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Although �loviral infections are still occurring in different parts of theworld, there are no effective preventive or treatment strategies
currently available against them. Not only do �loviruses cause a deadly infection, but they also have the potential of being used as
biological weapons.ismakes it imperative to comprehensively study these viruses in order to devise effective strategies to prevent
the occurrence of these infections. Entry is the foremost step in the �loviral replication cycle and different studies have reported the
involvement of amyriad of cellular factors including plasmamembrane components, cytoskeletal proteins, endosomal components,
and cytosolic factors in this process. Signaling molecules such as the TAM family of receptor tyrosine kinases comprising of Tyro3,
Axl, and Mer have also been implicated as putative entry factors. Additionally, �loviruses are suggested to bind to a common
receptor and recent studies have proposed T-cell immunoglobulin andmucin domain 1 (TIM-1) and Niemann-Pick C1 (NPC1) as
potential receptor candidates.is paper summari�es the existing literature on �loviral entry with a special focus on cellular factors
involved in this process and also highlights some fundamental questions. Future research aimed at answering these questions could
be very useful in designing novel antiviral therapeutics.

1. Introduction

e Filoviridae family comprises of three genera: Ebolavirus,
Marburgvirus, and Cuevavirus (tentative). ese enveloped
viruses are nonsegmented with negative-sense RNA and
produce �lamentous virions, which are pleomorphic in shape
[1]. Ebolavirus has �ve known species: �aire (EBOV), Sudan
(SUDV), Reston (RESTV), Tai Forest (TAFV), and Bundibu-
gyo (BDBV) while Marburgvirus has only one species: Mar-
burg virus (MARV) [2–9]. EBOV andMARV and are known
to be serologically, biochemically, and genetically distinct
[10, 11].

e �loviral genome encodes seven structural proteins:
envelope glycoprotein (GP), major matrix protein (VP40),
nucleoprotein (NP), polymerase cofactor (VP35), replica-
tion/transcription protein (VP30), minor matrix protein
(VP24), and RNA dependent DNA polymerase (L). In
addition to this, EBOV also expresses a small, secreted,

nonstructural glycoprotein (sGP) (see [12] for a comprehen-
sive review).

Filoviruses are transmitted through contact with infected
blood or body �uids [13] and can infect many cell types
across different host species with lymphocytes being the
notable exception [14, 15]. Although �loviruses are known
to be pantropic, their preferred target cells include hepa-
tocytes, dendritic cells, endothelial cells, macrophages, and
monocytes (see [16] for a detailed review). Several species
of fruit bats are suggested to act reservoirs for these viruses
[17–21] and destroying these reservoirs could help to curtail
the spread of these viruses. EBOV and MARV cause a fatal
form of hemorrhagic fever [2, 6, 9, 12] and there are no
vaccines or drugs currently available against them.Moreover,
the US Centers for Disease Control and Prevention (CDC)
has classi�ed �loviruses as possible weapons for bioterrorism
[22]. erefore, these viruses need to be studied under
Biosafety Level 4 conditions, which restricts the number of
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research laboratories that can work with these infectious
viruses.

Entry is the earliest step in the viral replication cycle
and the �loviral entry process broadly involves the following
steps: binding of the virus to its receptor(s)/attachment
factors on the cell surface; uptake of the virus; intracel-
lular trafficking of the virus in endosomes via clathrin,
macropinocytic and/or caveolae-mediated endocytic path-
ways; viral fusion and release of the nucleocapsid into the
cytoplasm. Earlier reports investigating various steps of the
entry process have yielded con�icting results with various
studies implicating or refuting the involvement of different
cellular factors and endocytic pathways in this process. is
paper summarizes the key �ndings underlying the various
steps involved in �loviral entry with a special focus on the
cellular factors implicated in this process and also discusses
some unresolved issues in this �eld.

2. The Filoviral GPMediates Entry into
Target Cells

e �loviral GP is the only protein present on the virus
surface and facilitates receptor binding as well as fusion of
the virus envelope with the host cell membrane [23]. GP is
a type I transmembrane glycoprotein encoded by the fourth
gene from the 3′ end of the genome [24], and is expressed as
homotrimers, which form spikes on the surface of virus. Fold-
ing and assembly of EBOV GP trimers occurs independently
of other viral proteins [25].

