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Abstract (288 words) 

Differences in sleep duration, quality, and timing are associated with variation in cognition, 

health outcomes, and quality of life. Genetic studies may help explain the underlying 

mechanisms of sleep and its relationships to other conditions.  

Our previous work highlighted risk loci associated with short (<6hrs) and long sleep 

(>9hrs), using data from the UK Biobank and the Million Veteran Program. We build on this 

work by conducting a genome wide association study (GWAS) and multi-ancestry meta-

analysis of sleep duration as a quantitative trait. We used LD score regression (LDSC) to 

evaluate the correlation between sleep duration and other traits, and genomic structural 

equation modelling (genomicSEM) to consider the relationships between traits of interest.  

We identify 234 independent genome-wide significant loci for sleep duration, of 

which 143 are novel. The average impact of each risk variant amounts to approximately 

±0.86minutes (sd=0.19), with a sum total of ± 220.5 minutes across all genome-wide 

significant loci. We support previous findings showing the most strongly associated gene is 

PAX8. Linkage disequilibrium score regression shows that the genetic architecture of sleep 

duration is largely distinct from other measures of sleep quality and sleep disorders. We see 

several examples of negative correlation between deleterious traits and the quantitative 

measure of sleep duration reported here, contrasting with positive associations with long and 

short sleep (e.g., depression, ADHD, cannabis use disorder, smoking). We derive genomic-

SEM models that show short and long sleep load on separate factors, as does overall sleep 

duration loading alone.  

This is the largest available GWAS of sleep duration, and the first to extend analyses 

outside of European ancestry populations. We identify novel loci for sleep duration and 

provide insight to the shared and unique genetic architecture across multiple sleep and 

neuropsychiatric traits.  
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Introduction 

Sleep is essential to health, and poor sleep is associated with a range of negative health outcomes, as 

well as all-cause mortality1. ‘Good’ sleep can be measured in various ways – sleep quality, timing, 

and efficiency all have impacts on overall health, as does sleep duration1. The extent to which poor 

sleep directly causes these negative health consequences is unclear, though recent work employing 

Mendelian randomisation analysis is providing insight to the causality of these observed associations2–

4.  

The genetic architecture of sleep duration has been studied in several recent genome-wide 

association studies (GWAS). Work by our group and others has identified several well-replicated 

genetic associations, including variants mapping to the VRK2, TCF4, FOXP2, and PAX8 genes5–9. 

These studies demonstrate shared genetic architecture between sleep duration and a range of 

cardiometabolic, psychiatric, and cognitive traits. The SNP-based heritability for overall sleep 

duration is reported to be 9.8% from the most recent GWAS6, but estimates from twin studies range 

from 30-45%9–12, indicating that there is more to discover at the level of genetic variation. 

Our previous study of long and short sleep demonstrated a modest positive genetic correlation 

between the two traits (Rg=0.16)5. Despite this observation, there was also a similarity in the 

associations with other phenotypes – where both long and short sleep were positively correlated to a 

range of comorbid conditions including major depressive disorder (MDD), cannabis use disorder 

(CUD), and post-traumatic stress disorder (PTSD), among others5. These findings support clinical, 

epidemiological, and genetic studies in indicating that the relationship between sleep duration and 

negative health outcomes is non-linear; both too little and too much sleep can be linked to morbidity.  

Here, we build on previous work5 to investigate the genetic architecture of sleep duration 

further.  We present the largest GWAS on sleep duration conducted thus far, including 648,125 

participants of diverse ancestry from the UK Biobank (UKB) and Million Veteran Program (MVP). 

We consider sleep duration as a quantitative measure and investigate the relationship between overall 

sleep duration and other sleep and neuropsychiatric phenotypes. 
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Methods 

Participants 

Details on the recruitment and overall sample for the UKB are described in 13 for UKB, and in 14 for 

MVP. The UKB study was approved by the North-West Research Ethics Committee (ref 

06/MREC08/65) in accordance with the Declaration of Helsinki. Research involving the MVP in 

general is approved by the VA Central Institutional Review Board. All participants in both cohorts 

provided written informed consent, and our included sample was reviewed to remove data for those 

participants who withdrew their consent.   

