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$e quality of graduates is the key factor in evaluating the cultivation effect of colleges and universities. Quantification of whether
the graduates qualify for their working post in companies and industries provides conduction for further college cultivation
reform enhancement. In this work, we proposed an adaptive multivariate neural network architecture for fusion evaluation of
college student cultivation. Specifically, we designed a questionnaire to collect data on the current working status of 1231 graduates
and recorded 32 in-school training items categorized into four different modules. For quantitative evaluation, 10 indices of career-
require competence were set to describe the graduates’ job abilities. $e fused contribution of the in-school training items to the
career-required competence was predicted by the multivariate network model with the linking weights adaptively trained. A
comprehensive contributionmatrix was generated by discrete PCAmultivariate transforming to provide a digital reference for the
network training. A 7-level scoring system was designed for quantifying the contribution matrix. For model optimization, the
network structure was tuned by testing a different number of hidden nodes. $e model was trained and optimized to reveal the
direct correlation between college cultivation and job-required abilities. Experimental results indicated that the methodology we
proposed is feasible to evaluate the cultivation mode in colleges and universities, theoretically and technically providing positive
directions for colleges and universities to make their cultivation reforming, as to enhance the quality of their graduates.

1. Introduction

With the daily changing informed society, the current
competition is reflected in the competition for high-quality
talents [1]. Nowadays, millions of students receiving higher
education graduate from colleges and universities every year.
$e graduates would face fierce competition when they are
looking for a job [2]. Colleges and universities play a sig-
nificant role in cultivating their students to high-end in-
formation talents. $ey are tackling the bottleneck issue of
improving the students’ job career-required competence
ability [3, 4]. $us, it is much important to evaluate how in-
school cultivation supports the graduates’ career-required
competence by investigating machine learning methods and
intelligent models [5].

In colleges and universities, some compulsory and
elective courses are set up for the students to take part in
when they are undergraduates to expand their knowledge
concerns and refine their basic knowledge structure [6, 7]. A
lot of extracurricular practical activities are available for any
student who intends to participate, such that the students
can gain practical experience and raise their self-awareness
in the activities [8, 9]. $e students’ personal ability can be
trained under the interaction of in-class courses and ex-
tracurricular activities. A series of in-school training items
are introduced, then the in-school cultivation can be
qualified with scorings in these items so as to comprehen-
sively evaluate their job competence [10].

Actually, career-required job competence cannot be
directly measured. In statistical concepts, competence can be
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implicitly explained by some practical factors for employ-
ment postevaluation [11]. $ese factors may refer to many
aspects, such as the working location, working post, salary,
and promotion times. Based on different factors, the career-
required job competence and the in-school training items
can be scored.

Adaptive neural network architecture is built upon
targeting to score the in-school training items contributing
to the indices of career-required competence.$e network is
comprised of a large number of connected nodes. Each node
performs a simple calculation [12]. It excels at handling
nonnormally distributed multivariate problems and has led
to many recent advances in artificial intelligence [13]. $e
model is usually designed to deliver the white data feed-
forward and the error feedback [14]. $e optimization
criterion in neural networks is to minimize the error on the
training or test set [15]. A neural network is widely applied to
the fields of image analysis, environmental detection, and
medical diagnoses [16–18]. In the application, the network
link weights are automatically trained from the input data
using a data-driven learning strategy [19].

In the modeling process, the adaptive multivariate
network architecture is designed for intelligent fusion
analysis of various indicators for in-school training items
and several indices for career-required competence.$e data
has different presentations on a number of properties, such
as variable type, data format, numerical difference, back-
ground knowledge, etc. [20]. $ese property inconsistencies
will increase the difficulty of network learning. Confronting
the nonuniform properties of different modules, the fusion
analysis cannot be performed by simply listing them to-
gether, while some advanced fusion techniques are required
[21]. $e data belonging to each module has its own
property, then a network weighted parameter is generated to
adjust the input information of different modules. $en all
input nodes are linked and transformed to the hidden layer.
$e number of hidden nodes is the key parameter of the
network training structure. $e network model can be
adaptively optimized by testing a different number of hidden
nodes. Simultaneously, the interactive layer linking weights
are also for tuning during the network computation. In this
way, the feature data extracted by the hidden neurons can
have high-dimension identities with convenience in inter-
preting information [22, 23].