GP is expressed as a precursor protein that is post-
translationally cleaved by a cellular proprotein convertase
furin into GP1 (140kD) and GP2 (26kD) [26], which are
linked by disul�de bonds. e GP1 subunit contains the
receptor binding site and a heavily glycosylated mucin-like
region (MLR),which facilitates viral attachment to target cells
but is not required for viral entry in vitro [27]. e MLR
also contains several epitopes, which are recognized by anti-
GP antibodies to facilitate antibody-dependent enhancement
of �loviral infection in vitro [28–30]. Furthermore, the
crystal structure of EBOVGP demonstrates that the receptor
binding site of GP1 is masked by a glycan cap and the MLR
and therefore, removal of these regions could perhaps expose
additional sites required for receptor/cofactor binding [31,
32]. e GP2 subunit contains two heptad repeat regions,
which facilitate assembly of GP into trimers, a transmem-
brane anchor sequence, and the fusion loop [25, 33]. In
MARV GP, the putative fusion domain is located 91 amino
acids from the furin cleavage site [34].e carboxy (C) termi-
nus region of EBOV GP and MARV GP is very homologous
and contains seven highly conserved cysteine residues, is high
in proline content and has a short hydrophilic tail [24].

Despite the extensive homology at the C terminus, EBOV
GP and MARV GP also exhibit several important distinc-
tions. EBOV GP and MARV GP only share 31% identity
in their amino acid sequence [35] and do not cross-react
serologically [5]. Also, MARV GP is synthesized as a 170kD
protein, which is encoded by a single open reading frame
(ORF) [24, 36]; while EBOV GP is encoded in two ORFs

and expression of the full-lengthGPoccurs by transcriptional
RNA editing [4].

3. Cellular PlasmaMembrane
Components Involved in Attachment and
Uptake of Filoviruses

Given the broad tissue tropism and host range of �loviruses,
it was believed that the receptors of these viruses are ubiqui-
tously expressed in most cells. Subsequently, beta 1 integrins
[37] and several lectins such as DC-SIGN, DC-SIGNR, L-
SIGN, and hMGL were shown to be involved in �lovirus
entry [38–42]. Matsuno and colleagues have demonstrated
that the efficiency of C-type lectin mediated MARV entry
differs between different strains [43] and that these lectins
are not functional receptors for �loviral entry [44]. e role
of another ubiquitous cellular factor folate receptor alpha in
�loviral entry has been implicated and refuted by different
groups [45, 46]. Two reports have suggested that the TAM
family of receptor tyrosine kinases comprising of Tyro3,
Axl and Mer are employed by �loviruses for entry [47,
48]. A more extensive analysis by Brindley and coworkers
demonstrated that while Axl facilitated viral attachment and
macropinocytic uptake of EBOV in several cell lines and
primary cells, it did not bind to GP directly and hence is not
a receptor for EBOV [49].

EBOVGP andMARVGPwere initially suggested to bind
to distinct cell surface residues for entry [14] and were also
speculated to use different receptors for internalization into
diverse cell types [50]. However, it is now known that these
viruses bind to a common receptor [51–53].

Recently, T-cell immunoglobulin and mucin domain 1
(TIM-1) was reported to be a common receptor for EBOV
andMARV[54]. TIM-1 is also known to bind to phosphatidyl
serine, which is exposed on the surface of apoptotic cells
and thereby facilitates phagocytosis of these cells [55]. Since
viruses such as in�uenza are known to trigger expression of
phosphatidyl serine on the surface of infected cells [56], it
is possible that �loviruses also trigger expression of phos-
phatidyl serine on the surface of infected cells, which could
then bind to TIM-1 and thereby facilitate viral uptake.
Interestingly, TIM-1 is not expressed in macrophages and
dendritic cells [57], which are the primary target cells of
�loviral infection. erefore, it is also possible that TIM-1
is merely one of many cellular factors that facilitate �loviral
entry. e detailed mechanisms governing the interactions
between �loviral GP and these cellular factors remain to be
understood.

4. Cytoskeletal Components Involved in
Filoviral Entry

e involvement of cytoskeletal proteins in EBOV entry has
been widely reported. Using pseudotyped virus, Yonezawa
and coworkers showed that microtubules and micro-
�laments are required for EBOV entry [58]. Similarly,
Ruthel and colleagues demonstrated that the EBOV matrix
protein VP40 directly associates with microtubules [59].



Advances in Virology 3

Several studies have also demonstrated the involvement of
actin and actin regulatory factors in EBOV entry [60–62].
Using �uorescently labeled EBOV, Saeed and coworkers
showed that phosphoinositide-3 kinase (PI3K), Akt, and
Rac1 are required for entry [63]. Using WT Zaire EBOV,
Kolokoltsov and colleagues demonstrated a requirement of
calcium/calmodulin kinase (CAMK2) in entry [64]. All these
studies also support the role of macropinocytosis in EBOV
entry.

5. Involvement of Clathrin, Macropinocytosis,
and Caveolae Endocytic Pathways in
Filoviral Entry

Using chemical inhibitors to block endocytosis, several
groups have shown that �loviruses are endocytosed in a pH-
dependent manner [14, 65–67]. Clathrin, macropinocytic,
and caveolae-mediated endocytic pathways have all been
implicated to be involved in �loviral entry. A few studies
have also reported the concomitant use of multiple endocytic
pathways in �loviral entry. However, the relative contribu-
tion of each of these endocytic pathways in �loviral entry into
different cell types is still unclear.