Genotype and phenotype measures 

Full details on the genotyping, imputation and quality control measures applied to the genetic data 

have been described13,14. The fully imputed genetic data for UKB were made available in March 

2018, and accessed under application 82087. This study includes MVP data release 4, made available 

in January 2021. For both cohorts, additional local post-imputation quality control procedures were 

applied. Participants were stratified into broad population groups (EUR and AFR included here) using 

principal component analysis5, using eigensoft15 for MVP and PC-AiR for UKB16,17. All SNPs with an 

imputation INFO score <0.6 or a minor allele frequency (MAF) <0.01, were removed. This was 

assessed within each ancestry group to avoid unnecessary filtration of variants with differing 

frequency by population. Participants with discordant self-report and genetically inferred sex were 

excluded due to risk of sample processing errors. Those with excessive genetic relatedness (more than 

10 third-degree relatives within the respective cohorts) were removed. In addition, one of each pair of 

closely related individuals (closer than 2nd degree relatives) were removed at random.  

Both UKB and MVP recorded data on usual sleep duration at baseline. The phrasing of the 

question differed slightly, but in both cases the emphasis was on capturing hours of sleeping in a 

typical 24-hour period (UKB: “About how many hours sleep do you get in every 24h? (Please include 

naps)”; MVP: “How many hours do you usually sleep each day (24-hour period)?”. For UKB, the 

answers could be given as 1-23 hours, and participants who reported sleeping less than three hours or 

more than 12 were prompted to confirm their answers. Responses were given in hour increments. For 

MVP, the response options were multiple choice: 5 or less, 6, 7, 8, 9 or 10 or more. 

Genome-wide association study and meta-analyses 

We downloaded the summary statistics from a recent GWAS of sleep duration in European-ancestry 

(EUR) participants from the UKB13. We used PLINK 2.0 to conduct GWAS using linear regression 

for EUR and African ancestry (AFR) subjects from the Million Veteran Program. The outcome 

variable was sleep duration (hours) and all analyses were adjusted for age, sex, 10 principal 

components, and in the case of UKB, genotype array5,18. 
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In the EUR sample, we ran a further analysis of sleep restricted to those who report sleeping 

between six and nine hours, to capture variation within the normal range, and consider how this 

compares to the full range of sleep duration, as well as to our prior binary analyses on short (<6 hours) 

and long (>9 hours) compared to healthy (7-8 hours) sleep5. This was run in UKB and MVP using the 

same protocol described for the main MVP sleep duration GWAS above.  

The genetic correlation between the UK Biobank and MVP for self-reported sleep duration is 

0.93. We used METAL19 to conduct inverse standard error weighted fixed effect meta-analyses within 

and across each ancestry groups. Within-ancestry summary statistics were filtered to remove any SNP 

that was not present in both UKB and MVP. The cross-ancestry summary statistics were filtered to 

include only variants that appeared at least once in both population groups across UKB and MVP data 

(but variants appearing in only one of the two cohorts were included if both ancestries were 

represented). Independent GWAS signals were identified through clumping of variants within a 3 

megabase window and with an r2 threshold of 0.1.  

Post-GWAS analyses 

Functional annotation and pathway-based tests 

We used the Functional Mapping and Annotation GWAS platform (FUMA) version 1.5.220 to 

annotate SNPs using positional mapping. We used reference panels from the relevant 1000 genome 

project data for AFR, AMR, EAS, and EUR populations. We used the associated platform Multi-

marker Analysis of GenoMic Annotation (MAGMA) version 1.0821, using Ensembl build 85 to match 

SNPs to genes. We apply a Bonferroni corrected significance threshold of 0.05 divided by the 

included number of protein-coding genes (N=18,775-19,123). We also used MAGMA and PASCAL 

(Pathway SCoring Algorithm)22 to conduct genetic pathway and gene set analysis. These use different 

methods to assign pathway scores, all based on GWAS summary statistics. For PASCAL results, we 

applied a Bonferroni-corrected significance threshold for the 1,077 pathways tested of 4.5x10-5. 

