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Genomics offered the promise of transforming antibiotic discovery
by revealing many new essential genes as good targets, but the
results fell short of the promise. While numerous factors contributed
to the disappointing yield, one factor was that essential genes for a
bacterial species were often defined based on a single or limited
number of strains grown under a single or limited number of in vitro
laboratory conditions. In fact, the essentiality of a gene can depend
on both the genetic background and growth condition. We thus
developed a strategy for more rigorously defining the core essential
genome of a bacterial species by studyingmany pathogen strains and
growth conditions. We assessed howmany strains must be examined
to converge on a set of core essential genes for a species. We used
transposon insertion sequencing (Tn-Seq) to define essential genes in
nine strains of Pseudomonas aeruginosa on five different media and
developed a statistical model, FiTnEss, to classify genes as essential
versus nonessential across all strain–medium combinations. We de-
fined a set of 321 core essential genes, representing 6.6% of the
genome. We determined that analysis of four strains was typically
sufficient in P. aeruginosa to converge on a set of core essential genes
likely to be essential across the species across a wide range of condi-
tions relevant to in vivo infection, and thus to represent attractive
targets for novel drug discovery.
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All current antibiotics to date target essential functions in the
bacterial cell. The sequencing of the first bacterial genome

in 1995 (1) offered the hope of revolutionizing antibiotic discovery
by revealing the breadth of genes that could be mined for anti-
biotic targets, enabling genome-wide genetic screens to identify
essential genes in a given bacterial species and paving the way for
chemical screens to find new antibiotics inhibiting these essential
targets. However, this revolution has, to date, failed to materialize.
Several factors contributed to the disappointing yield of new

antibiotic candidates. These include the challenge of overcoming
the impermeable membrane and efflux pumps in bacteria, which
have made it difficult to translate inhibitors found in biochemical
assays into compounds with whole-cell activity; the need for im-
proved chemical libraries to provide better starting points for
chemical optimization against bacteria; and the focus on searching
for broad-spectrum agents with activity against a range of bacterial
species (2, 3).
Another contributing factor, however, has been the erroneous

determination of target essentiality, resulting in the pursuit of
inhibitors of targets that are either not essential at all in the
species or not essential in a subset of strains. Indeed, two major
studies experienced this challenge, with one study describing
“genomic blind spots” involving targets that were erroneously
thought to be essential based on the limited pathogen genomic
data available at the time, but were actually nonessential in ad-
ditional subsequently tested strains (4, 5). As a result, some in-
hibitors of targets thought to be essential failed to have good
activity against the full range of relevant pathogen strains (2, 3).

Another issue is that some targets may be essential only under
certain growth conditions (i.e., conditional essentiality) (6). Given
the variable environments encountered by bacterial pathogens in
laboratory media and different infection types (i.e., blood, urine,
lung, abscess infections), genes essential in artificial laboratory
growth conditions need not be essential during human infection.
This concept has been illustrated in the ongoing debate of whether
fatty acid biosynthesis, specifically the type II fatty-acid synthesis
(FASII) pathway, is essential in gram-positive bacteria during in-
fection (7). Although the pathway is essential under conventional in
vitro laboratory conditions, Brinster et al. (8) challenged its essen-
tiality in vivo by showing that several gram-positive pathogens could
be rescued in vitro by the addition of exogenous unsaturated fatty
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acids and that a mutant of Streptococcus agalactiae in which nu-
merous FASII genes had been deleted could be grown in both
human serum and septicemia mouse infection models, presumably
because of its ability to scavenge host fatty acids. The concept of
conditional essentiality is similarly illustrated in the notable example
of an inhibitor series that was developed to have potent in vitro
activity against Mycobacterium tuberculosis, but later found to have
no activity in a mouse tuberculosis model because the inhibitor’s
activity was dependent on growth in glycerol, the carbon source
present in a standard laboratory medium but not the source utilized
by M. tuberculosis during infection (9). These examples clearly
highlight the value of defining targets relevant to in vivo infection,
and not simply to in vitro conditions. At the same time, we note that
targets that may be essential under some, but not all, relevant in
vivo conditions may provide novel approaches to infection site-
specific agents.
Given the challenges of genomic blind spots and conditional

essentiality, we propose that antibiotic discovery could be im-
proved by focusing on “core essential genes,” by which we mean
genes that are essential across virtually all strains of a pathogen
species and all relevant growth conditions. We therefore sought
to develop a robust paradigm for defining the core essential
genes of a bacterial species. We focused on Pseudomonas aeru-
ginosa, a clinically significant pathogen that is a major cause of
bacteremia as well as pulmonary and urinary tract infections,
with high mortality rates (10–12) and for which there is the
greatest need for new antibiotics. Due to its ability to evade
current antibiotics or develop resistance, P. aeruginosa clinical
strains are increasingly resistant to all current antibiotics (13,
14). The WHO has recently classified P. aeruginosa as a pri-
ority pathogen in need of research investment and new drugs
(15). Alarmingly, only one in five antibacterial drugs succeed
in clinical trials (16), and of the 42 potential antibacterials
in development as of 2018, only two have expected activity
against P. aeruginosa, with only one of these having a new mech-
anism of action (https://www.pewtrusts.org/en/research-and-
analysis/articles/2016/12/tracking-the-pipeline-of-antibiotics-in-
development).
In pursuit of a general strategy to define a pathogen’s core

