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A B S T R A C T   

Essential metals including iron (Fe) and manganese (Mn) with known physiological functions in human body 
play an important role in cell homeostasis. Excessive exposure to these essential as well as non-essential metals 
including mercury (Hg) and Aluminum (Al) may contribute to pathological conditions, including PD. Each metal 
could be toxic through specific pathways. Epidemiological evidences from occupational and ecological studies 
besides various in vivo and in vitro studies have revealed the possible pathogenic role and neurotoxicity of 
different metals. Pesticides are substances that aim to mitigate the harm done by pests to plants and crops, and 
are extensively used to boost agricultural production. This review provides an outline of our current knowledge 
on the possible association between metals and PD. We have discussed the potential association between these 
two, furthermore the chemical properties, biological and toxicological aspects as well as possible mechanisms of 
Fe, Mn, Cu, Zn, Al, Ca, Pb, Hg and Zn in PD pathogenesis. In addition, we review recent evidence on deregulated 
microRNAs upon pesticide exposure and possible role of deregulated miRNA and pesticides to PD pathogenesis.   

1. Introduction 

Parkinson’s disease (PD) is the second most common neurodegen
erative disorder after Alzheimer’s disease (AD) [1,2]. In urbanized 
countries, the approximated incidence of PD is 0.3 % in the general 
population, 1.0 % in people older than 60 years and 3.0 % in people 
older than 80 years. PD incidence rates are approximated to range be
tween 8–18 per 100,000 person per year [3,4]. Sex also plays an 
important role in PD pathogenesis. Several studies found that male ex
hibits greater prevalence and earlier onset of PD as compared to female 
[5,6]. During PD patients experience progressive extrapyramidal 
symptoms, including tremor, bradykinesia, rigidity and postural 
imbalance, additionally a variety of non-motor symptoms such as sleep 
and mood disorders. Augmentation of these symptoms occurs with the 
disease progression [7–9]. The pathological hallmarks of PD are the 
reduction of dopamine levels due to loss of dopaminergic neurons in the 
substantia nigra (SN) pars compacta (SNpc), and accumulation of mis
folded alpha-synuclein (αSyn), in abnormal intra-cytoplasmic inclusions 
called Lewy bodies (LBs) [10–12]. Genetic mutations such as Gluco
cerebrosidase 1 (GBA1), Leucine-rich repeat kinase 2 (LRRK2) and 

PTEN-induced putative kinase 1 (PINK1) also play a prime role in PD 
pathogenesis as it exaggerates synucleopathies and ROS generation 
[13–18] Other contributory factors comprises environmental toxicants 
such as pesticides, mitochondrial dysfunctions, oxidative stress, chronic 
neuroinflammation and calcium imbalance [19–21]. Medications, ce
rebrospinal meningitis and poisoning account for about 25 % cases of 
parkinsonism. The PD’s 75 % cases are idiopathic [22,23]. Out of the 75 
% idiopathic cases, more than 90 % are sporadic, while only 5–10 % 
have a genetic background. Circadian rhythm disorder is also one of the 
risk factors for PD development [24–26]. In PD development, circadian 
rhythm disorder also plays an important role, and it is estimated that 
60–90 % of PD patients present sleep disturbance during early stages of 
disease progression [27]. In addition to the aforementioned contribu
tory factors, metals alteration in the brain also play a pivotal role in PD 
pathogenesis. Owing to the significance of metals in the maintenance of 
cell homeostasis they play a pivotal role in the body functions mainte
nance. Among 23 elements with known physiological functions, 12 are 
metals including iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu) 
[28]. Xenobiotic metals, including aluminum (Al), lead (Pb) and mer
cury (Hg) with unknown physiological functions are also present in a 
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significant concentration in the human body [29]. Mounting shreds of 
evidence from the previous research has revealed that dyshomeostasis 
and exposition to these aforementioned metals are connected to 
increased PD risk [30–32]. A huge amount of in-vivo and in-vitro studies 
have been illustrated metals neurotoxicity through the generation of 
oxidative stress and other specific pathways [33]. Numerous metals are 
essential for physiological functions, and their dyshomeostasis have 
been associated with neurodegenerative disorders [28]. Metals produce 
reactive oxygen species (ROS), and due to this ROS, DNA damage occurs 
and leads to apoptosis [29,34]. Metals may also increase the expression 
of genes associated with neurodegenerative diseases [35]. In medical 
chemistry and neurotoxicology, the involvement of metals in PD path
ogenesis is still a matter of great concern [36]. Its contribution is either 
through metallic toxicants or by depletion in essential metals for human 
health [37]. Numerous epidemiological studies have shown significant 
association between PD and long term exposure to metals [38,39]. The 
primary resources of metals exposure are medications, contaminated 
seafood, occupational exposure, environmental pollution and amalgam 
fillings in dental metals restorations [40–42]. A positive correlation was 
found between industrialization and PD prevalence in developed 
countries where environmental exposure to metals occur [43,44]. 
Metals exposure have an adverse effect on the health and cognition in 
children [45,46]. Occupational exposure to Fe, Al and Mn double the 
risk of PD. In contrast, those workers who are exposed for more than 20 
years to Pb and Cu have shown 2–10 fold increase in PD prevalence [30, 
47]. The Elevated level of Hg is associated with a high prevalence of PD 
[48]. Vanadium pentaoxide (V2O5) inhalation in PD’s rodent model is 
associated with the nigrostriatal dopaminergic system damage [49,50]. 
Metals ions usually exaggerate the aggregation properties of αSyn in PD 
[51]. 