MAGMA uses several pathway databases, which means many pathways are overlapping or very 

similar. Given the non-independent nature of these tests we applied a Benjamini-Hochberg false 

discovery rate (FDR) test.  

We conducted SNP-level fine mapping using PolyFun (POLYgenic FUNctionally-informed 

fine-mapping)23 and SuSiE (Sum of Single Effects), as described previously5. We filtered variants 

with a posterior inclusion probability (PIP) score of 0.50 for nominally causative and 0.95 for likely 

causative.  

We used the LDLink R package to create a list of all LD-proxy SNPs for our lead hits 

(defined as r2>0.8). We cross-checked these with previously published risk loci for sleep duration 

from references 6 and 9 to determine novelty. We used publicly available summary statistics to 

determine which of our lead SNPs or their LD-proxies had previously been linked to other sleep 
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related traits (insomnia, chronotype, daytime napping, self-reported tiredness, accelerometer derived 

sleep duration). 

Transcriptome wide association study 

We used FUSION24 to conduct a transcriptome-wide association study (TWAS). This approach 

combines gene-expression data with the sleep duration GWAS summary statistics to identify patterns 

of gene expression. We used GTEx v8 multi-tissue expression weights from 49 tissues for expression 

imputation across all autosomes. We used the ‘FUSION.post_process.R’ script provided by the 

FUSION package (described in http://gusevlab.org/projects/fusion/)24 to define conditionally 

independent genes. We applied a multiple testing correction (as described in 5) based on  49 tissues 

and 27,977 Ensembl Gene IDs (compassing genes, non-coding transcripts, and pseudogenes) resulting 

in a p-value threshold of ≤ 3.65x10-8 (0.05/(49*27,977). If we identified a gene significantly 

expressed in two tissues, we report the association with the lower p-value.  

Single cell polygenic regression 

We employed the pathway-based polygenic regression method, scPagwas25, a single-cell enrichment 

method, to identify trait-relevant cell subpopulations by combining scRNA-seq data with GWAS 

summary statistics. This tool calculates a trait-relevant score (TRS) and p-values for each cell, which 

are then used to derive TRS and p-values for cell types. Significant TRS were defined at p-

value<0.005 (corrected for 10 biological systems). For scRNA-seq data, we used datasets of 10 

biological systems, which included nine organoids (brain, lung, intestine, heart, eye, liver, pancreas, 

kidney, and skin) and the immune system.  

Global and local genetic correlation analyses 

We calculated SNP-based heritability for sleep duration within each population group. We used 

linkage disequilibrium score regression (LDSC) with 1000 Genomes LD scores26 for EUR data, and 

sample-derived LD scores for the AFR data (described in5 and 27, 

https://github.com/immunogenomics/cov-ldsc). 

We calculated the cross-population genetic correlation for sleep duration using Popcorn 

(version 0.9.6: https://github.com/brielin/Popcorn) for the cross-population analyses28. We assessed 

further genetic correlations between sleep duration and a range of sleep traits, including our data on 

short sleep (<6 hours), long sleep (>9 hours), overall sleep duration and normal range sleep duration 

(6-9 hours), plus neuropsychiatric, cardiometabolic, and sociodemographic traits (for full list of traits 

see supplementary data) using the EUR only data and LDSC29–31. We used the jackknife script within 

LDSC to assess the differences in correlation patterns between overall sleep, short sleep, long sleep, 

and normal range sleep duration.  

We used SUPERGNOVA to identify the specific genomic regions driving the observed 

genetic correlation between six sleep traits (overall sleep duration, short sleep, long sleep, normal 
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range sleep duration, insomnia8, and chronotype ). Supergnova splits the genome into 2,353 

‘approximately independent regions’33 and estimates the genetic correlation at this localised level. We 

defined regions of significant local correlation according to a Bonferroni adjusted threshold p<2.1e-4 

(0.05/2,353 regions). 