essential genome, we examined two fundamental questions.
First, how accurately can the core essential genome be identified
based on essentiality in one strain under one laboratory growth
condition? Second, how many strains must be examined to
converge on a set of core essential genes that are likely to be
essential under conditions relevant for infection, and thus may be
good drug targets? We addressed this question by using trans-
poson insertion sequencing [Tn-Seq; also abbreviated as TIS,
INseq, HITS, or TraDIS (17–21)] to perform genome-wide
negative selection studies on libraries of transposon-insertion
mutants under different growth conditions, with the distribu-
tion of transposon insertions determined by sequencing the pool
of strains. Genes that are important for optimal growth under a
specific growth condition can be identified, because the corre-
sponding mutants containing disrupting transposon insertions in
these genes will be significantly depleted from the pool of all
possible mutants. These methods have been applied to the two
commonly studied reference laboratory strains of P. aeruginosa,
PA14 and PAO1, with varying numbers and identities of essen-
tial genes (22). Here, we applied this method to PA14 on Luria–
Bertani (LB) medium and compared the essential genome
determined from this single strain on a single laboratory-based
medium with eight other diverse strains of P. aeruginosa under
five different growth conditions. The strains comprised isolates
from various human infections (including pulmonary, urinary,
blood, wound, and ocular) and one environmentally isolated
strain, while the growth conditions comprised three media
intended to simulate the conditions of human infection (sputum,
serum, and urine) and two laboratory-based media (LB and

M9 minimal media). We further developed a simple statistical
method, called FiTnEss (Finding Tn-Seq Essential genes), that
maps measurements of fitness of individual transposon mutants
onto a binary classification of essential or nonessential with user-
defined levels of stringency. We applied FiTnEss to the Tn-Seq
data from all strain and medium combinations and defined a set
of 321 core essential genes, which represent 6.6% of the genome,
that constitute a high-priority list of candidate targets for drug
discovery against this important pathogen. Finally, we calculated
that as few as four individual strains could be examined in com-
bination to approach a plateau of core essential genes across
a given species.

Results
Transposon Mutagenesis, Sequencing, and Mapping of Transposon
Insertions. We chose strains from a collection of 130 clinical P.
aeruginosa isolates obtained from various sources (Materials and
Methods). We performed whole-genome sequencing on the col-
lection and mapped the isolates to a phylogenetic tree formed by
2,560 P. aeruginosa genomes in the National Center for Bio-
technology Information (NCBI) Genome database. We also
tested a subset for their ability to be efficiently mutagenized by
the Himar1-derived transposon MAR2xT7 (23–25). We selected
the MAR2xT7 transposon because it is engineered to reduce
polar effects that can occur when transposon integration into a
nonessential gene disrupts the transcription of a downstream
essential gene (because it contains a gentamicin resistance cas-
sette that lacks a transcriptional terminator downstream, and
thus allows downstream transcription from the gentamicin
resistance promoter).
Based on this information, we focused on nine strains that

represented five different infection types (blood, urine, re-
spiratory, ocular, and wound), with each strain representing a
different branch of the dendrogram (NCBI; Fig. 1A). The ge-
nomes of these nine strains varied from 6.34 to 7.15 Mbp.
We constructed transposon libraries by performing tripartite

matings of these nine P. aeruginosa strains with Escherichia coli
donor strain SM10 carrying an episomal MAR2xT7 transposon
(24) and E. coli strain SM10 carrying an episomal hyperactive
transposase that results in efficient integration at the dinucleo-
tide sequence “TA” (26) (SI Appendix, Fig. S1). Separating the
transposase and transposon increased the efficiency of insertion
sequencing and mapping, relative to the more common system of
a single plasmid carrying both the transposase and the transpo-
son. We obtained at least 5 × 106 distinct mutants for each strain
from at least two independent conjugations, and selected mu-
tants on each of five different agar media directly to avoid a
bottleneck from preselecting the libraries on a given medium. To
ensure saturating mutagenesis, a total of 1 × 106 mutants were
selected on each medium in duplicate, yielding 10-fold more
transposon mutants than possible insertion sites. The media types
included rich (LB) and minimal (M9) laboratory media, to provide
the boundaries (extremes of growth conditions) for essential gene
identification, and three media intended to resemble infection site
fluids: FBS, synthetic cystic fibrosis sputum (SCFM) (27), and urine.
We mapped the transposon-insertion sites to the corresponding
reference genomes for each strain.
In all, we created 90 Tn-Seq datasets (nine strains grown on

five media, performed in duplicate), with an average number of
mapped reads of ∼107. Reads at each TA site were highly con-
cordant between replicates, with a mean R2 = 0.98 (Dataset S1).
Visual inspection readily identified examples of genes that

were variably essential under different growth conditions for a
certain strain, illustrating the conditional essentiality of some
genes (Fig. 1B). For example, the thiamine synthesis genes thiD
and thiE showed few insertions in M9 minimal medium, which
lacks thiamine, but an abundance of insertions in rich LB me-
dium, indicating their essentiality in M9 but not LB medium.

