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LncRNA RP5-998N21.4 promotes immune defense through
upregulation of IFIT2 and IFIT3 in schizophrenia
Bo Guo1,2,8, Tingyun Jiang3,8, Fengchun Wu4,8, Hongyu Ni1, Junping Ye1, Xiaohui Wu1, Chaoying Ni1, Meijun Jiang5, Linyan Ye1,
Zhongwei Li1, Xianzhen Zheng5, Shufen Li1, Qiong Yang4, Zhongju Wang1, Xingbing Huang 4✉ and Cunyou Zhao 1,2,6,7✉

Schizophrenia is a complex polygenic disease that is affected by genetic, developmental, and environmental factors. Accumulating
evidence indicates that environmental factors such as maternal infection and excessive prenatal neuroinflammation may contribute
to the onset of schizophrenia by affecting epigenetic modification. We recently identified a schizophrenia-associated upregulated
long noncoding RNA (lncRNA) RP5-998N21.4 by transcriptomic analysis of monozygotic twins discordant for schizophrenia.
Importantly, we found that genes coexpressed with RP5-998N21.4 were enriched in immune defense-related biological processes in
twin subjects and in RP5-998N21.4-overexpressing (OE) SK-N-SH cell lines. We then identified two genes encoding an interferon-
induced protein with tetratricopeptide repeat (IFIT) 2 and 3, which play an important role in immune defense, as potential targets of
RP5-998N21.4 by integrative analysis of RP5-998N21.4OE-induced differentially expressed genes (DEGs) in SK-N-SH cells and RP5-
998N21.4-coexpressed schizophrenia-associated DEGs from twin subjects. We further demonstrated that RP5-998N21.4 positively
regulates the transcription of IFIT2 and IFIT3 by binding to their promoter regions and affecting their histone modifications. In
addition, as a general nuclear coactivator, RMB14 (encoding RNA binding motif protein 14) was identified to facilitate the regulatory
role of RP5-998N21.4 in IFIT2 and IFIT3 transcription. Finally, we observed that RP5-998N21.4OE can enhance IFIT2- and IFIT3-
mediated immune defense responses through activation of signal transducer and activator of transcription 1 (STAT1) signaling
pathway in U251 astrocytoma cells under treatment with the viral mimetic polyinosinic: polycytidylic acid (poly I:C). Taken together,
our findings suggest that lncRNA RP5-998N21.4 is a critical regulator of immune defense, providing etiological and therapeutic
implications for schizophrenia.

Schizophrenia            (2022) 8:11 ; https://doi.org/10.1038/s41537-021-00195-8

INTRODUCTION
Schizophrenia is a complex genetic disease that affects approxi-
mately 1% of the global population1. The complexity of
schizophrenia is recognized to result from interactions between
the genome and the environment2. Epidemiological studies have
suggested that prenatal exposure to bacterial or viral infection is
an important environmental risk factor for schizophrenia3.
Accumulating evidence suggests that epigenetic modifications
may be particularly vulnerable to environmental influences,
especially during embryonic development, and play key roles in
mediating the interplay between genomic and environmental
factors underlying the development of schizophrenia4. As one of
the major epigenetic modifications, long noncoding RNAs
(lncRNAs), which are >200 nt in length, play important roles in
the regulation of the immune response through different
mechanisms, including acting as signals, decoys, guides, or
scaffolds5. In recent years, several lncRNAs involved in the
inflammatory response or viral infection by binding a target
protein have been described6,7. For instance, the lncRNA IVRPIE
promotes the host antiviral immune response by regulating
interferon (IFN) β1 and IFN-stimulated gene (ISG) expression8. The
secretion of IFNs from host cells is a response to various

pathogens, such as viruses, bacteria, fungi, or parasites, and
induces a protective immune defense. IFNs exert their antiviral
effects via Janus kinase (JAK)/STAT-mediated signaling through
IFN receptors, leading to the induction of approximately 300 ISGs.
Several ISG proteins are structurally characterized by tetratrico-
peptide repeats, and they are called IFN-induced proteins with
tetratricopeptide repeats (IFITs). IFIT2 and IFIT3 are IFITs; IFIT3
(ISG60) is also involved in poly I:C-induced CXCL10 expression
through the Toll-like receptor 3 (TLR3)/IFN-β/STAT1 axis in
U373MG human astrocytoma cells9, suggesting that IFITs may
play important roles in a variety of biological processes, including
physiological innate immunity and pathological inflammation in
the central nervous system.
We previously performed transcriptomic analysis of monozygo-

tic twins discordant for schizophrenia and identified two
schizophrenia-associated upregulated lncRNAs, AC006129.1 and
RP5-998N21.4, whose coexpressed genes are involved in immune
and defense response-related biological processes10. We deli-
neated the mechanism by which AC006129.1 binds to the
promoter region of the transcriptional repressor Capicua (CIC)
and promotes DNA methylation-mediated CIC downregulation by
facilitating the interactions of DNA methyltransferases with the CIC

1Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic
Diseases, Southern Medical University, Guangzhou, Guangdong, China. 2Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay
Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou,
Guangdong, China. 3The Third People’s Hospital of Zhongshan, Zhongshan, Guangdong, China. 4Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical
University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China. 5Guangdong Mental Health Center, Guangdong Provincial People’s Hospital, Guangdong Academy of
Medical Sciences, Guangzhou, China. 6Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
7Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, China. 8These authors contributed equally: Bo Guo, Tingyun Jiang, Fengchun Wu.
✉email: hxbing2002@163.com; zhaocunyou@gmail.com

Published in partnership with the Schizophrenia International Research Society

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-021-00195-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-021-00195-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-021-00195-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-021-00195-8&domain=pdf
http://orcid.org/0000-0002-2960-2502
http://orcid.org/0000-0002-2960-2502
http://orcid.org/0000-0002-2960-2502
http://orcid.org/0000-0002-2960-2502
http://orcid.org/0000-0002-2960-2502
http://orcid.org/0000-0001-6116-4584
http://orcid.org/0000-0001-6116-4584
http://orcid.org/0000-0001-6116-4584
http://orcid.org/0000-0001-6116-4584
http://orcid.org/0000-0001-6116-4584
https://doi.org/10.1038/s41537-021-00195-8
mailto:hxbing2002@163.com
mailto:zhaocunyou@gmail.com


promoter, thereby alleviating CIC-induced suppressor of cytokine
signaling 3 (SOCS3) repression. Derepression of SOCS3 enhances
the anti-inflammatory response by inhibiting JAK/STAT-signaling
activation. However, the underlying gene regulatory mechanism
that mediates the roles of another disease-associated lncRNA RP5-
998N21.4 in the context of schizophrenia remains unclear.
In this study, we performed integrative RNA sequencing data

analysis of monozygotic twin discordant for schizophrenia, a
lncRNA RP5-998N21.4 overexpressing SK–N–SH cell line, and public
postmortem brain datasets to identify the potential coexpressed
target genes of RP5-998N21.4, and we then identified the
mechanism by which RP5-998N21.4 underlies the development
of schizophrenia by regulating IFIT2- and IFIT3-mediated antiviral
immune response pathways.

RESULTS
Upregulation of RP5-998N21.4 in schizophrenia is involved in
immune response-related pathways
We previously found that the lncRNA RP5-998N21.4 (also called
ENSG00000234571, NONHSAT225469.1, or NONHSAG105013.1) was
upregulated in the patient within monozygotic twins discordant
for schizophrenia (Log2FC= 1.58 and FDR= 0.006)10. We then
validated its expression level in blood samples of an independent
validation cohort containing 51 schizophrenia patients and 48
nonpsychiatric controls. qPCR analysis revealed significantly
increased RP5-998N21.4 expression levels in patients with schizo-
phrenia compared with nonpsychiatric controls (increased by
226%, P < 0.001 and Pcovariate= 0.029 when age and sex were
included as covariates in ANCOVA; Fig. 1a). Moreover, upregula-
tion of RP5-998N21.4 in blood samples of patients with schizo-
phrenia remained significant in the CommonMind Consortium
(CMC) brain RNA-seq dataset (Log2FC= 0.03, P= 0.01)11 and met
the trend line in the PsychENCODE (Log2FC= 0.11, P= 0.17)12 and
Children’s Hospital of Philadelphia (CHP, Log2FC= 0.20, P=
0.48)13 brain RNA-seq datasets. To explore the biological implica-
tions of lncRNA-RP5-998N21.4 in schizophrenia, we identified 367
mRNAs correlated with lncRNA-RP5-998N21.4 expression (|coeffi-
cient r| > 0.5, P < 0.05) among the 16 individuals from the same
four pairs of schizophrenia-discordant twins (SDC) and four pairs
of healthy concordant control twins (HCC) included in the above
lncRNA analysis (Supplementary Table 1). We then used a
weighted gene coexpression network analysis (WGCNA) approach
to perform coexpression analyses of the lncRNA RP5-998N21.4 and
these 367 mRNAs in these sixteen individuals and identified that
57 mRNAs were coexpressed with lncRNA RP5-998N21.4 in the
brown module (Supplementary Fig. 1 and Supplementary Table 2)
and were also significantly enriched in whole blood, minor salivary
gland, and spleen tissues based on the GTEx RNA-seq dataset
(Supplementary Table 3)14. Gene ontology–biological pathway
(GO–BP) analysis revealed significant enrichment of the 57
coexpressed genes in terms such as “immune response”, “immune
effector process”, “defense response to virus”, “type I IFN signaling
pathway”, and “response to IFN-beta” (Fig. 1b and Supplementary
Data 1), suggesting functional implications of RP5-998N21.4 in the
pathogenesis of schizophrenia.
As annotated in the University of California, Santa Cruz (UCSC)