Genomic Structural Equation Modelling 

We conducted genomic structural equation modelling (gSEM) to identify common factors between 15 

traits of interest34. These were the six sleep traits described above, along with alcohol consumption35, 

bipolar disorder36, cannabis use disorder (CUD)37, major depressive disorder (MDD)38, problematic 

alcohol use (PAU)39, physical activity40, PTSD41, schizophrenia42, subjective well-being43, and 

Townsend deprivation index44. We performed exploratory factor analysis (EFA) and confirmatory 

factor analysis (CFA) of these 15 genetically correlated traits. We considered multiple factor 

structures from one to six factors. EFA models were required to have a minimum of sum of squared 

(SS) loading ≥1 and variance explained by each factor >10%. Models meeting these criteria were 

compared based on cumulative variance explained by the overall factor structure. Where factor 

loadings were ≥0.20, traits were assessed for optimal CFA model fit according to chi-squared, 

standardised root mean square residual (SRMR), Akaike Information Criteria (AIC), and comparative 

fit index (CFI)34. We estimated CFA models using diagonally weighted least squares estimation and a 

smoothed genetic covariance matrix. This analysis was conducted in EUR data only and used the 

1000 genome reference panel. 
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Results 

Sample 

We include a total of 646,218 individuals in our genome-wide meta-analysis of quantitative sleep 

duration (Table 1). The average sleep duration was similar in both studies, 7.2 hours (SD 1.1) in UKB 

and 7.0 hours (SD 1.3) in MVP. Table 1 summarises the age, ancestry, and sex distribution in the two 

cohorts. Although both are adult cohorts of majority EUR ancestry, the age, sex, and ancestry 

distributions differ between the two cohorts. The UKB recruited only adults aged 40-70, and the 

median age is 58. MVP recruits all adults over the age of 18, but median age is higher (66 years). 

UKB has a higher proportion of women compared to men. MVP has a greater proportion of non-EUR 

participants.  

Table 1 Sample demographics 

 UKB Million Veteran Program 

Sample size N  453,506 192,712 

Age mean years (SD) 

       median years 

56.8 (8.0) 

58 

66.8 (11.6) 

67 

Sex (% female) 54.2 7.1 

Genetic ancestry N (%total)   

EUR 446,118 (98.4) 163,536 (84.9) 

AFR 7,388 (1.6) 29,176 (15.1) 

Sleep duration mean hours (SD) 

                         median hours 

7.2 (1.1) 

7 

7.0 (1.3) 

7 

Genome-wide association study meta-analyses 

In our EUR only meta-analysis we identify 153 independent genome-wide significant associations for 

sleep duration across 100 genomic risk loci. The lead hit (p=2.26x10-66) is rs62158206, which is in the 

PAX8 region and has been previously associated with sleep duration in both overlapping and 

independent cohorts. This was also the strongest association with long sleep in our previous study. We 

identify 208 genes through the gene-based test, reaching a Bonferroni-corrected significance threshold 

of 2.68x10-6. The strongest association is SGCZ on chromosome 8, which is a protein-coding gene 

previously associated with several sleep traits as well as other psychiatric and musculoskeletal traits. 

We did not identify any genome-wide significant associations in our AFR-only meta-analysis of 

quantitative sleep duration. For more detail on the ancestry-specific analyses, see supplementary 

figures 3-8 and supplementary tables 1,2.  

The cross-population meta-analysis identified 234 lead SNPs across 103 genomic risk loci 

(figure 1, supplementary table 3). Of these, 138 have never previously been associated with sleep 
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duration (neither the specific locus nor any LD proxy SNP) (supplementary figure 2, supplementary 

tables 4,5), although nine of these have been associated with other sleep traits including insomnia 

(rs144938821, rs6711037, rs28420942, rs6561715, rs1103921645, rs68552468), chronotype 

(rs495831632), and short sleep (rs6855246, rs7313797, rs116890425). The top association was within 

the same gene as in the EUR analysis, PAX8*rs2863957. Input SNPs were mapped to 19,019 protein 

coding genes, resulting in 291 significantly associated genes (p<2.63x10-6). The top gene here was 

FOXP2, previously associated with sleep duration in addition to many other traits.  