Poulsen et al. PNAS | May 14, 2019 | vol. 116 | no. 20 | 10073

M
IC
RO

BI
O
LO

G
Y

https://www.pewtrusts.org/en/research-and-analysis/articles/2016/12/tracking-the-pipeline-of-antibiotics-in-development
https://www.pewtrusts.org/en/research-and-analysis/articles/2016/12/tracking-the-pipeline-of-antibiotics-in-development
https://www.pewtrusts.org/en/research-and-analysis/articles/2016/12/tracking-the-pipeline-of-antibiotics-in-development
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1900570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1900570116/-/DCSupplemental


Variability is also seen for the hemL gene under different growth
conditions. We similarly saw examples of genes that were var-
iably essential in different strains under the same growth con-
dition. For example, the pilY1 gene did not tolerate insertions in
strain BWH013, but readily tolerated insertions in the other
eight strains, when grown on LB medium, highlighting the ge-
nomic plasticity of P. aeruginosa (Fig. 1C).
To optimize our accuracy in calling genes essential or non-

essential, we removed from our analysis three classes of TA sites
that can lead to technical errors. These classes include (i) non-
permissive insertion sites consisting of the sequence (GC)
GNTANC(GC), which was recently reported to be intolerant to
Himar1 transposon insertions in M. tuberculosis (28) and which
we confirmed is also intolerant in P. aeruginosa; (ii) non-
disruptive terminal insertions within 50 bp of the 5′- and 3′-gene
termini (a distance we optimized empirically), which can never-
theless result in the expression of a functional, albeit truncated,
version of the corresponding gene product (29); and (iii) in-
sertion sequences at which genomic sequences flanking a TA site
were not unique and could not be accurately mapped (Materials
and Methods and SI Appendix, Fig. S2). In total, we removed
16,499 of 81,328 TA sites (20%) in PA14, which resulted in our
inability to assess 150 genes in PA14 (2.5%). The inability to
assess the essentiality of genes that contain zero TA sites (30)
removed another 185 genes from analysis in PA14. In total, we
were able to assess the essentiality of 5,708 of the 5,893 total
genes in the PA14 genome (97%). The statistics were similar for
the other eight strains (SI Appendix, Table S1).

FiTnEss: A Statistical Model to Identify Essential Genes. We next
sought to perform a comprehensive and quantitative analysis of
the 90 Tn-Seq datasets. While various methods exist for analyzing
Tn-Seq data (17, 31–33), they differ in their complexity and their
stringency for calling a gene as essential. We thus developed a
simple model and method (FiTnEss) for identifying essential
genes from Tn-Seq data that required minimal assumptions and
had good predictive power. The important features of FiTnEss are
that (i) it evaluates genes (rather than individual TA sites or
stretches of TA sites) and (ii) it uses a simple two-parameter
model to capture all of the salient features of the data (with the
simple model yielding greater statistical power).
FiTnEss assumes that the number of reads observed at a

particular TA site in a gene depends on the fitness of loss-of-
function mutant in the gene. We found that the distribution of
the number of TA sites per gene is bimodal, with presumed

nonessential genes on the right and essential genes on the left (SI
Appendix, Fig. S3A). The distribution of nonessential genes can
be well fit by a model in which the read counts at TA sites in a
gene follow a geometric distribution with probability pg, with 1/pg
drawn from a log-normal distribution. This model requires only
two parameters: μ (the mean fitness for nonessential genes, as
reflected in the mean reads per TA site in a gene) and σ (the
variance of the fitness for nonessential genes). We calculate μ and
σ for each individual Tn-Seq dataset, based on nonessential genes
and then apply it to the entire dataset. Because the validity of the
model depends on our estimates of μ and σ based on nonessential
genes, we are conservative in including nonessential genes: We
take only genes from the extreme right side of the distribution (top
75% of genes with the most reads, with 10 TA sites).
This model requires one other assumption, that the fitness

distribution does not depend on gene size or number of TA sites
contained in a gene. Rephrased, the model assumes that the
number of reads at each TA site is independent of the numbers
of TA sites in a gene. We tested the validity of this assumption.
Because detection power for a gene depends on the number of
TA sites in the gene (SI Appendix, Fig. S3B), we compared the
distributions of reads at randomly sampled TA sites, allowing us
to compare similar numbers of sites in genes of different size. We
found that the numbers of reads at randomly sampled TA sites
were independent of the numbers of TA sites in a gene (SI
Appendix, Fig. S3D), confirming the validity of our assumption.
Using the two parameters (determined individually for each

dataset), we then constructed a theoretical “nonessential” dis-
tribution for each gene size category within each corresponding
dataset and calculated the probability (P value) of a given gene
coming from this nonessential distribution. To vary the strin-
gency with which we called essentiality, we applied two different
levels of multiple testing adjustment: one with maximal strin-
gency to offer the highest confidence set of essential genes
[family-wise error rate (FWER)] to identify genes with no or very
few sequencing reads and one with high stringency yet slightly
relaxed [false discovery rate (FDR)] to identify genes that are
statistically significant yet contain a low number of reads. Genes
with an adjusted P value <0.05 in both replicates were predicted
to be essential (Fig. 2A and SI Appendix, Additional Methods and
Results). Virtually all maximal stringency calls are expected to be
true essential genes, while among the high-stringency set, a small
number of false-positive predictions are expected.
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Validating FiTnEss Using Strain PA14. To validate FiTnEss’s ap-
proach to predicting gene essentiality, we compared its predic-
tions with actual viability and growth measurements for a set of
PA14 mutants in which we cleanly deleted particular genes of
interest. We created clean deletion mutants corresponding to
20 genes that FiTnEss identified as nonessential in LB medium,
but were essential in one or more of the other media, as well as
to three control genes that were predicted to be nonessential in
all media. We determined the positive and negative predictive
values of FiTnEss by growing the 23 mutants on the same five
media as used in the original Tn-Seq experiments, for a total of
115 gene-medium combinations. Mutant strain viability was cate-