Acknowledging the potential role of metals on PD, in this review we 
have discussed the potential association between metals and PD, 
furthermore the chemical properties, biological and toxicological as
pects as well as possible mechanisms of Fe, Mn, Cu, Zn, Al, Ca, Pb, Hg 
and Zn in PD pathogenesis (Fig. 1). 

2. Iron 

2.1. Iron and its role in the PD pathogenesis 

Mounting evidences indicate increased levels of Fe in specific brain 
regions in particular neurodegenerative diseases, especially in PD. In the 
brain of PD patient’s SNpc and lateral Globus pallidus, an approximately 
two fold increased in Fe levels occurred. In neurodegenerative disorders 
including PD, inflammation associated with dysfunction of metals ion 

homeostasis (Fe) accompanied by concomitant oxidative stress is the 
main factor in disease progression [52,53]. The role of Fe as risk factor 
for PD was suggested when the levels of total Fe was found 176 % 
increased, and that of ferric ion was increased by 225 % in SNpc of PD 
relative to age-matched control. Three lines of evidence indicated Fe as a 
risk factor in PD, including Fe levels, are increased in SN but not in other 
regions of the brain. Postmortem studies have shown elevated iron levels 
in DAergic neurons in PD. PD animal models showed neuroprotection by 
genetic or pharmacological chelation of Fe. Spectrophotometric method 
and Perl’s staining, inductively coupled plasma spectroscopy, MRI, laser 
microprobe mass analysis, susceptibility weighted imaging (SWI) and 
enhanced T2 star weighted angiography (ESWAN) studies have shown 
elevated Fe levels in SNpc of the brain [54,55]. 

2.2. Possible mechanism of iron in PD pathogenesis 

2.2.1. Iron and oxidative stress 
The Brain requires high concentration of Fe due to its role in energy 

metabolism, myelin formation and synthesis of neurotransmitters. Due 
to Fe strong redox ability, it participates in Fenton chemistry leading to 
ROS generation, which in turn induces oxidative stress causing cell 
dysfunction and ultimately cell death [56]. 

2.2.2. Iron and ubiquitin-proteasome system (UPS) 
In addition to Fe accumulation, UPS impairment is also implemented 

in PD pathogenesis. UPS impairment, which is also responsible for IRPs 
degradation, may also cause accumulation of IRPs and Fe [57–59]. 

2.2.3. Iron and αSyn aggregation 
αSyn aggregation is a key event in PD pathogenesis. The misfolding 

and aggregation of αSyn, which may be resistant to ubiquitination is 
suggested to contribute to PD. αSyn has been shown to directly bind Fe 
in both the Fe3+ and Fe+2 states, and ferric iron is able to foster its ag
gregation. ROS present in the cells could catalyze the oxidation of Fe 
toward its ferric form resulting in an exacerbation of α-Sync aggregation. 
Therefore, increased levels of Fe could result in an increased translation 
of αSyn protein [60,61]. 