The effect size for these 234 lead SNPs equate to an impact on sleep duration ranging from a 

decrease of -2.29 minutes to an increase of 2.62 minutes, with the mean impact of each associated 

SNP being ±0.94 minutes. The cumulative effect of lead SNPs that increased sleep duration was 99 

minutes, and the cumulative effect of lead SNPs that decreased sleep duration was -119 minutes. The 

variant having the strongest association with increasing sleep duration was IGKV1OR2-

108*rs144938821 on chromosome 2 (beta= 0.044, SD= 0.004, p= 8.9x10-23; 2.6±0.24 minutes), which 

has a positive effect across MVP EUR, UKB EUR and UKB AFR but was not present in MVP AFR 

after filtering for minor allele frequency. The variant having the strongest association with decreasing 

sleep duration was KMT2A*rs7951019 on chromosome 11 (beta= -0.038, SD= 0.0059, p= 8.8x10-11; -

2.3±0.35 minutes). This variant had a negative effect across both EUR cohorts, a positive effect in 

UKB AFR and was not present in MVP AFR. 

Figure 1 Manhattan plot showing the results for the cross-population meta-analysis of quantitative sleep duration in the 

UKB and MVP samples.  
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Figure 2 Gene-based Manhattan plot showing the results for the cross-population meta-analysis of quantitative sleep 

duration in the UKB and MVP samples.  

 

Pathway analysis 

We conducted genetic pathway analysis using MAGMA and PASCAL. A total of 10 pathways 

reached significance in the MAGMA analysis (see supplementary table 6, supplementary figure 9). 

The PASCAL analysis revealed three pathways significantly associated with overall sleep duration 

following a Bonferroni correction for 1,077 pathways tested. Two of these were from the Reactome 

database (‘neuronal system’ and ‘transmission across chemical synapses’), and ‘long term depression’ 

from the KEGG database (see supplementary table 7).  

Transcriptome wide associations study 

We conducted a TWAS and identified 171 conditionally independent genes (supplementary table 7, 

supplementary figures 10,11). Of these, 38 associations were identified across 13 brain tissues, with 

the remaining 133 associations spread across 34 tissues (Figure 3). A total of 70 of these conditionally 

independent genes were also identified in the gene-based GWAS test (Figure 2). The strongest TWAS 

genes that also appear in the gene-based test are FTO (TWAS Z-score=-8.7), PPIP5K2 (TWAS Z=-

8.6), GIN1 (TWAS Z=8.0), FOXP2 (TWAS Z=7.9), and PAM (TWAS Z=7.4).  
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Figure 3 Frequency of TWAS hits across 47 tissues 

 

Single cell polygenic regression analysis 

Our single-cell analyses in EUR data showed significant associations between sleep duration and cell 

types of each analyzed biological system (supplementary figures 12-21, supplementary table 8). The 

highest distribution of TRS was observed for the endothelial cells present in lung (Figure S-lung), 

which also showed the strongest association (p-value=2.49x10-13). This was followed by another lung 

cell type, mesenchymal (p-value=3.96 x10-12). The third strongest association was seen for 

cholangiocyte cells (p-value=1.68 x10-11) located in liver (Figure S-liver). The next strongest 

significant associations were with several cells belonging to the immune system (CD8.N, CD4.N2, 

CD4.N1, CD4.M, CD8.CM), the brain (excitatory neuron), and the eye (amacrine cell). 

Shared genetic architecture with other sleep traits 

We conducted LDSC to test for the genetic correlation between overall sleep duration, sleep duration 

within the 6-9 hour range, our previously described short and long sleep traits, and other published 

sleep duration traits: sleep duration in children, self-reported under sleeper, self-reported over sleeper, 

self-reported tiredness, insomnia, and chronotype (morning person or not) (Figure 4, supplementary 

table 9). We identify the highest correlations with the under sleeper and over sleeper traits, in the 

expected direction (i.e. high positive correlation between short sleep and under sleeper (rg=0.93, 

sd=0.04, p=1.1 x10-104), high negative correlation between overall sleep duration and under sleeper 