gorized as essential, intermediate, and nonessential using densi-
tometry (<20%, 20–50%, and >50% relative to wild-type strain
PA14 containing no transposons, respectively; Fig. 2 B and C and
SI Appendix, Fig. S4). Of the 35 combinations predicted to be
essential by the maximal stringency criteria, 30 were indeed
found to be essential and five were of intermediate growth.
Importantly, no strains within this criterion were, in fact, non-
essential. By relaxing the stringency slightly to “highly stringent,”
15 additional strain-medium combinations were predicted to be
essential, eight of which were truly essential or of intermediate
growth and the remaining seven were nonessential, corroborat-
ing our prediction that some false-positive predictions would be
expected in this category. Of the 65 combinations predicted to be
nonessential, none were found to be essential, but six were found
to be of intermediate growth. In this limited dataset, FiTnEss had
a positive predictive value of 100% using maximal stringency and
86% using the high-stringency predictions (if intermediate genes
are classified as essential). The negative predictive value of
FiTnEss is 91% or 100% (depending on the classification of in-
termediate genes). Notably, all three control strains behaved as
predicted, growing on all media, despite our having chosen these
control strains with P values that fall at the boundary drawn to
distinguish essential and nonessential genes, further reinforcing
the accuracy of this binary classification. All together, these re-
sults support FiTnEss’s ability to accurately call essential and
nonessential genes, and that FiTnEss’s stringency can be varied
based on user tolerance of false-positive versus false-negative
predictions. Importantly, FiTnEss correctly predicted gene es-
sentiality despite the presence of a small number of mapped
insertions in the primary Tn-Seq data of some genes, as exem-
plified in the case of the ilvC gene encoding ketol-acid reduc-
toisomerase (Fig. 2A).

Defining the Core Genome. We first defined the core genome
consisting of 5,109 protein-coding genes (genes present in all
nine strains) using the orthogroup clustering software Synerclust
(34). The size of the core genome defined by these nine strains is
comparable to what has been previously described for P. aeru-
ginosa [5,316 total genes (35)]. Of these genes, 4,903 were pre-
sent in a single copy with TA sites that allowed assessment by
Tn-Seq; the remaining genes (86 multicopy genes in which reads
could not be accurately mapped due to sequence homology and
120 small genes that do not have TA sites permissive to trans-
poson insertion) could not be assessed (Dataset S2). The ac-
cessory genome within each strain (the genes that are not present
in all nine strains) ranged from 655 to 1,369 genes.

Defining the Core Essential Genome. We then examined the FiT-
nEss predictions for all 90 datasets to identify the core essential
genes across the P. aeruginosa species (Table 1 and Dataset S3).
If one examines only a single strain in a single medium, the number
of essential genes varies widely between 354 and 727 genes, even
when using the maximal stringency prediction (Table 1). If one
examines only genes common to all strains (the core genome),
however, the number of essential genes from strain to strain was
much more tightly distributed (337–386 genes; SI Appendix, Fig. S5).
In contrast, the number of essential genes in the accessory genome
of each strain varied widely from 59 to 478 genes (SI Appendix, Fig.
S5); interestingly, the number was roughly proportional to genome
size (SI Appendix, Fig. S5).
When combining all nine strains across the five media and ap-

plying maximal stringency, we found that there are only 249 core
essential genes (5.1% of the genome). This number is up to three-
fold fewer than the number found for a single strain and medium. If
we apply the slightly lower standard of high stringency (to allow for
the possibility of some false-negative predictions in the data), an
additional 72 genes (1.5% of the genome) are included, resulting in
321 genes. We define this set as the core essential genome.
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of 23 gene deletions can be found in SI Appendix, Fig. S4. (C) Summary of
FiTnEss performance based on actual deletion mutant growth profiles.
Gene-medium instances are indicated in parentheses; and red and green
boxes highlight false-positive and false-negative rates, respectively.
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To assess whether the core essential genome had reached a
plateau, we calculated how the number of core essential genes
decreases with additional strains (with strains added in 10,000
different random orders) (Fig. 3A). We found that the median
across these trajectories typically plateaued after four strains, but
that five strains would ensure 90% of all trajectories reaching a
plateau defined as a <5% false-positive rate (Fig. 3B). Beyond the
four strains, the maximum number of core essential genes declined
by only 13 genes. These genes just failed to reach the essential P
value threshold, suggesting that they were false-negative predic-
tions (Dataset S4). If we were to include these 13 genes, the core
essential genome would reach 334 genes. We also examined how
the number of essential genes varied under different growth
conditions. The numbers of genes that were essential in all nine
strains in a single medium ranged from 412 to 439 genes, versus
334 genes under all growth conditions (Table 1).
We examined the identities and functions of the core essential

genes. Of the 321 core essential genes, 263 correspond to cytosolic
proteins, with 132 involved in metabolic pathways (50%) and
119 involved in macromolecular synthesis, including DNA repli-
cation, transcription, or translation (45%). Another 56 correspond
to cytoplasmic membrane, periplasmic, and outer membrane
proteins, with the majority involved in cell structure and division,
involved in metabolism, or acting as transporters/chaperones (13,
12, and 26 genes, respectively). The remaining 12 of the 321 genes
are completely uncharacterized (Fig. 4A and Dataset S5).

