cell cycle regulator
expression. PBK plays a positive regulatory role in proper
chromosomal separation, which is highly expressed in vari-
ous types of human cancers, such as breast cancer; mean-
while, PBK was also involved in regulating the p53 and
PI3K/AKT pathway. PBK had also been revealed to be a
metastasis regulator in liver cancer. SPAG5 was a mitosis reg-
ulator, which interacted with Aurora-A, PLK1, and GSK3β.
SPAG5 played crucial roles in cancer progression and was
found to be upregulated in cervical, pancreatic, and lung can-
cers. SPP1 was a cancer metastasis regulator. In this study,
we, for the first time, demonstrated that these genes were
related to metastasis regulation in breast cancer, which was
consistent with previous reports. Of note, multiple studies
demonstrated that CEP55 had a crucial role in cancer metas-
tasis regulation [28, 29]. For example, CEP55 promoted the
migration, invasion, and neurosphere formation of the gli-
oma cell [28], promoted epithelial-mesenchymal transition
in renal cell carcinoma through the PI3K/AKT/mTOR path-
way [29], and promoted migration and invasion of esopha-
geal squamous cell carcinoma via the PI3K/AKT pathway
[30]. Furthermore, our analysis demonstrated that CEP55
was remarkably upregulated in the advanced stage of breast

0 50 100 150 200 250 300
Time (months)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

FZD7 low
FZD7 high

Logrank P = 0.017

(j)

0 50 100 150 200 250 300
Time (months)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
KRT5 low
KTR5 high

Logrank P = 0.0095

(k)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

TGFBR3 low
TGFBR3 high

0 50 100 150
Time (months)

Logrank P = 4e−07

(l)

Figure 5: The dysregulation of DEGs was related to the prognosis in BC. (a–l) We observed that higher expression of C1QB, CEP55,
HIST1H2BO, IFI6, KIAA0101, PBK, SPAG5, and SPP1 and lower expression of DCN, FZD7, KRT5, and TGFBR3 were correlated to
shorter overall survival time in breast cancer.
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cancer compared to the stage I breast cancer sample and was
significantly upregulated in triple-negative breast cancers
compared to other types of breast cancers, including luminal
and HER2-positive cancers, demonstrating CEP55 may have
a regulatory role in TNBC. Finally, our results showed that
CEP55 was the most highly expressed in Basal-like 1 TNBC
and Basal-like 2 TNBC samples but the most lowly expressed
in mesenchymal stem-like TNBC samples. These reports fur-
ther confirm our findings that these regulators may have an
important role in cancer metastasis in breast cancer.

Also, several limitations of this study should be noted.
Firstly, only 2 metastasis breast cancer (MBC) samples were
included in this study. The MBC samples are limited. In

future studies, more clinical MBC samples will be collected
to further confirm our findings. Secondly, several key regula-
tors were identified. However, their molecular functions
remained to be unclear and need to be further confirmed
using gain- or loss-of-function assays. Thirdly, the detailed
mechanisms and clinical importance of CEP55 should be fur-
ther explored.

5. Conclusion

In conclusion, this study, for the first time, screened dysreg-
ulated genes in the progression of BC spinal metastases. We
also constructed PPI networks to identify key regulators in
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Figure 6: Confirmation of the abnormal expression of key DEGs in breast cancer using TCGA database. (a–l) C1QB, CEP55, HIST1H2BO,
IFI6, KIAA0101, PBK, SPAG5, SPP1, DCN, FZD7, KRT5, and TGFBR3 were differentially expressed in breast cancer.
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this progression. Bioinformatics analysis showed that these
key regulators were involved in regulating the metabolic pro-
cess, cell proliferation, Toll-like receptor pathway, and
mRNA surveillance. Furthermore, our analysis revealed that
key regulators were correlated to the OS time in BC patients.
Although more studies are still needed to understand the
functions of key regulators in BC, we provide novel informa-
tion to understand the mechanisms underlying BC spinal
metastases.
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