database, the RP5-998N21.4 transcript is located on the negative
strand of chromosome 1 (chr1:149320440–149379646, hg19) and
exists in one isoform of 3540 nt with two exons (Supplementary
Fig. 2). The in silico results obtained with the open reading frame
(ORF) prediction tool ORFfinder and the Phylogenetic Codon
Substitution Frequency tool to distinguish coding and noncoding
transcripts consistently showed that RP5-998N21.4 has no
potential protein-coding ability (Supplementary Fig. 3). We also
observed that RP5-998N21.4 was highly expressed in human white
blood cells and the SK–N–SH cell line, as determined by qPCR, and

was moderately expressed in whole blood and brain tissues from
published NONCODE and GTEx RNA-seq datasets (Supplementary
Fig. 4a–c)14,15. We then characterized the subcellular localization
of RP5-998N21.4 and observed that it was expressed predomi-
nantly in the nucleus (Supplementary Fig. 4d), as determined by
qPCR in HEK293T cells and RNA-seq data in SK–N–SH cells from
the lncATLAS dataset16.
To further elucidate the molecular mechanism underlying the

upregulation of RP5-998N21.4, we overexpressed a recombinant
lentiviral vector containing RP5-998N21.4 in SK–N–SH cells. RNA-
seq analysis identified 1722 differentially expressed genes (DEGs,
DE-seq: |LogFC| > 0.5, FDR < 0.01) (Supplementary Data 2) induced
by RP5-998N21.4OE. GO–BP analysis revealed significant enrich-
ment of the 1722 DEGs in terms such as “neurogenesis”, “type I
IFN signaling pathway”, “defense response to virus”, and “response
to IFN-beta” (Fig. 1c and Supplementary Data 3), further
supporting the role of RP5-998N21.4 related to immune response
pathways. We then observed significant overlap (three over-
lapping genes (IFIT2, IFIT3, and ANXA3; OR= 77.4, P= 7.4e−5; Fig.
1d) between RP5-998N21.4OE-induced DEGs in SK-N-SH cells and
RP5-998N21.4-coexpressed schizophrenia-associated DEGs in twin
subjects. These three genes were upregulated consistently in RP5-
998N21.4OE SK cells and in MZ twin patients, and their expression
was positively correlated with RP5-998N21.4 expression. Moreover,
coexpression patterns of RP5-998N21.4 with IFIT2, IFIT3, and ANXA3
were further observed in whole blood and brain tissue from the
GTEx RNA-seq dataset (Supplementary Data 4)14. IFIT2 and IFIT3
have been reported to positively regulate TLR3/IFN-β/phosphor-
ylation of the STAT1 axis in U373MG human astrocytoma cells9

and play important roles in the antiviral response17,18. The
upregulation of IFIT2 and IFIT3 observed in our twin patients
was also observed to be significant in a lymphoblastoid cell lines
(LCL) study (IFIT2: β= 0.4, FDR= 1.7e−12; IFIT3: β= 0.5, FDR=
7.8e−15)19 and to meet the trend line in the CMC brain study
(IFIT2: Log2FC= 0.09 and P= 0.05; IFIT3: Log2FC= 0.02, P= 0.7)11.
ANXA3, as a marker of brain microglia20, is reported to be
associated with cell death in lactacystin-mediated neuronal
injury21 and to inhibit the PI3K/Akt signaling pathway22,23. The
upregulation of ANXA3 observed in our twin patients was also
supported by the LCL study (β= 0.2, FDR= 1.4e−3)19 and a
PsychENCODE brain dataset (LogFC= 0.08 and FDR= 0.07)12.
Collectively, these results indicate that RP5-998N21.4 might
regulate immune defense-related pathways by promoting the
transcription of IFIT2, IFIT3, or ANXA3, which are involved in the
pathophysiology of schizophrenia.

RP5-998N21.4 promotes IFIT3 and IFIT2 transcription by
affecting chromatin modifications
We further explored the mechanism involved in RP5-998N21.4-
mediated regulation of IFIT2, IFIT3, and ANXA3 expression. It has
been reported that lncRNAs can act as scaffolds by interacting
with protein partners to facilitate their binding to target genes to
induce their transcription7. We first confirmed that RP5-998N21.4
overexpression (RP5-998N21.4OE) increased IFIT2 and IFIT3
expression levels in HEK293T and SK–N–SH cells and increased
the ANXA3 expression level only in SK–N–SH cells (Fig. 2a, b). We
then used LongTarget to predict several binding sites of RP5-
998N21.4 in the proximal promoter regions of IFIT2 and IFIT3 and
validated the upregulation of IFIT2 and IFIT3 expression by RP5-
998N21.4OE in HEK293T cells cotransfected with pcDNA-RP5-
998N21.4 and a luciferase reporter vector driven by the IFIT2 or
IFIT3 promoter (Fig. 2c).
Next, we tested the binding activities of RP5-998N21.4 to the