Conditionally Essential Genes. In addition to the core essential
genes, the core genome contains conditionally essential genes
that are essential in one or more, but not all, media. Sputum and
M9 media had the highest number of conditionally essential
genes (118 and 110, respectively), consistent with these being the
most nutritionally depleted media. LB medium had 103 condi-
tionally essential genes, while urine and serum had the fewest
(69 and 91, respectively) (Table 1). While the numbers of es-
sential genes required in each growth condition did not vary
significantly from condition to condition, the actual gene iden-
tities did vary (Dataset S5). Importantly, we identified an addi-
tional 24 conditionally essential genes required for growth in all
three infection-relevant media (serum, sputum, and urine; Fig.
4B) but not in both of the laboratory-based media (LB and M9).
Several of these genes are involved in pyrimidine and purine
synthesis and are not required in LB medium, suggesting that
sufficient nucleotide intermediates may be present in LB me-
dium to sustain growth in vitro but that these genes may be valid
targets during in vivo infection.
When we applied multiple correspondence analysis to all sets

of essential genes for every strain-growth condition, we find that,
indeed, the vast majority of strains formed distinct clusters based

on growth condition (SI Appendix, Fig. S6). Interestingly, one
strain, PA14, an extensively used laboratory strain, was an outlier
under two conditions, M9 and urine. In these two media, we ob-
served that, compared with other strains, PA14 has more essential
genes involved in the TCA cycle and oxidative phosphorylation.
This behavior could be a consequence of PA14 being a laboratory
strain that has adapted to laboratory conditions over a long period
of time, perhaps providing a slight cautionary flag if attempting to
extrapolate PA14 behavior to the species in general.
Contained within the sets of conditionally essential genes for

each growth condition are genes that are essential only in a single
medium, termed “unique conditionally essential” genes. Con-
sidering only the three infection-relevant conditions, while ig-
noring the laboratory conditions, sputum had 29, serum had 16,
and urine had 17 unique conditionally essential genes. These
unique conditionally essential genes carry the intriguing potential
of becoming infection site-specific targets for infection type-specific
antibiotics (e.g., a urine-specific antipseudomonal antibiotic) as
long as their essentiality is not dependent on factors that are
variable from patient to patient.
The essential genes unique to sputum consist mainly of bio-

synthetic pathways such as thiamine, pyridoxine, and tryptophan
synthesis, with the former two cofactors being required for
multiple cellular processes, including synthesis and catabolism of
sugars and amino acids, and the latter requirement suggesting

Table 1. Number of essential genes in each strain-medium combination

Strain
Genome
size*

Genes
analyzed† LB M9 Serum Sputum Urine

Strain
essentials‡

BL23 6,687 6,272 721 661 696 718 534 405 (794)
BWH005 6,307 5,956 547 592 495 508 453 379 (634)
BWH013 6,190 5,898 545 527 644 594 478 362 (715)
BWH015 5,907 5,622 388 393 395 390 354 300 (396)
CF77 6,480 6,122 556 518 626 737 529 410 (829)
PS75 5,812 5,558 441 417 445 468 404 324 (465)
PA14 5,893 5,708 437 519 430 489 475 364 (467)
X13273 6,594 6,261 590 458 643 566 437 356 (669)
19660 6,271 5,891 508 442 512 552 429 334 (586)
Core‡ 5,109 4,903 318 (424) 329 (431) 304 (412) 338 (439) 298 (390) 249 (321)

*Total number of protein-coding genes.
†Number of protein-coding genes analyzed in this study; absent genes were eliminated from study as described in the text.
‡Maximal stringency essential genes are shown; high-stringency essential genes are shown in parentheses.
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that tryptophan levels in sputum may not be sufficient for growth
(27). Similarly, urine-specific essential genes almost exclusively
consist of genes involved in amino acid biosynthesis, specifically
valine, leucine, and isoleucine pathways. Meanwhile, methionine
and arginine pathways are essential in both urine and serum. The
urine findings are consistent with the fact that these amino acids
are among the least abundant in urine (30). However, despite the
low abundance of proline and cysteine in urine, classical proline
and cysteine biosynthesis genes are not essential, likely because
alternative, functionally redundant synthesis pathways exist in
P. aeruginosa for these amino acids (36, 37).
In contrast, most genes involved in amino acid biosynthesis are

dispensable in serum, as are genes involved in heme biosynthesis
(pdxA,H and hemA,B,C,D,E,F,H,J,L), likely due to the ability to
scavenge amino acids (38) and heme from free hemoglobin (39, 40)
from serum. Interestingly, despite the nonessentiality of porphyrin
genes in serum, genes involved in the formation and utilization of
porphyrin-containing cytochrome c were uniquely essential in serum
and no other media, including the cytochrome c biogenesis protein
CcmH (PA14_57540), cytochrome c1 (Cyt1; PA14_57540), the
ubiquinol cytochrome c reductase (PA14_57570), and cytochrome c
oxidase cbb3-type subunit I (CcoN; PA14_44370). P. aeruginosa’s
respiratory chain is highly branched and able to use diverse electron
donors and acceptors under different environments (41). Here, we
find that in an environment containing high concentrations of heme,