(rg=-0.89, sd=0.04, p=1.0 x10-140); high positive correlation between over sleeper and both overall 

sleep duration (rg= 0.64, sd=0.07, p=6.9 x10-19) and long sleep (rg=0.883, sd=0.11, p=5.7 x10-15). We 

observe a low negative genetic correlation between chronotype (morningness) and sleep duration 

(rg=-0.12, sd=0.03, p=1.0 x10-4), suggesting that, on average, variants associated with overall sleep 

duration have the opposite effects in people with morning or evening chronotype. We see a low 

positive correlation between short sleep and chronotype (rg=0.11, sd=0.03, p=5.0 x10-4). As we 

previously reported, both long and short sleep are positively associated with insomnia (long sleep 
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rg=0.25, sd=0.05, p=1.3 x10-7; short sleep rg=0.7, sd=0.03, p=4.8 x10-169). Overall sleep duration was 

negatively correlated with insomnia (rg=-0.48, sd=0.02, p=1.0 x10-85).  

In addition, we conducted a sub-analysis of sleep duration within a ‘healthy’ range of six to 

nine hours. This analysis revealed a very similar trait to the overall sleep duration, with a genetic 

correlation of 0.99 (±0.007), p<1x10-300. We also considered the genetic correlation between self-

reported sleep duration and accelerometer derived sleep duration (supplementary table 10) which 

revealed a correlation of rg=0.403 (±0.05), p=2.16 x10-15.  

As observed when looking at sleep-related phenotypes, many traits relating to psychiatric 

conditions and cognitive abilities demonstrate a non-linear relationship, with a negative correlation to 

overall sleep duration and positive correlation with both short and long sleep (Figure 5).  

Local genetic correlation and cross-ancestry genetic correlation results are reported in the 

supplement.  

Figure 4 Genetic correlation between sleep traits 

 

Figure 5 Genetic correlation between sleep duration and cognitive, psychiatric and personality-based phenotypes. 
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Genomic Structural Equation Modelling 

We performed EFA and CFA of 15 genetically correlated traits. We considered multiple factor 

structures from one to six factors. We fitted models including either long and short sleep together, or 

quantitative sleep duration separately as models including all three related traits did not converge. We 

initially considered fifteen traits in total but could not fit a well-fitting l model inclusive of all these 

traits so the final models included either short/long sleep or continuous sleep duration, along with 

insomnia8, PTSD41, schizophrenia42, problematic alcohol use (PAU)39, alcohol consumption35, bipolar 

disorder36, cannabis use disorder (CUD)37, major depressive disorder (MDD)38, and Townsend 

deprivation index44. 

The best fitting EFA model including short/long sleep (Figure 6, left panel) had five factors 

and the cumulative variance explained was 0.802, with SS loadings of 2.14, 2.11, 1.68, 1.61, 1.28 

respectively. In this model, long sleep loaded with Townsend deprivation index, cannabis use disorder 

and problematic alcohol use, while short sleep loaded with insomnia only. 

The best fitting EFA model including quantitative sleep (Figure 6, right panel) had five 

factors and the cumulative variance was 0.824, with SS loadings of 2.07, 2.05, 1.50, 1.33, 1.29 

respectively. In this model, quantitative sleep duration was a separate factor with no co-loading traits 

(see supplementary table 11). 
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Figure 6 Genomic structural equation model 

 

Discussion 

Sleep, and sleep duration are central to human health and illness. A better biological understanding of 

sleep, built on a knowledge of genetic factors that influence sleep duration, could create opportunities 

for improving sleep and therefore improving health and wellbeing. Prior work has focused primarily 

on sleep pathologies; here, we focus on how genetic variation relates to normal sleep duration. This 

study builds on a growing literature on the genetics of sleep duration, and identifies 234 associated 

loci, of which 129 have not been previously associated with any sleep trait, to our knowledge. The 

strongest association is rs2863957 on chromosome 2, within the PAX8 gene, (±2.4 minutes, p=2.3x10-

66). PAX8 is now a well-replicated gene associated with overall sleep duration as well as short and 

long sleep5,6,9,32, so these findings support its role in modulating sleep duration. Of our novel findings, 

the variant with the largest sleep increasing association is rs144938821 on chromosome 2 (±2.6 

minutes, p=8.9x10-23), which is an independent signal within PAX8 and has previously been linked to 

insomnia. The locus with the greatest minute-wise effect on sleep is rs140736187 on chromosome 6 

(±2.8 minutes, p=2.3x10-8), which maps to the LINC01556.  