For quantification, the reference contribution matrix is
acquired by discrete principal component analysis of the
recorded scorings of the indices of career-required com-
petence. $e principal variables should be found for efficient
analysis. Principal component analysis (PCA) is a frequently
used method for extracting the main variable components
[24]. However, most of the data records and the modeling
indices are discrete, so the conventional PCA computing
progress cannot deal with the discrete data [25]. $us, a
novel improvement is proposed for PCA to solve the
multivariate modeling problem by observing the standard
eigenvalues and eigenvectors in our study. A contribution
matrix is defined as recording the scorings of the in-school
training items contributing to the career-required job
competence. $is is regarded as the reference matrix for

network modeling. On the other hand, the contribution
matrix is predicted by the network training from the fusion
of multiple modules of the in-school training items.

$e aim of this work is to investigate the balance between
the college’s in-school training items and the career-required
competence and successively evaluate whether the graduates
have competent job abilities when they are employed by
different companies at various posts. $e data features are
extracted to evaluate the difference between the predicted
matrix and the reference contribution matrix. Further, the
difference is taken as the indicator to evaluate whether the
in-school training items are suitable to cultivate the high-
quality talents that should have the competent career-re-
quired abilities. $e modeling methodology provides the-
oretical guidelines for evaluating the fitness of the current
cultivation mode performed on the college student.

$e remainder of this article is organized as follows.
Section 2 describes the data source for college graduates’
cultivation and sets up some relevant modeling indices.
Section 3 introduces the architecture of the adaptive neural
network and the multitarget discrete PCAmethod. Section 4
applies the adaptive multivariate neural network model to
the data, for fusion evaluation of college cultivation. Section
5 makes conclusions.

2. Data Preparation

2.1. Empirical Samples. A questionnaire was designed to
collect sample data from recently graduated students of
Guangzhou Colleges. $e data involves four targets of
employment postevaluation, i.e., Working location, Post,
Salary, and Promotion times. $ese four terms are digitally
transformed into ten terms for evaluating the career-re-
quired competence ability terms. On the other aspect, these
ten terms are quantified with the fusion of the four data
modules of at-school training items. Each career-required
competence ability is quantitatively estimated with a seven-
level rating. By normalization, each ability term could be
scored as i/7, where i � 1, 2, 3, 4, 5, 6, 7 represents Highest,
High, Mid-High, Middle, Mid-Low, Low, and Lowest, re-
spectively. Before model establishment and optimization,
the data are for basic statistical analysis based on the par-
tition, classification, or distribution of the four targets of
employment postevaluation. We finally collected 1231 ef-
fective responses without any missing information.

Concerning the working location, the data show that
most of the students selected to work in the 21 different cities
in Guangdong province, and a few of them works outside
Guangdong. We divided the 21 cities into 9 groups
according to their Geographical location. $us, we have
statistical data for working location by 10 city groups (see
Table 1).

For working posts, the data were classified into mar-
keting, administration, technology, and management. $ere
are 458 students (over one-third) working as technicians.
Besides, there are 266, 284, and 233 students working in the
marketing, administration, and management posts, re-
spectively. $ey have nearly the same percentage of
employment.
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For salary payment, the 1231 employees were monthly
paid ranging from 1,000 to 15,000 CNY. $e full range is
divided into 5 different levels of [1000, 3000), [3000, 5000),
[5000, 7000), [7000, 9000), and [9000, +∞). Counts of
employees distributed in these levels are 212, 697, 219, 67,
and 36, respectively.

Promotion is another aspect to show whether the em-
ployees work hard and perform well. Of the 1231 samples, 70
students were promoted more than three times, 166 were
promoted twice, 455 once, and 540 who paid less effort were
never promoted.