P. aeruginosa’s respiratory flexibility is lost, as it becomes dependent
on a single pathway.
To validate in vivo a strategy of targeting conditionally es-

sential genes identified from our in vitro Tn-Seq experiments, we
tested a set of PA14 deletion mutants for their ability to survive
in different in vivo mouse models of P. aeruginosa infection.
Using a neutropenic mouse model in which the bacteria are ad-
ministered i.v. to test translation of the in vitro serum growth
condition, we infected mice with six strains: wild-type PA14; three
mutants containing deletions of metabolic genes predicted to be
essential in serum, sputum, and urine but not LB medium (pyrC,
pyrimidine biosynthesis; tpiA, glycolysis; and purH, purine bio-
synthesis); one mutant containing a deletion in a gene predicted
be essential in serum and urine but not sputum (argG, arginine
biosynthesis); and one mutant containing a deletion in a gene
predicted to be conditionally essential in sputum alone but not
serum or urine (thiC, thiamine biosynthesis; Fig. 5A). In concor-
dance with their predicted conditional essentiality, the pyrC, tpiA,
and purHmutants were significantly attenuated in the neutropenic
mouse model with a three- to four-log reduction in total colony-
forming units in the spleen 16 h postinfection. Interestingly, the
argG mutant was not attenuated as predicted. To understand this
discrepancy, we compared its growth on agar plates supplemented
with mouse, bovine (which was used in the Tn-Seq experiments),
or human serum. Indeed, the mutant was able to grow on mouse
serum, but not on bovine or human serum, thereby explaining the
lack of mutant attenuation in the mouse model, likely due to the
higher levels of arginine available in mouse serum (42–44) (Fig.
5B). Finally, as predicted, the thiC mutant was not significantly
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attenuated in the neutropenic mouse model; it was, however, at-
tenuated in an acute pneumonia mouse model, where the in-
oculum is delivered intranasally followed by colonization of the
lungs, which is consistent with FiTnEss predictions (Fig. 5C).
Together, these datasets highlighted the tremendous differences
required by P. aeruginosa in different microenvironments that
could be exploited in the development of infection condition-
specific therapeutics.

Discussion
Target-informed antibiotic discovery and development have
been predicated on knowing which genes within a given species
constitute good targets, with genomic technologies such as Tn-
Seq paving the way for more comprehensive definition of es-
sential targets. However, comprehensive genomic methods for
defining essential targets, such as Tn-Seq, have largely been
applied to only a single or a few bacterial strains under a single or
a few growth conditions, with the implicit assumption that these
results will apply to the entire species under infection-relevant
conditions. Here, we sought to develop a general strategy for
determining the core essential genome of a bacterial species and
to examine how the number of essential genes varies among
strains and growth conditions. We empirically determined that
the analysis of essential genes among four diverse strains was
sufficient to define the core essential genes in P. aeruginosa.
Using Tn-Seq and a method of analysis, FiTnEss, to establish

the core essential genome of P. aeruginosa, we determined that
while a single strain has ∼400–800 essential genes, the core es-
sential genome across all strains analyzed is ∼321 genes, thus
demonstrating the limitations in determining species essentiality
based on a single strain and/or single medium condition. Further,
there are an additional 24 essential genes required for growth in
the three infection-relevant media examined, which are non-
essential in LB and M9 media. Finally, we find that there are
∼15–30 unique, conditionally essential genes for each of the
infection-relevant media examined, with their corresponding
biological pathways important for survival only within a partic-
ular host tissue environment; these genes may represent a unique
set of targets for infection type-specific therapeutics, with the
obvious caveat that their essentiality cannot be dependent on
microenvironmental factors that vary widely from patient to
patient. Interestingly, our study provides insight into differences
in gene essentiality between P. aeruginosa and other character-
ized bacterial species such as E. coli, which differ, for example, in
genes required for ATP or fatty acid biosynthesis (45, 46).
Previous transposon mutagenesis studies of two common

laboratory strains, PA14 and PAO1, have found varying numbers
of essential genes, as reviewed by Juhas (22). These studies have
predominantly focused on identifying genes refractory to trans-
poson mutagenesis when bacteria are selected for growth on
laboratory media, including LB, brain–heart infusion (BHI), and
minimal media (24, 47–50), although recent studies have ex-
tended growth conditions to include sputum or sputum-like
media (49, 50) in vitro. A comparison of all of these datasets
combined revealed an intersection of only 109 essential genes
common to all studies (Dataset S6). This low concordance is
likely due to methodological or analytical differences between
the studies. One way in which our study differs from the majority
of previous studies is that we did not initially select transposon
mutants on a rich (isolation) medium (i.e., LB medium) before
selection on the condition of interest, thereby eliminating a
bottleneck that prevents evaluation of genes essential in the iso-
lation medium. By omitting the initial isolation step, we were able
to identify 103 conditionally essential genes that are required in
LB medium, but not in at least one of the other four media. In
addition to these in vitro studies, in vivo Tn-Seq studies can be
valuable in determining what genes are required for fitness in the
context of an active infection (48); however, they also suffer from

the problem of experimental bottlenecks that practically limit the
ability to truly interrogate essentiality on a genome-wide scale.
These bottlenecks include the required isolation step before in-
oculating into an animal and the depletion of mutants in vivo due to
stochastic loss rather than a true fitness loss of the mutant itself (17).
Experimental methods for identifying gene essentiality have