2.2.4. Iron and gene mutation 
Parkin, αSyn, LRRK2, PINK1, and DJ-1 are among several genes 

known to be linked to PD pathogenesis. Fe has a relationship among 
genes involved in monogenic PD. The Hyper echogenicity of the SN has 
also been found to be a typical sign in idiopathic PD and increased Fe 
level is responsible for this SN hyper echogenicity. By using transcranial 
sonography in PD patients having mutations in either of αSyn, LRRK2, 
Parkin, PINK1, or DJ-1 genes, showed significantly larger echogenicity 
in the SN relative to healthy controls [62–64]. 

3. Copper (Cu) 

3.1. Copper content distribution in the brain 

Humans body contains Cu as the third most abundant essential 
transition metal. The main sources of copper exposure to the body, in 
form of dietary intake are cereals, fresh fruits and vegetables [65,66]. 
Following liver, the brain is the organ contains the highest Cu because 
this organ has a high metabolic rate and is prone to oxidative stress. 
Total brain Cu content in human has been approximated to be 3.1 μg/g 
wet weight. However, due to physiological and anatomical heteroge
neity of brain, different regions contain different Cu contents. In human, 
locus coeruleus and SN contains the highest Cu contents. Cerebrospinal 
fluid (CSF) 0.2 μM of Cu content. While synaptic cleft contains 250 μM of 
Cu [67,68]. During development, with age and in neurodegenerative 
diseases, brain Cu content and distribution changes. In PD, approxi
mately 50 % reduction in Cu content reported in substantia nigra and 
locus coeruleus [69,70]. 

Fig. 1. Inorganic elements i-e Fe, Cu, Mn, Zn, Al, Ca, Pb and Hg causing UPS 
impairment and as a result oxidative stress, mitochondrial dysfunction and 
protein misfolding which are possible mechanisms of PD pathogenesis. 
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Different transport systems including copper transporter receptor 
(Ctr)1, copper transporter receptor (Ctr)2, DMT1, metallothioneins 
(MTs), glutathione (GSH), Copper-transporting P-type ATPases ATP7A 
and ATP7B play a pivotal role in the maintenance of mammalian cellular 
and systemic Cu homeostasis [71,72]. While the blood brain barrier 
(BBB) and blood-cerebrospinal fluid barrier (BCB) are the main regula
tory systems of the brain Cu homeostasis requiring combined action of 
Ctr 1 and ATP7 [73,74] 

3.2. Role of copper in PD pathogenesis 

The main pathological hallmarks in PD are protein aggregation and 
oxidative stress, although triggers for these events are not known, but 
changes in bio metals have long been suspected of playing a role in these 
events. Cu is an important bio metal and play a role in degenerating 
SNpc in PD. A Substantial decrease in tissue Cu has been reported over 
the decades. According to recent research, peripheral Cu dyshomeostasis 
occurs in PD [75]. Literature studies has proved that free Cu is more 
deleterious for neurodegenerative diseases due to its redox capacity and 
in turn, generation of free radicals as in the Fenton reaction [76]. 

3.3. Possible mechanisms of Cu toxicity in PD pathogenesis 

Following are the possible mechanisms of Cu toxicity in PD 

3.3.1. Cu and αSyn interactions and their toxicity in PD 
PD can arise from αSyn accumulation, overexpression and aggrega

tion as well as autosomal dominant mutations in αSyn gene resulting in 
A53 T, H50Q, E46 K, A53E, G51D, and A30 P variants. αSyn aggrega
tion and oligomerization within the neuronal cytoplasm has a delete
rious effect and linked to neurotoxicity [77,78]. Cu accumulates in the 
brain with aging and has the ability to bind with the αSyn and initiate its 
aggregation. Asp and Glu residues, abundantly present at the C terminus 
of αSyn, were identified as Cu (II) binding donors. At normal pH, αSyn 
exhibits two binding sites for Cu (II) at M1-D2 and H50. At the same 
time, at pH 5.0, H50 binding site at αSyn is abated replacing with 
D119-E123. While Cu (I) binds at M1-M5 and M116-M127. In cells both 
species of Cu co-exists, and transition between these species facilitates 
amyloid aggregates leading to ROS generation and cell damage [79]. 
Point mutation to major Cu (II) site H50 leads to the familial form of PD 
[80,81]. The Copper-αSyn complex is represented by post translational 
modifications induced by oxidative stress, and this is one of the main 
perspectives because synucleinopathies and neurodegenerative dis
eases, in general, are linked with high levels of oxidative stress in the 
brain [82,83]. Some studies have linked neuroinflammation with syn
ucleopathies [84]. 