IFIT2 or IFIT3 promoter region using chromatin isolation by RNA
purification (ChIRP) assay and observed that RP5-998N21.4 can
bind to the proximal promoter regions of IFIT2 and IFIT3, as
determined by qPCR analysis of the retrieved DNA (Fig. 2d) or RNA
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(Fig. 2e) from RP5-998N21.4-ChIRP. Finally, we examined whether
the binding of RP5-998N21.4 to the IFIT2 or IFIT3 promoter region
affects the chromatin state by performing chromatin immuno-
precipitation (ChIP)-qPCR for a transcriptionally active histone
mark (H3K4me3) and a repressive histone mark (H3K27me3).
Notably, H3K4me3 enrichment at the IFIT2 promoter region was
significantly higher in RP5-998N21.4OE HEK293T cells than in
control cells (Fig. 2f). In contrast, H3K27me3 enrichment at the
IFIT2 promoter region was significantly lower in RP5-998N21.4OE
cells than in control cells (Fig. 2g). Similarly, marginal alterations in
enrichment were also observed for H3K4me3 (p= 0.051; Fig. 2f)
and H3K27me3 (p= 0.058; Fig. 2g) at the IFIT3 promoter region.
However, we did not detect significant H3K4me3 and H3K27me3
enrichment at the ANXA3 transcriptional start site region in

RP5-998N21.4OE cells and the corresponding control cells (Supple-
mentary Fig. 5), indicating that there may be other mechanisms
involved in ANXA3 transcription. In summary, these results indicate
that RP5-998N21.4 regulates the transcription of IFIT2 and IFIT3 by
binding to their promoter regions and affecting histone modifica-
tions in these promoter regions.

RBM14 facilitates the regulatory role of RP5-998N21.4 in IFIT2
and IFIT3 transcription
We next explored the associated proteins that interact with
RP5-998N21 using in silico prediction analysis and an in vivo
experiment. We first employed LncADeep software to identify 142
proteins that were predicted to significantly interact with
RP5-998N21.4 (score > 0.5, Supplementary Data 5)24. We then
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Fig. 1 Upregulation of RP5-998N21.4 in schizophrenia is involved in immune defense-related pathways. a The RP5-998N21.4 level in
peripheral blood samples from the validation cohort, namely, 51 patients with schizophrenia (SCZ) and 48 nonpsychiatric controls (CON). The
expression levels in SCZ and CON are shown as percentages relative to the mean level in CON with standard deviations (s.d.) indicated by
error bars. Significant differences between the two cohorts were determined with ANCOVA without covariates (P < 0.05) or with age and sex as
covariates (Pcovariate). b, c Functional enrichments of GO–BP annotations among RP5-998N21.4-coexpressed genes in human twin subjects (b)
or among RP5-998N21.4OE-induced mouse DEGs (c) are shown for the top gene sets. d Venn diagram showing overlapping relationships. The
numbers indicate the gene counts among the RP5-998N21.4-coexpressed genes in humans, the schizophrenia-associated DEGs (human DEGs)
from twin subjects, and the RP5-998N21.4OE DEGs from SK–N–SH cells. All blots were derived from the same experiments and were processed
in parallel.
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performed an RNA pulldown assay using in vitro-transcribed
biotinylated RP5-998N21.4 or its antisense control RNA to pull
down protein partners from nuclear extracts of HEK293T cells.
RNA–protein complexes were captured with streptavidin mag-
netic beads, separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE), and stained with coomassie
brilliant blue, and the bands of interest were excised and sent
for mass spectrometry analysis (Fig. 3a and Supplementary Fig.
6a). This approach identified 646 proteins that bound significantly
to RP5-998N21.4 (peptide expectation value < 0.05, Supplementary
Data 6), and three of the 646 proteins RBM14, CTBP1, and MCM7
were also predicted to bind to RP5-998N21.4 by the above
mentioned LncADeep software (Fig. 3b).
We further found that overexpression of RBM14 (Fig. 3c)