varied greatly through the years. Despite significant advances for
defining fitness costs of gene disruptions on a genome-wide scale
using sequencing (Tn-Seq), limitations persist. They include (i)
analysis of mutant behavior in pools where there can be both
competition as well as in trans complementation, factors that can
cause mutant growth in a pool to diverge from growth in iso-
lation; (ii) transposon sequence insertion biases (28, 51); and (iii)
polar effects on adjacent genes conferred by transposon insertion.
These limitations prevented us from evaluating the essentiality of
∼5% of the genome and can technically lead to errors in assessing
fitness and essentiality. We indeed found examples of discordance
where our Tn-Seq data classified genes as essential even though
mutants of these genes are available, albeit growth-defective, such
as hfq, rpoN, and gidA (52–54). These cases could be due to
FiTnEss errors; alternatively, one must consider the possibility that
these mutants have reduced fitness when grown in competition but
not in isolation, or that reported mutants could contain compen-
satory mutants acquired in their construction that allow deletion
of the gene of interest.
A major challenge to analysis is translating measurements that

quantify a continuum of fitness to a binary classification of es-
sentiality versus nonessentiality to define the best antibiotic
targets. Approaches can vary substantially, with different sys-
tematic errors and different tolerances for false-positive versus
false-negative predictions (SI Appendix, Additional Methods and
Results and Fig. S7). We therefore developed a Tn-Seq analysis
pipeline, FiTnEss, that balances false-positive and false-negative
rates with the aim of accurately classifying gene essentiality,
while providing two levels of stringency depending on one’s
tolerance for false-positive versus false-negative predictions. We
validated FiTnEss using clean gene deletion mutants (Fig. 2 and
SI Appendix, Fig. S4).
We used FiTnEss to perform the binary classification of the

4,903 genes in the core genome that could be assessed across
nine P. aeruginosa isolates. The great majority of core essential
genes can be broadly categorized as being involved in metabolic
pathways or macromolecular synthesis such as DNA replication,
transcription, or translation. That the core essential genome is
dominated by genes involved in macromolecular synthesis (i.e.,
nucleic acids, protein, cell wall) may explain, in part, why most
current antibiotics seem to target this limited set of functions
(i.e., fluoroquinolones, aminoglycosides, beta-lactams, respec-
tively). Three recent gram-negative antibiotic candidates reported
in the literature also target essential genes identified in this
study [i.e., lptD, lepB, msbA (55–58)]. There has been greater
reticence to target metabolic pathways, given concern over the
ability of bacteria to scavenge nutrients from the host, thereby
rendering their biosynthesis nonessential during infection. In-
deed, we see variable requirements for metabolic genes in our
identification of conditionally essential genes, such as a greater
dependence on amino acid biosynthesis in urine than other
growth conditions. We have, however, demonstrated that this
conditional essentiality can, in fact, be exploited in vivo, as mice
infected with the pyrC, tpiA, and purH mutants that are signifi-
cantly growth-impaired on infection-relevant media have a dra-
matically reduced bacterial burden in a systemic infection model.
Further, the thiC mutant, found to be essential in M9 medium
and sputum alone, was attenuated in an acute pneumonia model,
yet was still virulent if introduced systemically, demonstrating
variable metabolite levels in different infection sites in vivo and
raising the possibility of infection site-specific therapeutics.
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In summary, we suggest that a major factor in the failure of
genomics to transform antibiotic discovery in the late 1990s to
early 2000s was due not to a fundamental flaw with the concept
of defining essential genes, but rather to challenges in imple-
menting the approach, namely, defining essential genes based on
limited information. Advances in genomic technologies now
make possible studies on a much greater scale, allowing us to define
essential genes in a way that overcomes previous shortcomings. Our
work describes a general approach applicable to other pathogens,
given the explosion in available bacterial genomes. While the number
of strains required to reach a plateau in essential genes for different
species may vary based on the genomic diversity of a species, the basic
paradigm should apply broadly. Importantly, defining the core es-
sential genome for different species will enable comparative genomics
studies to understand differing evolutionary or adaptive programs
adopted by the different species, and to distinguish targets that may
be ideal for species-specific versus broad-spectrum targeting. For
important pathogens such as P. aeruginosa, our hope is that defining a
core essential genome by selecting diverse strains across its phyloge-
netic tree will enable more effective discovery and development of
much needed antibacterial therapeutics.

Materials and Methods
Strain Selection and Plasmid Construction. A genome tree report of 2,560 se-
quenced P. aerguinosa strains was downloaded from the NCBI (organism ID
187) and visualized with the Interactive Tree of Life (iTOL) tool (59). Nine strains
were selected for genetic diversity and graciously gifted from various sources:
PA14, 19660, and X13273 were obtained from Frederick M. Ausubel, Mas-
sachusetts General Hospital, Boston (60); BWH005, BWH013, and BWH015 were
collected through the Brigham and Women’s Hospital Specimen Bank per a
protocol previously described (61); BL23 was obtained from Bausch & Lomb (62);
PS75 was obtained from Paula Suarez, Simon Bolivar University, Sartenejas, Mi-
randa State, Venezuela; and CF77 was obtained from the Boston Children’s
Hospital (63). The pC9 containing a hyperactive transposase was derived from
pSAM-DGm (48), and the pMAR containing the Himar1 transposon was derived
from pMAR2xT7 (24).