3.3.2. Oxidative mechanism of Cu and its role in PD pathogenesis 
The ability of Cu to cycle between its oxidized state (Cu2+) and 

reduced state (Cu+) enables it to act as a redox catalyst and to coordinate 
a large variety of ligands [85]. This feature suggests its involvement in 
Fenton chemistry, as well as Haber-Weiss cycle, both are involved in the 
initiation of the generation of highly reactive hydroxyl radicals from 
hydrogen peroxide and results in the generation of unstable active 
radicals which attacks macromolecules. These radicals are the powerful 
oxidizing agents capable of induction of DNA strands breaks and lipid 
peroxidation [76]. Metals overload causes extensive genome damage, 
especially base modification and strand breaks demonstrated experi
mentally in vitro with isolated DNA [86]. Cu exerts its genotoxic effect 
via generation of singlet oxygen and/or hydroxyl radicals bound to or in 
close connection in copper-binding sites on double-stranded DNA rather 
than via the generation of free hydroxyl radicals [87]. The main targets 
of Cu induced oxidative stress is mitochondria which are accompanied 
by the functional impairment of mitochondrial respiratory enzymes [88, 
89]. Cu induced oxidative stress, triggers apoptosis via activation of 
tumor suppressor proteins p53, which in turn trigger cascade of anti or 

pro-apoptotic proteins or direct action at mitochondria [90]. An in-vitro 
study revealed that Cu assists the dopamine and related catechols such 
as L-Dopa and 6− OH-Dopamine oxidation. The complexes arise from 
these dopamine oxidations causes DNA damage [91,92]. 

3.4. Miscellaneous mechanisms associated with Cu toxicity 

Although Cu toxicity is attributed to its oxidative stress, there are 
certain proteins to which Cu directly attached and induces its toxicity. 
Cu binds to X-linked inhibitor of apoptosis, induces a conformational 
change and decreases its half-life, thereby making the cell more sus
ceptible to apoptotic stimuli and exerts its toxic effect [93]. Cu may bind 
to Cu metabolism independent protein’s thiol and amino groups, 
thereby modifying their structure and biological functions [94]. Cu in
hibits enzymatic activities of cytochrome P450, GSH transferases, and 
lactate dehydrogenase [95]. Cu hampers the activities of DNA glyco
sylases NEIL1 and NEIL2 and inhibit both phosphatase and kinase ac
tivities of polynucleotide kinase 3′-phosphatase (PNKP) that is 
responsible for preparation of nicked DNA for ligation. Also, Cu inhabits 
DNA-binding affinity of the DNA nick sensor poly(ADP-ribose) poly
merase-1 (PARP-1) and H2O2-induced poly(ADPribosyl)ation in HeLa 
S3 cells. Alterations in neuromodulatory functions and their effect on 
voltage-gated ion channels and synaptic receptors are also contributed 
to some extent in Cu toxicity [96,97]. 

4. Manganese (Mn) 

4.1. Mn adequacy 

Even though its necessity, excessive and prolonged inhalation of Mn 
particulates in mining, welding and industries results in its accumula
tion in selected brain regions that causes CNS dysfunctions and neuro
logical consequences. One of the prominent hazards is in the form of 
manganism an extra pyramidal syndrome related to PD. Mn can block 
dopamine synthesis at the level of tyrosine hydroxylation and can also 
induce the release of dopamine from intracellular stores. Positron 
emission tomography imaging of nonhuman primate brains has revealed 
impaired DA transmission, a feature of PD, in the striatum of Mn- 
exposed animals. The link in the clinical features and pathophysiology 
has been established between Mn-induced parkinsonism and PD 
[98–101]. 

4.2. Mn distribution in the central nervous system 

Human’s brain Mn concentration in ordinary physiological condi
tions is approximately 5.32–14.03 ng Mn/mg protein (20.0–52.8 Mm 
Mn), whereas in pathological conditions it reaches to 15.96–42.09 ng 
Mn/mg protein (60.1–158.4 Mm Mn). Mn accumulation and distribu
tion is affected by various groups of factors which results in its dysho
meostasis and toxicity [102]. Highest Mn concentrations is found in 
human’s brain putamen, caudate nucleus and Globus pallidus, while 
lowest in pons and medulla. These highest levels of Mn are correlated 
with age. In PD highest level were found, especially in putamen while 
lowest in superior and middle temporal gyrus and Globus pallidus 
[103–105]. Mn has acquired an importance in the brain physiology and 
biology due to its role as a cofactor in several enzymatic processes. 
Following are some of the Mn-dependent and Mn-activated enzymes 
that play a crucial role in brain physiology and maintenance and func
tion such as arginase with its two isoforms ARG1 and ARG2. Glutamine 
synthetase (GS), superoxide dismutase (Mn-SOD1/SOD2), pyruvate 
carboxylase and protein serine/threonine phosphatase-1 (PP1) 
[106–108]. 