significantly increased the mRNA level of endogenous IFIT2
(Fig. 3d) and marginally increased that of IFIT3 (Fig. 3e) in
HEK293T cells with or without cotransfection of RP5-998N21.4,
whereas overexpression of MCM7 and CTBP1 did not increase the
endogenous IFIT2 and IFIT3 mRNA levels in RP5-998N21.4OE
HEK293T cells (Supplementary Fig. 6b, c). We also employed
shRNA to achieve knockdown (KD) of endogenous RBM14
expression (Fig. 3f) and observed that RBM14-KD significantly
attenuated the increases in IFIT2 (Fig. 3g) and IFIT3 (Fig. 3h)
transcription induced by RP5-998N21.4OE in HEK293T cells. More-
over, RNA immunoprecipitation (RIP) assay using an anti-RBM14
antibody followed by qPCR showed that RP5-998N21.4 was
apparently present in the immunoprecipitates of RBM14 from
HEK293 cells (Fig. 3i and Supplementary Fig. 7). RBM14 (RNA
binding motif protein 14) encodes a ribonucleoprotein that
functions as a general nuclear coactivator and an RNA splicing
modulator25. RBM14 has been identified to be significantly
upregulated in postmortem brain tissues in the PsychENCODE
database (Log2FC= 0.072, FDR= 0.001)12 and marginally upregu-
lated in the LCL dataset (β= 0.122, FDR= 0.098)19 of patients with

schizophrenia compared to nonpsychiatric controls in public RNA-
seq datasets. These observations suggest that RBM14 facilitates
the regulatory role of RP5-998N21.4 in IFIT2 and IFIT3 transcription.

RP5-998N21.4 promotes the immune response by activating
STAT1 signaling
Since IFIT2 and IFIT3 have been reported to play important roles in
the antiviral response through the promotion of TLR3/IFN-β/STAT1
axis activity9, we then examined whether RP5-998N21.4-mediated
upregulation of IFIT2 and IFIT3 activates STAT1 signaling. We first
observed that activation of STAT1 was enhanced by RP5-998N21.4-
induced dose-dependent upregulation of IFIT2 and IFIT3 in
HEK293T cells (Fig. 4a and Supplementary Fig. 8). We next used
the viral mimetic poly I:C to experimentally model viral infection in
U251 astrocytoma cells and evaluated the role of RP5-998N21.4 in
the response to infection mediated through upregulation of IFIT3
expression (Supplementary Fig. 9). We observed that poly I:C
significantly induced the protein levels of IFIT2, IFIT3, and
phosphorylated STAT1 (Fig. 4b and Supplementary Fig. 10), as
well as the RNA levels of IFIT2, IFIT3, and CXCL10 (Fig. 4c–e), which
were enhanced by RP5-998N21.4 overexpression in U251 cells.
These results indicate that RP5-998N21.4 elicits an antiviral
response through upregulation of IFIT2- and IFIT3-mediated
activation of the STAT1 signaling pathway.

DISCUSSION
The present findings reveal that upregulation of RP5-998N21.4
promotes the activity of immune response-related pathways
through upregulation of IFIT2 and IFIT3 in the context of
schizophrenia and that overexpression of this lncRNA can enhance
IFIT2- and IFIT3-mediated antiviral defense responses through
activation of STAT1 signaling pathways in human U251
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astrocytoma cells treated with the viral mimetic poly I:C. This
epigenetic mechanism that links lncRNAs to the promotion of
immune defense responses has promising therapeutic implica-
tions for schizophrenia.
Schizophrenia is a multifactorial neurodevelopmental disorder

with genetic and environmental etiologies. Several studies
indicate that prenatal viral/bacterial infections, inflammation,
and immune activation increase the offspring’s risk for developing
schizophrenia.26 Recently, lncRNAs have emerged as potential key
regulators of inflammatory responses7. In our previous study,
transcriptomic analysis of monozygotic twins discordant for
schizophrenia identified two schizophrenia-associated upregu-
lated lncRNAs, AC006129.1 and RP5-998N21.4; AC006129.1 was
identified to reactivate the SOCS3-mediated anti-inflammatory
response through DNA methylation-mediated CIC downregulation
in schizophrenia10. In this study, we further confirmed that
schizophrenia-associated upregulation of RP5-998N21.4 in the