2.2. Target Indices for Modelling. $e graduates acquire the
abilities through some in-school training items that are
classified as data modules of courses, personal quality
training, self-awareness development, and undergraduate
experiences. Table 2 shows that each module has different
presentations in variable type, data format, numerical dif-
ference, background knowledge, etc.

To evaluate whether the graduate’s ability supports their
job competence, we designed a series of indices as the
evaluation targets were made to accompany the fusion
analysis of different data modules. $e questionnaire
questions highlight ten indices of career-required compe-
tence. $ey are (1) Teamwork, (2) Circumstance adaptation,
(3) Communication, (4) Critical thinking, (5) Organization/
Leadership, (6) Problem-solving ability, (7) Life-long
learning, (8) Information search and processing, (9) Instant
learning, (10) Innovation/Creativity. Each index was
designed with seven-level scorings (i.e., Highest, High, Mid-
High, Middle, Mid-Low, Low, Lowest). $e respondents are
required to tick a level of scoring would these indices
support their current working posts. Simultaneously, the
respondents should tick whether they have acquired these
abilities from each item of their in-school studies. $erefore,
these ten indices of career-required competence make the
linkage between the job competency and the in-school items.

$us, we built up the adaptive neural network to launch
the fusion analysis of different modules for college student
in-school cultivation on targeting the ten indices of career-
required competence. Specially, we utilized the multitarget
discrete PCA method to pretreat the data as most responses
from the questionnaires are discrete records. $us the
models and the architecture established for fusion analysis
should highly fit the data properties of different modules.

3. Methodologies

3.1. 'e Multitarget Discrete PCA Method. $e typical PCA
relies on the second moment, which is essentially similar to
relying on the same mean value and the same variance. $e
direct introduction of discrete variables into PCA does not
limit the computational range. $en the process no longer
follows the assumption of normal distribution [26]. In this
case, the Filmer-Pritchett method [27] is applied to find a
single factor weighing the dependent variable.

For multitarget component analysis of discrete data
with multiple distributions, we suppose the proportion of
data in the i-th class is τi (i � 1, 2 . . . n), then the covariance
matrix (CovM) of the independent variables is defined as
follows:
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⋮
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. (1)

To simplify the computational process, we assume that
τ1 > τ2 > . . . > τn, then the covariance matrix can be
transformed to the following:

Table 1: City group partitioned by employment data.

City group (abbreviation) Number of
employment

Guangzhou (Gz) 370
Shenzhen (Sz) 197
Foshan (Fs) 117
Dongguan, Huizhou (DH) 126
Outside of Guangdong (OGD) 138
Jiangmen, Zhongshan, Zhuhai (JZZ) 77
Maoming, Yangjing, Zhanjiang (MYZ) 57
Qingyuan, Yunfu, Zhaoqing (QYZ) 38
Heyuan, Meizhou, Shaoguan (HMS) 46
Chaozhou, Jieyang, Shantou, Shanwei (CJSS) 65

Table 2: $e in-school training items when undergraduate.

Module Item

Courses

Professional technique
General course

Innovation and entrepreneurship
Practical course

Double degree program
Academic guidance
Career guidance

Scientific research introduction

Personal quality training

Compressive ability
Circumstance adaptation

Insight
Capability of information screening

Strategic planning
Sense of responsibility

Loyalty
Collaboration

Self-awareness

Self-positioning
Career planning

Job search
Self-marketing

Continuous learning
Resource control

Undergraduate experience

Club activity
Social practice

Leadership experience
Academic lecture

Science competition
Research project

Cultural/sport activities
Volunteer

International exchange
Award
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Successively, the eigenvalues and eigenvectors of the dis-
crete PCA procedure are obtained by solving the problem
of μij.

Aiming to evaluate the job competency of the graduates,
the discrete PCA methodology is used to weight the indices
of career-required competence, respectively, based on the
four factors for employment postevaluation (i.e., the
working location, the post, the salary, and the promotion
times).$e covariance matrix of the independent variables is
calculated for extracting the principal components, thus
obtaining four covariance matrices (denoted as
CovM(fac)n×n), where fac represents the different factors
of the working location, the post, the salary, and the pro-
motion times.