Mn is toxic at high levels. In order to maintain its homeostasis in the 
CNS, the outflow mechanism play a pivotal role. Recently four main 
proteins facilitate this outflow including Ferroportin (Fpn), Solute car
rier family 30 member 10 (SLC30A10), Secretory pathway Ca2+- 
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ATPase 1 (SPCA1) and ATPase 13A2 (ATP13A2 or PARK9). Fpn and 
SLC30A10 directly export cytosolic Mn out of neurons, while SPCA1 
indirectly control Mn efflux through the Golgi apparatus and ATP13A2 
via lysosome. In the presence of Mn, mice, and human embryonic kidney 
cells display more Fpn levels. People with mutations in the SLC30A10 
suffer from hypermanganesemia. ATP13A2 has been associated with 
early-onset parkinsonism and Kufor-Rakeb syndrome [109,110]. 

4.3. Mn possible pathogenic mechanisms in PD 

Mn pathogenic mechanism is still not been completely understood, 
but evidence from different studies imply that Mn shows its toxicity 
through several mechanisms. 

Reduction in dopamine levels in SNpc by 80 % is the hallmark of 
idiopathic PD. It is hypothesized that the locus coeruleus degeneration 
potentially exceeds dopaminergic degeneration in SNpc. Mn exposure 
affects brain tissue and extracellular NE concentrations as well as its 
intake. Mn effect on NE biology results in clocus coeruleus disturbance 
and in turn, the nigrostriatal dopaminergic pathway. Mn causes a two- 
fold reduction in both protein and mRNA levels of α2-adrenergic re
ceptors in clocus coeruleus and SNpc [111,112]. 

Mn exposure elevates the extracellular concentration of γ-amino
butyric Acid (GABA) its nigrostriatal pathway intake, and alteration in 
its receptors and transport, which results in an alteration in locomotor 
effects such as hyperkinesia and ataxia. As GABA neurons receives 
dopaminergic terminals from the SNpc, so its perturbance results in 
dysregulation of nigrostriatal pathways [113,114]. 

Mitochondria are one of the most important targets for Mn-induced 
cellular dysfunction. It contributes to mitochondrial dysfunction by 
inhibiting mitochondrial complexes I and II of the electron transport 
chain. In addition, it decreases mitochondrial membrane potential and 
increases intracellular ROS levels [115,116]. 

Mn can trigger glial activation and neuro inflammation involving 
microglia and astrocytes and indirectly damage neurons [117]. 

Association between environmental exposure and genetic factors 
play a pivotal role in PD pathogenesis. Mn and genetic mutations asso
ciated with PD alters biochemical pathways and as a result, augment PD 
pathology. In a genome-wide study on cultured human astrocytes, Mn- 
induced expression changes were observed in genes associated with 
inflammation and DNA repair [118]. Non-human primates study 
revealed that Mn-induced changes in the brain gene, involved in 
apoptosis and inflammation [119]. 

Mn and αSyn combination have a deleterious effect on cells survival. 
Mn can accelerate the in-vitro fibrillation of αSyn. Moreover, a mutation 
in genes such as G2019S LRRK2, ATP13A2 and Parkin (PARK2) play a 
crucial role in Mn-induced neuronal toxicity [120–122]. 

MicroRNAs (miRNAs) are single stranded RNAs that regulate gene 
expression post-transcriptionally via binding to the 3′-untranslated re
gion (UTR) of mRNAs. Additionally, mir-7 and mir-433 play a pivotal 
role in the regulation of the SNCA gene in normal and PD brain. Mn 
exposure leads to dysregulation of several miRNAs’ which regulate 
apoptosis and synaptic transmission. Dysregulation of miRNA expres
sion was recently identified as contributing to a higher risk of neuro
degeneration [123–125]. 