patient within SDC twins remained significant in blood samples
from an independent sporadic cohort as well as in a previously
published CMC postmortem brain RNA-seq dataset11. Moreover,
we demonstrated that RP5-998N21.4OE-induced coexpressed DEGs
in SK–N–SH cell lines were significantly enriched in immune
defense-related pathways; two antiviral response-related genes,
IFIT2 and IFIT3, were significantly enriched in both RP5-998N21.4-
coexpressed schizophrenia-associated DEGs and RP5-998N21.4OE-
induced DEGs and were identified as potential targets of lncRNA
RP5-998N21.4. More importantly, consistent with the upregulation
of IFIT2 and IFIT3 expression observed in the schizophrenia
patients of MZ twin pairs, their expression levels also showed
significant alterations in a large sample LCL study27, but not in the
CMC and PsychENCODE brain studies11. Collectively, these results
indicate the important role of RP5-998N21.4 in regulating immune
response-related pathways involved in the pathogenesis of
schizophrenia.
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We identified the epigenetic mechanism by which enhance-
ment of IFIT2 and IFIT3 expression by RP5-998N21.4 promotes
antiviral defense response pathway activity through the activation
of STAT1 signaling pathways in human cells. We demonstrated
that RP5-998N21.4 can promote the expression of IFIT2 and IFIT3
by binding to their proximal promoter regions and then affecting
their histone modifications. The interactions between RP5-
998N21.4 and IFIT2 or IFIT3 were revealed by a luciferase reporter
assay with a vector containing the RP5-998N21.4-binding regions
and by a ChIRP assay. Binding of RP5-998N21.4 at the IFIT2 and
IFIT3 promoter regions altered their histone modifications (the
activating mark H3K4me3 and repressive mark H3K27me3),
further supporting the regulatory role of RP5-998N21.4 in
activating IFIT2 and IFIT3 transcription through chromatin
remodeling. We further demonstrated that the regulatory role of
RP5-998N21.4 in IFIT2 and IFIT3 transcription was facilitated by
RBM14. RBM14 has been identified as a component of nuclear
paraspeckles28 and shown to modulate the transcription and
splicing of host genes in response to viral infection29. Intriguingly,
upregulated IFIT2 and IFIT3 are also involved in the response to
viral infection or immune activation and serve as an essential
primary barrier to viral infection8,18,30. We further demonstrated
that STAT1 signaling was activated by RP5-998N21.4-induced
upregulation of IFIT2 and IFIT3 in U251 cells under treatment with
the viral mimetic poly I:C, in which the CXCL10 expression level
was also upregulated. Recently, IFIT2 and IFIT3 were reported to
positively regulate the expression of CXCL10 through activation of
the TLR3/IFN-beta/STAT1 axis in U373MG cells treated with poly I:
C9. CXCL10 is a C–X–C chemokine member that and functions by

binding to a specific receptor, CXCR3, and promotes lymphocyte
chemotaxis and microglial recruitment. CXCL10 is also reported to
be involved in the pathogenesis of Alzheimer’s disease and
cerebral ischemia, and astrocyte-derived CXCL10 is reported to
suppress oligodendrocyte progenitor cell differentiation9. Recent
studies have also demonstrated altered cytokine activity in
schizophrenia,31–34 and enhancement of IFIT2 and IFIT3 by RP5-
998N21.4 and the subsequent promotion of the immune defense
response might partially counteract the defects caused by the
disease, with protective or restorative effects against neurotoxi-
city. Understanding the biological mechanism underlying the
regulatory role of RP5-998N21.4 in the immune defense response
may lead to promising interventions for schizophrenia.
Although our studies demonstrate the involvement of RP5-

998N21.4 in the development of schizophrenia through the
enhancement of IFIT2- and/or IFIT3-mediated immune defense
response pathways, it is currently unclear how RP5-998N21.4
influences synapse morphology and function. Furthermore, since
most of the function and mechanism study for RP5-998N21.4 in
HEK293T cells, neuronal cells, such as primary neurons or neuron-
like cells, may be needed to validate the role of RP5-998N21.4 in
the regulation of immune defense response in the future.
In conclusion, our findings illustrate an epigenetic mechanism

by which upregulation of lncRNA RP5-998N21.4 underlies the
development of schizophrenia via the enhancement of IFIT2- and
IFIT3-mediated immune defense responses through activation of
STAT1 signaling pathways. This epigenetic mechanism that links
lncRNAs to the promotion of immune defense responses has
promising therapeutic implications for schizophrenia.
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METHODS
Human subject analysis
Peripheral blood samples from four pairs of SDC and four pairs of HCC
were employed for strand-specific RNA-seq to identify schizophrenia-
associated differentially expressed lncRNAs and mRNAs as described10.
Briefly, DE-lncRNAs and DE-mRNAs were first identified by edgeR pairwise
analysis of four schizophrenia cases versus four healthy controls (four SDC
twins) and then retained their significant expression differences in
case–control analysis of four schizophrenia cases (from four SDC twins)
vs. 12 healthy controls (by including four HCC twins). A validation cohort
including 51 patients with schizophrenia and 48 unrelated non-psychotic
controls was further employed to measure RP5-998N21.4 expression level
by using qRT-PCR. All patients meet the diagnostic criteria for schizo-
phrenia according to the fourth edition of the Diagnostic and Statistical
Manual of Mental Disorders (American Psychiatric Association). Study
participants were free of any diagnosis of mental deficiency, traumatic
brain injury, or a history of illicit drug abuse or alcoholism. The control
group had no present, past or family history of mental illness or substance
abuse. The study was approved by the university review from Southern
Medical University and the local medical ethics committees of all
participating hospitals and universities and is compliant with the ‘Guidance
of the Ministry of Science and Technology (MOST) for the Review and
Approval of Human Genetic Resources. After introducing the nature of the
procedure, the written informed consent of the participants was obtained
before the study.
We then used a public RNA-seq dataset to validate the expression