Transposon Library Construction and Sequencing. Recipient P. aeruginosa
strains were prepared for mating as previously described (64). P. aeruginosa and
midlog cultures of E. coli SM10(pC9) and E. coli SM10(pMAR) were collected by
centrifugation, washed, and resuspended in LB medium. A total of 3 × 1011 cfu
were mixed in a 2:2:1 ratio of pC9/pMAR/recipient and collected by centrifuga-
tion. The cell mating mixture was resuspended to a concentration of 1011 cfu/mL,
and 30-μL spots were dispensed to a dry LB agar plate. Mating plates were in-
cubated at 37 °C for 1.5 h before cells were scraped, resuspended in PBS, mixed
with glycerol to a final concentration of 40%, aliquoted, and flash-frozen before
storage at −80 °C. Matings were performed at least twice for each recipient
strain, and efficiencies were quantified by plating to LB-selective agar. Two
hundred fifty milliliters of each medium containing 1.5% agar, 5 μg/mL irgasan,
and 30 μg/mL gentamicin was prepared in a Biodish XL (Nunc). LB and
M9 minimal agar (US Biologicals) and synthetic cystic fibrosis medium agar
(SCFM) (27) were prepared. Pooled filter-sterilized urine and FBS (Thermo Fisher
Scientific) were warmed to 55 °C and mixed with a 5% agar solution (Teknova)
to achieve a 1.5% final agar concentration. Five hundred thousand colony-
forming units of each transposon-integrated strain was plated to each me-
dium in duplicate and grown at 37 °C for 24 h (LB medium, FBS, and SCFM) or
48 h (urine andM9) before scraping and resuspending cells in PBS. Genomic DNA
was isolated, and Illumina libraries were prepared using a custom method and
primers described in SI Appendix, Fig. S1 and Dataset S7. Sequencing was per-
formed with an Illumina NextSeq platform to obtain 50-bp genomic DNA reads.

Determining Essential Genes from Tn-Seq Data Using FiTnEss. All sequencing
read count data and analysis files are available (https://data.broadinstitute.org/
fitness/) and on the NCBI Sequence Read Archive (65). The analysis pipeline,
including sequencing summarization and the FiTnEss software, is freely avail-
able (https://github.com/broadinstitute/FiTnEss) (66). Genomes and annota-
tions for each strain were obtained from www.pseudomonas.com and https://
patricbrc.org (67). The core and accessory genomes were determined by gene
clustering analysis across the strains tested using Synerclust (33). Illumina reads
were mapped to each respective genome using Bowtie (68), utilizing the op-
tions for exact and unique read mapping. Reads potentially mapping to more
than one location in a genome were discarded, and homologous TA sites were
removed from analysis by searching the genome using custom scripts. TA in-
sertion sites at the distal 50 bp from each end of the gene and nonpermissive
insertion sites containing the sequence (GC)GNTANC(GC) were removed using
custom scripts. Reads mapped to each TA site were tallied using scripts mod-
ified from a study by DeJesus et al. (32). For each Tn-Seq dataset, a lognor-
mal − negative binomial distribution was conservatively fit using genes with a
median number of TA sites and the top 75% of reads per gene (nonessential
genes) to identify parameters ðμ, σÞ. Then, a theoretical distribution ðngÞ* was
constructed using these two parameters for each gene size category based on
the number of TA sites per gene ðNTAÞ. Background distributions for these
categories were obtained from numerical sampling of the theoretical distri-
bution. The actual number of reads for each gene was compared with the
background distribution for the corresponding NTA category, and a P value
was calculated as the probability of obtaining the number of reads ðngÞ or less
by chance. Two-layer multiple comparison adjustments were conducted. First,
to obtain a maximally stringent essential set, we adjusted for the FWER using
the Holm–Bonferroni method. Second, to reduce the risk of losing targets, we
relaxed the stringency slightly to obtain a highly stringent essential set, by
adjusting for the FDR using the Benjamini–Hochberg method. After either
correction process, genes with an adjusted P value smaller than 0.05 in both
replicates were identified as essential. A full description and calculations are
provided in SI Appendix.

Method Validation with Clean Gene Deletions. Gene deletions were performed
as previously described in strain PA14 (64). Gene deletions were confirmed by
PCR amplification and sequencing. Successful gene deletion strains were
grown in duplicate in LB medium at 37 °C for 16 h before diluting 10−4 in
PBS. Five microliters of diluted culture was spotted to the five solid media
used in this study and grown at 37 °C for 24 h. Images were captured,
densitometry was performed using ImageJ (NIH), and growth was catego-
rized relative to 10 wild-type replicates: essential (0–20%), growth-defective
(21–50%), and nonessential (>50%).

In Vivo Mouse Models. All vertebrate animal experiments were done with the
approval of the Massachusetts General Hospital’s Institutional Animal Care
and Use Committee. Bacteria were grown to midlog, collected by centrifu-
gation, washed, and resuspended in PBS. For the systemic infection model,
9-wk-old female BALB/c mice (The Jackson Laboratory) were injected i.p. with
4 mg of cyclophosphamide 3 d before infection. Mice were infected i.v. with
5 × 105 cfu per mouse. For the acute pneumonia model, mice were infected
intranasally with 1 × 106 cfu per mouse. For both infection models, mice
were euthanized 16 h postinfection and spleens (systemic) or lungs (pneu-
monia) were harvested and homogenized in 1 mL of PBS + 0.1% Triton
X-100 using a TissueLyser LT (Qiagen) before plating to LB agar + 5 μg/mL
irgasan to enumerate the bacterial burden.
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