$en a scoring matrix is constructed to mark the 7-level
scorings for each of the n classes (denoted as
ScorM(fac)7×n). Also, a weighting matrix (denoted as
PW(fac)n×10) is formed to digitalize the comprehensive
scoring by proportion ratio of the 7-level for each class based
on the 10 indices of career-required competence. Namely,
the scoring contribution of the four covariance matrices to
the evaluation of the 10 career-required competence can be
demonstrated in the matrix multiplier as follows:

SM(fac)7×10 � ScorM(fac)7×n × CovM(fac)n×n

× PW(fac)n×10,

forfac ∈ working location, post, salary, promotion times .

(3)

For the convenience of network model training, we
should create a novel covariance matrix with comprehen-
sively weighting the importance of the four factors for
employment postevaluation. According to the theory of
information gain rate [28], the variable importance (VI) is
proposed to quantify the importance weights of the four
factors, which is defined as follows:

VI(fac) � 
k

τk · −lnτk( , (4)

where k represents the k th category under a certain factor,
and τk represents the proportion of data in the k-th class
(k � 1, 2 . . . n). Consequently, the comprehensive matrix
(CMVI) for weighting the career-required competence can
be identified as follows:

CMVI � 
fac

VI(fac) · SM(fac),
(5)

for each value of fac limited in a similar working location, a
similar post, a similar range of salary, or a similar promotion
times, respectively. Hereafter, the comprehensive matrix

CMVI is regarded as the contribution of the four factors for
employment postevaluation to the ten indices of career-
required competence. It enables the neural network model
training performing for the prediction of the importance of
in-school training items on the job competence.

3.2. 'e Adaptive Neural Network Architecture. $e neural
network is constructed in a fully connected structure (see
Figure 1) for the full fusion of data information from dif-
ferent modules. An easy measure to integrate them is to
design a weighted coefficient (ρr) to render the ratio of the
importance of different modules, where the subscript r

screens the four data modules of courses, personal quality
training, self-awareness development, and undergraduate
experiences (i.e., r � 1, 2, 3 and 4).$en the data of different
modules are summed together with the weighted coefficients
for network training. Each module contains a number of
variables. Accordingly, the network fusion computations are
modified.

All of the four modules are simultaneously delivered to
the network input layer. $ere are a total of 32 variables
describing the in-school training items. Each variable is
normalized and taken as a single neuron node (denoted as
x1, x2 . . . x32). With the summation calculation, the data
delivered to the hidden layer is generated by the total
summation of the fused input data. It can be formulated as
follows:

netj � 
r�1,2,3,4

ρr 
xi∈Moduler

wij · xi
⎛⎝ ⎞⎠ + θj, i � 1, 2 . . . 32,

(6)

where netj is simply the summation and wij represents the
weight evaluating the contribution of the 32 input variables
to each of the feature variables at the j-th hidden nodes
(denoted as Hj, j � 1, 2 . . . N). Successively, the feature data
is activated with the Sigmoid function [29], i.e.,

Hj � Sigmoid netj , j � 1, 2 . . . N. (7)

Moreover, the activated data of Hj 
N

at the hidden
neurons are further delivered into a Softmax unit. In the
Softmax, the ten indices of career-required competence are
evaluated by the N feature variables from the hidden layer,

i dxt � 

N

j�1
vjtHj + σt, t � 1, 2 . . . 10, (8)

where i dxt is the t-th index and vjt represents the linking
weights of the hidden nodes and the ten indices.

Consequently, the softmax unit use Mahalanobis dis-
tance [30] to transform the information of the network-
extracted feature variables to the targeting 7-level scoring
values, thus observing the predictive value of the contri-
bution matrix (CMnet) for the implicit evaluation of the 32
in-school training items to the job competence of the
graduates.