Though like most complex traits the average effect size was small (equating to less than one 

minute change in sleep duration), the cumulative effects of all risk loci equate to ±220 minutes. Most 

people will, of course, carry both decreasing and increasing sleep alleles, and future studies using 

these data to calculate polygenic risk scores in independent samples will give insight to how many 

sleep increasing and decreasing alleles people carry on average, and the extent to which this can 

predict differences in sleep patterns.  

Our previous work on short and long sleep5 demonstrated a modest, positive genetic 

correlation between genetic liability for these two extremes of sleep duration. Here, we show that 

overall sleep duration is positively correlated to long sleep (rg=0.48, sd=0.03, p=1.7 x10-47) and 

negatively correlated to short sleep (rg=-0.76, sd=0.01, p<1x10-300). We conducted an additional 

Short Sleep/Long Sleep Continuous Sleep Duration

chisq df p_chisq AIC CFI SRMR

709.100 25 1.66E-133 769.100 0.906 0.077

chisq df p_chisq AIC CFI SRMR

277.430 33 1.97E-40 343.430 0.969 0.066
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GWAS of sleep duration within the normal or healthy range of six to nine hours. This trait, which 

excludes a total of 63,016 extreme short/long sleepers, has a genetic correlation of >0.99 with overall 

sleep. When comparing this truncated healthy range sleep GWAS to long sleep we see a correlation of 

rg=0.58 (sd=0.05, p=3.42e-27), and to short sleep rg=-0.58 (sd=0.03, p=1.48 x10-91). Taken together, 

this suggests that a GWAS of overall sleep duration (1-23 hours) largely captures the genetic basis of 

healthy sleep. We additionally show several examples of phenotypes with a negative genetic 

correlation to overall sleep duration, but a positive genetic correlation to both short and long sleep 

(figure 5). This supports our previous assertion5 that short and long sleep should be considered as 

separate traits and not extremes of the same continuum.  

We also compared our findings to other measures of sleep. Outside of sleep duration, the most 

widely studied sleep traits are insomnia and chronotype (measured as morningness or morning 

chronotype). Insomnia and chronotype are themselves not genetically correlated (rg=0.04, sd=0.02, 

p=0.09). As figure 4 shows, we find a negative correlation between sleep duration and insomnia, and 

a more modest negative corelation between sleep duration and chronotype (insomnia: rg=-0.48, 

sd=0.02, p=9.9e-86; chronotype: rg=-0.11, sd=0.02, p=2.13 x10-6). The genetics of chronotype have 

been described in a large GWAS of almost 700,000 subjects which identified several loci in genes 

involved in circadian regulation46. These genes, including CRY1 and PER2/3, are not observed in 

GWAS of sleep duration or insomnia. This indicates that the biological pathways influencing sleep 

timing are largely distinct from those that regulate sleep duration and sleep quality.  

We further interrogated the shared and independent genetic architecture between sleep and 

various other traits using gSEM34, focusing on  traits  positively correlated with both long and short 

sleep duration. We generated two five-factor models, one including short and long sleep duration and 

another including overall sleep duration. When we included short and long sleep duration, we 

observed factor loading that reflected clinical expectations, with short sleep loading with insomnia 

and long sleep loading with problematic substance use outcomes known to impact sleep quality. 

When we included overall sleep duration, it loaded on its own factor with relatively low correlations 

to other factors demonstrating that this trait reflects healthier range sleep duration and is largely 

independent of the psychiatric traits included in this model.  