Using wild type as well as pseudotyped viruses, we and
others have shown that �loviruses use clathrin-mediated
endocytosis as an entry pathway [66–69]. We also performed
a comprehensive analysis of the clathrin pathway using
HIV pseudotyped with EBOV GP or MARV GP and found
that �loviruses have a common requirement for several
cellular factors of this pathway including clathrin heavy
chain (CHC), phosphatidylinositol binding clathrin assembly
protein (PICALM), epsin1, intersectin 1, dynamin 2, NUMB,
low density lipoprotein receptor adaptor protein 1 (LDL-
RAP1), inositol polyphosphate phosphatase-like 1 (INPPL1),
RALBP1-associated Eps domain containing 1 (REPS1), and
RALBP1-associated Eps domain containing 2 (REPS2). Inter-
estingly, while EBOV GP mediated entry was found to
require Eps15, AP-2, and DAB2; MARV GP mediated entry
was independent of these cellular factors and instead required
Arrestin, beta 1 (ARRB1) [68]. is differential requirement
for key components of the clathrin pathway in EBOV GP
versusMARVGPmediated entry could perhaps be attributed
to the differences in the composition of the GPs of these two
viruses or the usage of additional cellular factors/coreceptors
during entry.

Numerous groups have also described a role of macro-
pinocytosis in EBOV entry [47, 60, 61, 69, 70]. Using bio-
logically contained virions and virus-like particles (VLPs),
Nanbo and colleagues showed that EBOV virions co-localize
with sorting nexin (SNX) 5, which is a constituent of macro-
pinosomes [70]. Hunt and colleagues demonstrated that
Axl enhances macropinocytic uptake of EBOV [47]. Other
cellular factors that were implicated in EBOV entry via
macropinocytosis include p21-activated kinase (Pak1), ADP-
ribosylation factor 6 (Arf6), C-terminal-binding protein 1
(CtBP1), Protein kinaseC (PKC), andPhospholipaseC (PLC)
[47, 60, 61]. e role of dynamin 2 in macropinocytic entry
of �loviruses was implicated and refuted by different groups

[60, 61, 70]. Also, macropinocytic uptake of EBOV was
shown to be independent of viral morphology [61]. However,
the role of �loviral morphology in entry by clathrin and
caveolae pathways has not yet been established.

A few reports have also demonstrated that �loviruses can
simultaneously use multiple endocytic pathways for entry
[47, 66, 69] and it was suggested that perhaps the virus
preferentially chooses one pathway over another based on the
type of target cells or receptors used [50].

Although lipid ras and membrane cholesterol were
shown to be required for �loviral entry [58, 71], there are con-
�icting reports on the role of caveolae that are composed of
membrane cholesterol, in �loviral entry with different studies
implicating [47, 66, 72] or refuting [45] the involvement of
caveolae in �loviral entry.

erefore, future studies examining the relative contribu-
tion and preference of each of these endocytic pathways in
�loviral entry into target cells would prove insightful.

6. Endosomal Constituents Involved in
Filoviral Entry

Studies examining the trafficking of �loviruses have revealed
that aer entry, the virus trafficks from early to late
endosomes/lysosomes. Using GFP-labeled virions and VLPs,
Saeed and colleagues have demonstrated that EBOV trafficks
from EEA1 and Rab5-positive early endosomes to Rab7-
positive late endosomes in HEK293T and Vero cells [60].
Similarly, Nanbo and coworkers have shown using biolog-
ically contained virions and VLPs that EBOV localizes to
Rab7-positive late endosomes in Vero cells [70].

Several studies in Vero and Jurkat cell lines as well as
mouse embryonic �broblasts (MEFs) from cathepsins B and
L de�cient mice have demonstrated that proteolytic cleavage
of EBOV GP by these lysosomal cysteine proteases removes
the glycan cap and MLR of GP1 to produce a stable GP
intermediate, which is necessary for infection [66, 73–75].
In contrast, Martinez and colleagues have reported that
cathepsin L is not required for EBOV entry into human
dendritic cells, which are one of the primary target cells of
�loviral infection [76]. Moreover, a recent study by Misasi
and coworkers showed using Vero and MEF cell lines that
Zaire and Tai Forest species of EBOV require cathepsin B,
while Sudan and Reston species as well asMARV do not [77].
Hence, the role of cathepsins B and L in �loviral entry into
different cell types is not completely understood.