$e network architecture is designed for adaptive
optimization as the number of hidden nodes (N) is
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tunable. We could test some possible number of hidden
nodes, compare the output results and find the most
adaptive number. Practically, a good output result is
identified when the contribution matrix meets as closely
as possible to the abovementioned comprehensive matrix
with variable importance (CMVI). $erefore, the second
norm of the difference matrix (Mdiff ) is used for the
comparison. $en, it is mathematically evaluated as
follows:

Mdiff
����

����2 �

��������������

λmax MT
diffMdiff 



, (9)

where Mdiff � CMnet − CMVI, and λmax(·) is to find the
maximum eigenvalue of a matrix. $us the network model
can be trained and optimized in a self-adaptive way, aiming
to find the minimum value of ‖Mdiff‖2.

$e network architecture is functional to perform
fusion analysis of the data for the career-required com-
petence ability and the in-school training items. $e
adaptive learning mode is held by the neural network
structure, automatically fitting the linkage weights be-
tween each two linked nodes. $e comprehensive SM and
CM matrices are taken as for the error evaluation of the
inherent covariance of the collected data. $ese advan-
tages help to establish solid network models for rapid
quantitative fusion analysis of the career-required com-
petence ability of the graduated students and their in-
school training items before graduation.

4. Results and Discussion

As for launching the adaptive neural network architecture,
the reference contribution matrix was computed by the
discrete PCAmodeling methodology.$e four target factors
of employment postevaluation were transformed to be
quantified with the 10 career-required competence ability
terms, using the discrete covariance rating principle, thus
generating a contribution matrix by fusion analysis of the
four factors and the 10 indices.

Firstly, we calculated the data proportion (τ) in any class
respectively based on each of the four factors. For the factor
of working location, the 1231 samples were divided into 10
city groups. During the 10 classes, the 1231 graduates mainly
work in Gz (G1), Sz (G2), Fs (G3), DH (G4), and OGD
(G10). For the factor of working post, there concern four
types of working posts (i.e., marketing, administration, tech-
nology, andmanagement) in this study.$emost employment
is in the technology post. For the factor of salary, the data was
presented as the normal distribution. $e salary range that
most of the 1231 graduates earn was [3000, 5000) when ig-
noring the influence of the other factors. For the factor of
promotion times, we observed the phenomenon that there are
over 70% of the graduates never promoted and only promoted
once; only a few people promoted three times or more.

According to the theory and algorithm of discrete PCA,
we have observed the value of τ for any of any divided class
based on different factors of employment post evaluation
(see Table 3). $e values of τ were further used to calculate the

x23

H1 H2 H3 ...... HN-1 HN

x24 ... x32

Module4 (with ρ4)

x17 x18 ... x22

wi

vi

7-level scoring

10 indices of career-required competence

So
ftm

ax

Module3 (with ρ3)

x9 x10 ... x16

Module2 (with ρ2)

x1 x2 ... x8
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Undergraduate experienceSelf-awarenessPersonal quality trainingCourses

Input layer

Hidden layer

Output layer

idx1 idx2 idx3 idx4 idx5 idx6

Model

idx7 idx8 idx9 idx10

s1 s2 s3 s4 s5 s6 s7

Contribution
Matrix

Figure 1: $e neural network structure for fully connected training.
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covariance matrix and the scoring matrix of each class, and
then the scoring contribution of the four covariancematrices to
the evaluation of the 10 indices of career-required competence
(SM) was computed using formula (3). $e resulting SM
values for each factor are shown in Figure 2, in which the value
is evaluated by the rainbow color scale. We can visually acquire
from Figure 2 the exact scorings for each index of career-re-
quired competence. Most graduates scored 4 or 5 for each of
the factors of employment postevaluation. With interactive
comparison, the scorings on working location were relatively
higher than the other factors.

Next, the value of VI was calculated obeying formula (4)
for each factor for employment postevaluation the VI’s of
each factor were estimated as shown in Figure 3. $e VI for
the working location is larger than the other factors, while

the others are close to each other. $is result demonstrates
that the graduates just out of school are concerned much
about the working location and relatively less about the other

Table 3: $e values of τ of any divided class based on different factors of employment post evaluation.