Self-reported sleep duration is a simple and replicable measure, making it a widely used 

metric of sleep quality. Previous work has compared self-reported sleep duration with an objective 

measure of sleep patterns, using accelerometer-derived data from the UKB6. They found that the lead 

SNPs for sleep duration associated with the accelerometer derived sleep duration estimates, as well as 

with short and long sleep, sleep efficiency and number of sleep bouts, but not with measures of sleep 

timing. Here, we demonstrate a positive correlation of 0.4 between self-reported sleep duration 

measure and accelerometer derived sleep duration6. This is much lower than the correlation estimates 

between self-reported sleep duration and being a self-described ‘undersleeper’ or ‘oversleeper’, and 
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lower even than the correlation between self-reported sleep duration and insomnia. This suggests that 

our data might be better understood as describing the genetic basis of perceived rest, not necessarily 

an accurate representation of actual hours slept, incorporating the functional impact of the individual’s 

sleep. This bears consideration particularly when looking at the correlation estimates seen between 

self-reported sleep duration and various psychiatric traits. Future studies using wearable technology 

will be valuable in investigating this further.  

In the second model, short sleep loads with insomnia while long sleep loads with Townsend 

deprivation index, cannabis use disorder, alcohol consumption and problematic alcohol use (which 

co-loads with AUDIT-C, a measure of alcohol consumption). The correlation between these two 

factors is 0.51. Epidemiological studies demonstrate that both cannabis and alcohol are frequently 

used by people to help sleep onset, but also that prolonged use of both substances is associated with 

sleep disturbance47,48.  

We investigated how the genome wide results relate to specific cell types using polygenic 

regression analysis with reference to a scRNA-seq dataset that included 10 biological systems and 

found significant associations in each of these systems, reflecting the biologically pervasive 

importance of sleep. The lead findings implicated lung, liver, immune, brain, and eye cell types, in 

that order. The importance of the brain and eye (e.g. as an input for circadian regulation) to sleep 

regulation are well known, as is the impact of sleep on immune function.  Less well recognized are an 

association of sleep with lung and liver function, although both long and short sleep duration are 

associated with lower lung function and higher risk of asthma, and long sleep duration with computed 

tomographic lung abnormalities49,50, while an association of sleep duration with metabolic 

dysfunction–associated steatotic liver disease (previously called nonalcoholic fatty liver disease) is 

variously reported but inconclusive51 

The findings reported here should be considered in the context of several limitations. Firstly, 

as described previously we rely on self-reported data to define ‘sleep duration’ meaning this may, to 

some extent, be capturing levels of perceived rest rather than exact hours slept. Additionally, the 

question in both UKB and MVP that was used to derive this data asked for typical hours slept in a 24-

hour period. This could mean we are combining people who get a single block of sleep during the 

night with those who have interrupted low-quality sleep and then compensate with naps during the 

day. This should be considered when interpreting the relationships between sleep duration and other 

phenotypes. Secondly, sleep is a highly complex trait impacted by multiple environmental factors. We 

conducted sensitivity analyses in our previous work to show that the genetic architecture of sleep 

appears to be robust to some of these factors (e.g. shift work, sex)5, but we have not tested the impact 

of other factors known to impact sleep such as caffeine consumption, daylight exposure, or substance 

use. Finally, although we included the available non-EUR data in both UKB and MVP, the majority 

of participants in both cohorts are of European genetic ancestry. As such, these findings cannot be 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.19.25327902doi: medRxiv preprint 

https://doi.org/10.1101/2025.05.19.25327902
http://creativecommons.org/licenses/by-nc-nd/4.0/


considered generalisable to the global population and should be repeated in large, diverse samples as 

these become available. 

Overall, we highlight several novel SNPs and genes associated with quantitative sleep 

duration which give new avenues for future research on the biology underlying sleep. This work adds 

to a growing literature on the genetic basis of sleep which, given the wealth of evidence supporting 

the role of healthy sleep patterns in supporting overall wellbeing, has significant public health 

importance.  However, we argue that sleep duration as a continuous trait is less relevant to the 

relationship between poor sleep and negative health consequences than are measures of extreme long 

and short sleep duration; and more relevant to the understanding of health. 
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