Recent reports have demonstrated that the endosomal
membrane protein Niemann-Pick C1 (NPC1) can directly
bind to EBOV GP and is an intracellular receptor for
�loviruses [78–80]. ese studies point towards the interest-
ing possibility that cell surface receptors such as TIM-1 and
endosomal receptors such as NPC1 perhaps act in concert
with each other to facilitate �loviral entry.

7. Cytosolic Cellular Factors Involved in
Filoviral Entry

Several cytosolic factors were shown to be required for
�loviral entry. Using EBOVGPpseudotyped virus, �onezawa
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F 1: Schematic representation of cellular endocytic pathways and factors implicated in �lovirus entry.

and colleagues have demonstrated that TNF-𝛼𝛼 enhances viral
entry and fusion [58]. Similarly, using EBOV GP pseudo-
typed virus, Quinn and coworkers have showed that Rho
B and C are required for EBOV entry [62]. Future studies
investigating the involvement of additional cytosolic factors
and the signaling pathways triggered by them to facilitate
�loviral entry would be very useful.

8. Intracellular Factors Involved in Fusion
and Release of Filoviral Nucleocapsid into
the Cytoplasm

Aer GP1 is cleaved by the host cysteine cathepsins, the
cleaved GP binds to NPC1 [78–80] and undergoes a series
of conformational changes resulting in the refolding of GP2
into a six-helix bundle and insertion of its fusion loop into the
host membrane. Viral membrane fusion results in the release
of NP, VP35, VP30, L, and the RNA genome into the host cell
cytoplasm. e cellular factors and molecular mechanisms
governing the different steps of the fusion process are not
clearly understood.

9. Implications of Using a Common Cellular
Receptor for Entry

Since �loviruses are suggested to bind to a common cellular
receptor and yet can enter via multiple endocytic pathways,
it is possible that these viruses require different corecep-
tor(s) and�or different processed or modi�ed forms of the
same primary receptor or coreceptor(s) for entry. Also, the
involvement of cell surface receptors such as TIM-1 as well as
endosomal receptors such as NPC1 in �loviral entry suggests
that �loviruses utili�e multiple receptors at various stages of
the entry process. Future studies dissecting the interaction of
�loviral GP with these receptors could be very insightful.

10. Therapeutic Implications

Small molecule inhibitors of NPC1 were shown to inhibit
EBOV infection [78]. Hence, future research aimed at
designing small molecule inhibitors of TIM-1 could be very
useful for therapeutic purposes. Since TIM-1 can facilitate
phagocytosis [55], speci�c inhibitors of phagocytosis can also
be explored as potential therapeutic candidates. Addition-
ally, several receptor tyrosine kinase inhibitors are already
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being used for treatment of numerous cancers [81–84] and
therefore, speci�c inhibitors of TAM receptors could also be
developed as anti-�loviral drug candidates.

11. Future Directions

e mechanisms governing �loviral entry are not completely
understood although recent studies have identi�ed several
cellular factors, which play critical roles in this process.
Figure 1 summarizes our existing knowledge on �loviral
entry and the key cellular factors implicated in this process.
However, there are several important pending questions the
answers to which will greatly enhance our understanding of
this �eld and also promote development of new avenues of
therapy.

Understanding the detailed interactions of �loviruses
with their cellular receptors/entry factors would be very
useful in designing effective strategies to block these inter-
actions. Since cellular factors are �xed targets, they are
ideal candidates for development of effective broad-spectrum
antiviral therapeutics. erefore, it would be important to
investigate the following broad issues.

(i) How do endosomal receptors such as NPC1 interact
with cell surface receptors such as TIM-1 to facilitate
viral entry? What are the molecular mechanisms
governing the interactions of �loviral receptors with
each other? Do the same residues of Filoviral GP bind
to all the putative �loviral receptors? How do the
�loviral receptors interact with key components of
endocytic pathways to participate in �loviral entry?

(ii) Do EBOV and MARV require any additional recep-
tors and coreceptor(s) for entry? If so, are these recep-
tors and coreceptor(s) conserved between the two
viruses? Is the requirement for receptors and/or core-
ceptors cell type speci�c? Does differential expression
of receptors/coreceptors on different cell types play a
role in determining the preference for one endocytic
pathway over the other? What are the molecular
mechanisms governing the interactions of �loviral
GPwith its cellular receptors/coreceptors that enables
�loviruses to exhibit broad tissue tropism and host
range?

(iii) What are the molecular mechanisms governing the
induction of conformational changes in GP down-
stream of GP-NPC1 binding, to drive membrane
fusion and release of the viral nucleocapsid into the
cytoplasm? Which cellular factors play a role in this
process?

Future research should be aimed at answering the above-
mentioned issues, which could help to reveal as well as char-
acterize the many intricacies involved in receptor binding,
uptake, and entry of �lovirus particles into target cells.
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