differences of interested lncRNA or mRNA between schizophrenia and
controls from postmortem brain of CMC dorsolateral prefrontal cortex
RNA-seq data11 and CHP amygdala RNA-seq data13,35 and PsychENCODE
RNA-seq dataset (http://www.psychencode.org)12, or LCLs of 514 schizo-
phrenia and 690 controls19,27.
LncRNA RP5-998N21.4 co-expressed network analysis was performed

with WGCNA in the R package36 using FPKM values of lncRNA RP5-
998N21.4 and mRNAs that displayed significant correlations with RP5-
998N21.4 (|coefficient R| > 0.5 and P < 0.05) among these sixteen indivi-
duals, and network construction and module detection were analyzed with
the “BlockwiseModules” function in the WGCNA package. Coexpression
patterns of lncRNA RP5-998N21.4 with the candidate mRNAs were further
validated with RNA-seq datasets from brain or blood tissues among at least
40 samples of the GTExv7project (https://dbgap.ncbi.nlm.nih.gov)14 by
using cor function in R (v3.5.1). GO–BP enrichment analyses were
performed using WEB-based GEne SeT AnaLysis Toolkit (WebGestalt:
http://www.webgestalt.org/option.php)37.

RNA-seq analysis of RP5-998N21.4 overexpressed SK–N–SH
cells
To explore the potential targets of lncRNA-RP5-998N21.4, we over-
expressed a recombinant lentivirus carrying lncRNA-RP5-998N21.4 in
SK–N–SH cells and then performed RNA-seq analysis to identify the DE-
mRNAs induced by the overexpression of RP5-998N21.4. The recombinant
lentivirus driven by the EF1a promoter was constructed by cloning the
cDNA sequence of RP5-998N21.4 (Chr1:149372292–149379646, hg19) into
the PHAGE-fullEF1a-MCS-IZS Green expression vector via the NhEI and
BamHI restriction sites. An empty lentivirus vector with no insert was used
as a negative control. To obtain the lentiviruses, the transfer lentiviral
plasmid was cotransfected into HEK293T cells with the packaging plasmids
pMD2.G and psPAX2 using the CaPO4 coprecipitation method as
previously described38. Transduction of viral particles into SK–N–SH cells
was performed according to the manufacturer’s protocol. RNA extracted
from the transduced SK–N–SH cells using TRIzol reagent (Invitrogen) with a
minimum RNA integrity value of seven was used to build an RNA library.
The library was sequenced to a depth of ~27 million 150-bp paired-end
reads per sample on an Illumina HiSeq X ten by Novogene Solution
(Tianjin, China). The raw reads were subjected to quality control with
FastQC, and clean reads generated from the raw reads with Trimmomatic
were mapped to the hg19 reference genome using Bowtie2. Differential
expression tests were performed using DEseq2 in the R package.

Cell culturing, plasmid construction, quantitative PCR,
Western blotting, and ChIP
Human embryonic kidney (HEK) 293 T cells, human neuroblastoma cells
(SK–N–SH), and human U251 astrocytoma cells were cultured at 37 °C
and 5% CO2 concentrations in DMEM supplemented with 10% fetal

bovine serum (EX CELL) and antibiotics (penicillin and streptomycin,
Gibco, USA). The U251 cells were stimulated with 30 µg/ml poly I:C
(dissolved in PBS, ThermoFisher, USA) for 4 h and collected for further
analysis 44 h after transfection with plasmid using Lipofectamine 2000
(Life Technologies, USA).
The cDNAs from RP5-998N21.4, RBM14, CMC7, and CTBP1 genes were

cloned into the pcDNA 3.1(+) plasmid. RBM14-shRNAs were synthesized by
Sangon Biotech (China) and cloned into a pLKO.1 vector via the AgeI/EcoRI
restriction enzyme sites. The IFIT2 (chr10: 91061628-91061686, hg19) and
IFIT3 (chr10: 91087690–91087750, hg19) proximal promoter sequences
were amplified from human genomic DNA and cloned into a pGL4.18 dual-
luciferase vector (Promega, USA) via the KpnI/XhoI (for IFIT2) or KpnI/HindIII
(for IFIT2) restriction sites. These reporter constructs were transiently co-
transfected into HEK293T cells together with the pRL-TK plasmid as an
internal control for transfection efficiency using Lipofectamine 2000
reagents (Invitrogen, USA). Cells were harvested 48 h after transfection,
and the dual-luciferase activity (Promega) was measured with the Wallac
Victor V 1420 Multilabel Counter (PerkinElmer, USA).
Total RNA extracted from cell lines, human peripheral blood using TRIzol