Working location Gz Sz Fs DH JZZ MYZ QYZ HMS CJSS OGD
τ 0.3006 0.1600 0.0950 0.1024 0.0626 0.0374 0.0463 0.0309 0.0528 0.1121

Working post Marketing Administration Technology Management — —
τ 0.2161 0.2307 0.3721 0.1812 — —

Salary [1000, 3000) [3000, 5000) [5000, 7000) [7000, 9000) [9000, +∞)
τ 0.1722 0.5662 0.1779 0.0544 0.0292

Promotion times Never Once Twice ≥ $ree times — —
τ 0.4387 0.3696 0.1348 0.0569 — —
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Figure 2: $e SM value predicted by discrete PCA model. (a) for working location (b) for working post (c) for salary (d) for promotion
times.
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Figure 3: $e variable importance of the four employment post
evaluation factors.
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factors. Successively, the comprehensive contributionmatrix
CM was further computed based on the acquired SM ma-
trices using the formula (5). With the weighting of VI, the
matrix CMVI represents the fusion modeling of the 7-level
scorings on the 10 indices of career-required competence to
interpret the combined computation effect of all of the four
target factors. It is regarded as the job competence ability
required by society based on the study of a fusion metric of
the four different factors of employment postevaluation.
Figure 4 shows the scatter distribution of the computed
CMVI matrix values on the cubic axes of 7-level scoring and
the indices of career-required competence.$ematrixCMVI
was taken as the reference matrix for the following adaptive
network training.

$e constructed adaptive multivariate neural network
structure was used for fusion analysis of data information
extracted from the questionnaire-recorded 7-level scorings
on 32 in-school training items. $e 32 items were catego-
rized in for different models. According to the adaptive
training of the network architecture, the collected data for
the in-school training items was renewed using the weighted
coefficients of ρ1, ρ2, ρ3 and ρ4, respectively, for the four
different modules of courses, personal quality training, self-
awareness and undergraduate experience.$en, the renewed
items were input to the neural network. $e neural com-
putation is to transform the input data into the hidden
nodes, where the number of hidden nodes is for adaptive
tuning. Considering that fewer hidden node is not sufficient
to accept the feature information of data, we test the neural
models with N changing from 5 to 20 in the hidden layer.
Aiming to acquire the minimum different matrix (Mdiff )
between the network predicted CMnet and the reference
CMVI, the possible results of ‖Mdiff‖2 is showed in Figure 5

for the tuning of N. It is observed from Figure 5 that the
optimal N equals 16, which indicates that the neural network
constructed with 16 hidden nodes would have the best
prediction results for evaluating the in-school training items
contributing to the career-required competence. Simulta-
neously, the scatter values of the minimum Mdiff is illus-
trated in Figure 6 projected to the 7-level scoring and the 10
indices of career-required competence based on the adaptive
optimal network training model. Figure 7 shows the dis-
tribution of the differences between the predictive CMnet
values and the CMVI values projection on the 10 indices of
career-required competence and on the 7-level scoring,
respectively. Most of the differences are low, and the
maximum difference is less than 0.3. It indicated that the
network predicted comprehensive contribution matrix for
weighting the career-required competence is close to the
matrix generated by discrete PCA multivariate trans-
forming. $e result proved that the students’ working ability
acquired from in-school cultivation items suits their career
requirement.

$e prediction results indicate some signals for the
reform of student cultivation in colleges and universities in
China. $e in-school training items should be designed in
close relation to the job competence. $e quantified 10
indices show us that the cultivation of high-quality talents
needs not only to impart the in-course knowledge but to
enhance the training quality of the other modules is also
much important. For example, the training in compressive
ability, insights, and collaboration may enhance the stu-
dents’ personal quality. Instructing the way of self-posi-
tioning, career planning, and continuous learning is in
much demand for raising students’ self-awareness. Addi-
tionally, it is another key point to encourage the students to
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Figure 4: $e CMVI matrix calculated based on VI for comprehensive evaluation on the career-required competence indices.
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join clubs to participate in research project and interna-
tional exchange.