reagent (Life Technologies) was reverse-transcribed into cDNA using a
PrimeScript RT Reagent Kit with gDNA Eraser (Takara Japan). A
comparative qPCR assay with SYBR green dye-containing SuperArray PCR
master mix (YEASEN, China) was performed on an ABI Prism 7900 system
(Life Technologies) with ACTB and/or GAPDH as reference genes for the
quantification of target gene levels as 2−ΔΔCt were subjected to statistical
analyses. All primers used in this study were synthesized by Sangon
Biotech (Supplementary Table 4). Western blotting was performed with
rabbit anti-IFIT2 (1:1000, Proteintech, USA), anti-IFIT3 (1: 1000, Proteintech),
anti-STAT1 (1: 1000, Proteintech), anti-phosphorate STAT1 (1: 1000,
Proteintech), anti-RBM14 (1: 1000, Abclonal, China), rabbit anti-GAPDH (1:
3000, Proteintech) antibodies.
ChIP assays were performed with cell extracts from HEK293T cells

using anti-H3K4me3 (1: 100, Abclonal) or anti-H3K27me3 (1: 100,
Abclonal) antibodies as recommended (EZ-ChIP, Merck, Germany). Cell
lysates extracted from HEK293T cells were subjected to ChIP assays using
antibodies 48 h after transfection with pcDNA3.1-RP5-998N21.4 or an
empty control vector, and the immunoprecipitated DNA was quantified
by qPCR using primers IFIT3, IFIT2, and ANXA3 to evaluate the histone
modification levels of H3K4me3 and H3K27me3 (Abclonal) at the target
regions.

RNA pulldown assay and mass spectrometry
To explore the protein partners that interact with RP5-998N21, we
performed in silico predictions and an in vivo experiment. We first
employed LncADeep software, which is based on deep learning
algorithms24, to predict lncRNA-protein interactions and obtain func-
tional annotations for lncRNAs. We then performed an RNA pulldown
assay using in vitro-transcribed biotinylated RP5-998N21.4 or its
antisense control RNA to pull down protein partners from HEK293T cell
lysates. RNA–protein complexes were captured by streptavidin magnetic
beads, separated by SDS-PAGE, and stained with Coomassie Brilliant Blue
(Supplementary Fig. 6a). The bands of interest were then excised and
sent for mass spectrometry analysis. Briefly, biotin-labeled lncRNAs were
transcribed in vitro using a Ribo RNAmax-T7 Biotin Labeling Transcrip-
tion Kit (RiboBio, China). Biotinylated sense or antisense lncRNA-RP5-
998N21.4 was incubated with HEK293T cell lysates at 4 °C for 2 h. The
interacting complexes were then purified with streptavidin agarose
beads (S1420, New England Biolabs, USA). The eluted proteins were
separated by SDS-PAGE and stained with Coomassie Brilliant Blue, and
the interesting protein bands were excised for in-gel trypsin digestion
prior to liquid chromatography (LC)–tandem mass spectrometry (MS)/MS
analysis at Guangzhou Fitgene Biotechnology Company (China). Proteins
with a peptide expectation value <0.05 were considered potential
lncRNA-RP5-998N21.4 interacting partners.

ChIRP assay
We employed ChIRP to examine the interaction of lncRNA RP5-998N21.4
with the IFIT2 and IFIT3 promoter region using an EZMagna ChIRP RNA
Interactome Kit (Merck). Briefly, HEK293T cell lysates were cross-linked with
1% glutaraldehyde 48 h after transfection with pcDNA3.1-RP5-998N21.4
and then sonicated using a Qsonica instrument (USA). A total of ten
biotinylated tilling probes were employed to capture lncRNA-RP5-998N21.4
by hybridization with the sonicated chromatin in two separate reactions:
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one for odd-number probes (#1, 3, 5, 7, and 9) and another for even-
numbered probes (#2, 4, 6, 8, and 10) synthesized by RiboBio technologies
(RiboBio, China). The chromatin complexes associated with lncRNA-RP5-
998N21.4 were pulled down using streptavidin-conjugated magnetic beads
and used for RNA and bound DNA isolation. The levels of lncRNA-RP5-
998N21.4 obtained from isolated RNA were quantified by qRT-PCR. The
levels of bound IFIT2 and IFIT3 DNA from isolated DNAs were quantified by
qPCR using primers in the predicted IFIT2 and IFIT3-binding regions.

RIP assay
RIP experiments were performed in cell extracts isolated from HEK
293 T cells transfected with pcDNA3.1-RP5-998N21.4. Nuclear extracts were
immunoprecipitated with 5 µg of an anti-RBM14 antibody (Abcam,
England) or isotype-matched control IgG overnight. RNA-protein-
antibody complexes were captured using Protein A/G Dynabeads (Merck).
RNA was eluted in accordance with the manufacturer’s instructions. cDNA
was synthesized from eluted RNA using a HiScript 1st Strand cDNA
Synthesis Kit (Vazyme, China) and analyzed by qPCR.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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