In the sustainable development of cultivation reforming,
the evaluation of how the in-school cultivations support the
graduates’ career-required competence is going to be more
and more critical because college education in the future will
be highly connected to the dynamic speed changing of the
career-required competence in the information society.
Experimental results have shown that the methodology
based on the adaptive network fusion analysis is feasible to
evaluate the balance between the in-school cultivation items
and the career-required competence.

5. Conclusions

To evaluate the cultivation systems in colleges and uni-
versities, we proposed an adaptive multivariate neural
network architecture for fusion analysis of the correlation
between the in-school training items and the career-required
competence. Firstly, we proposed to improve the PCA algo-
rithm for discrete analysis. A series of covariance matrices were
computed based on the factors of working location, working
post, salary, and promotion times. Classifiers and 7-level

scoring metrics were designed to transform the collected data
into comprehensive data features for recording the contribu-
tion of the 10 indices of career-required competence, there to
compose the reference contribution matrix for adaptive net-
work learning. Next, a fully connected network structure was
constructed for predicting the contribution matrix from the
data of 32 in-school training items categorized in fourmodules.
For data input, the network received data of different modules
with weighted coefficients, then the data was delivered to the
hidden layer. With the network linking weight adaptively
trained, the number of hidden nodes was designed as the key
tuning parameter for model optimization. Further, the con-
tributionmatrix was predicted by the feature variables acquired
from hidden nodes, using the Mahalanobis distance. Finally,
the network-predicted contribution matrix was compared to
the reference matrix, using the second norm of the difference
matrix as the quantifier.

Experimental results show that the methodology of
adaptive network fusion learning is feasible to provide a
novel system for modeling evaluation of whether the in-
school training items support the career-required compe-
tence of graduates.$e fused feature extracted from different
module data, the intelligent training of network linking
weights, and the prediction of the norm of the difference
matrix help to explore the implicit work competent abilities
hidden behind the in-school training items. $e proposed
computing framework lays a good foundation for revealing
the direct correlation of college cultivation and job-required
abilities. We wish to let the undergraduate students study
positively and initiatively, stimulate their interest and power
in the study, and simultaneously give directions and positive
suggestions for colleges and universities to make their
cultivation reforming as to enhance the quality of their
graduates.

In the future, we plan to further explore the relationship
between the in-school training items and the career-required
competence ability by comparing the correlation effects
(including the coefficient of data, coefficient of variation, and
coefficient of the PCs) along with the covariance matrix, to
explore the more deep inherent relationship. Furthermore,

0.95

�
e 2

nd
 n

or
m

 v
al

ue
 o

f t
he

di
ffe

re
nc

e m
at

rix

0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of hidden nodes

Figure 5: $e network predictive difference matrix by tuning the
number of hidden nodes.

7-
le

ve
l s

co
rin

gs

7

6

5

4

3

2

1

idx1 idx2 idx3 idx4 idx5 idx6 idx7 idx8 idx9 idx10

–0.30
–0.25
–0.20
–0.15
–0.10
–0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30

Mdiff

10 indices of career-required competence

Figure 6: $e prediction of Mdiff based on the adaptive optimal
network training model.

0.00
0.05
0.10
0.15
0.20
0.25
0.30

idx1 idx2 idx3 idx4 idx5 idx6 idx7 idx8 idx9 idx10
10 indices of career-required competence

0.00
0.05
0.10
0.15
0.20
0.25
0.30

1 2 3 4 5 6 7
7-level scoring

D
iff

er
en

ce
 b

et
w

ee
n 

CM
ne

t a
nd

 C
M

IV

Figure 7: Differences between the CMnet and the CMVI values
projection on the 10 indices of career-required competence and on
the 7-level scoring.

8 Computational Intelligence and Neuroscience



we will investigate other modeling methods such as the
swarm intelligence evolution algorithms and decision tree-
entropy modification methods.
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