5. Zinc (Zn) 

5.1. The brain function and Zn importance 

The Brain contains the average Zn concentrations between 
10− 15 μg/g of wet tissue. Different regions of the brain have different 
Zn levels with highest in hippocampus, amygdala and cerebellum. Zn is 
transported through BBB in the form of complexes with amino acids L- 
histidine and cysteine. Zn is present in the brain in three forms, first 
pool: in metals bound form which constitutes 90 %, second pool: in ions 
form and constitutes about 10 % and stores in presynaptic vesicles of 

glutamatergic neurons. Third pool: consists of free ions and present in 
non-precise form and constitutes 1%. Zn acts as a second messenger. It 
inhibits NMDA receptors and GABA receptors-mediated response which 
leads to the reduction of neuronal excitability. Zn enhances AMPA re
ceptors in postsynaptic cells and regulates cell excitation. Therefore 
sustainable Zn homeostasis is required for proper brain functioning 
[126–128]. 

5.2. Zn neurotoxicity and possible mechanisms concerned with PD 
pathogenesis 

Zn is important for proper brain functioning. Zn dyshomeostasis in 
the brain leads to the pathogenesis of numerous neurodegenerative 
disorders, including PD. Evidence from recent research revealed that Zn 
ions are capable of directly binding to PARK9. High Zn concentrations 
are a possible cause of PD as elevated Zn levels were found in SNpc of 
post mortal brain of PD patients [129–131]. Taking into consideration 
the aforementioned studies, it is revealed that Zn may play an important 
role in PD pathogenesis by following possible mechanisms 

Until now, three main hypotheses are devised by which Zn may 
possibly cause cells damage and death, including excessive Zn causes 
excitotoxicity, induces oxidative stress and impairs the production of 
cellular energy. These all may act synergistically and cause cell death 
[132,133]. In addition, oxidative stress due to ROS production con
tributes significantly to PD pathogenesis. Zn is involved in this process 
because its dyshomeostasis causes free ROS generation, decrease su
peroxide dismutase (SOD) activity as well as expression levels of met
allothioneins, which in turn induces oxidative stress. ROS generation in 
the mitochondria disrupts metabolic enzymatic activities and in turn, 
activates apoptotic processes [134]. In PD pathogenesis proteins mis
folding and aggregation plays an important role. Protein aggregation 
results in Lewy bodies (LB) formation in dopaminergic neurons. αSyn is 
the main constituents of LB. Under normal conditions, UPS is respon
sible for its degradation. The malfunctioning of UPS is responsible for 
aberrant protein aggregation and protein death. Ubiquitin-conjugated 
proteins serve as a marker for impaired UPS. Numerous studies 
revealed that Zn dyshomeostasis causes induction of UPS impairment 
which in turn causes αSyn aggregation and increased expression of 
ubiquitin-conjugated proteins in the dopaminergic neurons and 
augment PD pathogenesis [135–139]. 

6. Aluminum (Al) 

6.1. Al neurotoxicity 

Al neurotoxicity is well-established fact now both in human and 
rodents. Al distributes in various brain regions and in human, its content 
increases with aging. Epidemiological and molecular studies have been 
linked the long-term exposure to Al along with its cellular concentra
tions, with multiple neurological disorders including PD. Elevated levels 
of Al have been found in dopamine-related brain regions in PD patients. 
The mechanism involving Al neurotoxicity is poorly understood. But the 
following mechanisms are considering as possible key contributors in Al- 
induced neurodegenerative diseases. 

Oxidative stress is one of the major mechanisms behind metal 
induced neurotoxicity. It is a biochemical process resulting from the 
generation of ROS in the electron transport chain. Several studies have 
shown the presence of oxidative products of lipids, proteins and DNA in 
PD postmortem tissues. Even though Al is not a transition metal, but it 
reacts with other metals to generate ROS. Numerous researchers have 
shown the involvement of Al induced ROS and oxidative stress in Al 
neurotoxicity [140,141]. Numerous studies have revealed that in PD, Al 
affect tyrosine hydroxylase (TH) activity and inhibits DNA synthesis. 
Presence of Al is associated with increased aggregation of α-synuclein 
proteins. Mitochondria are important organelles serve as the power 
house of cells. It helps in the maintenance of cell functions. Several 
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studies have revealed the involvement of Al induced oxidative stress in 
mitochondrial dysfunction [142,143]. Al induced oxidative stress results 
in proteins misfolding, reduced microtubule transport of neuronal ves
icles, lipid peroxidation and eventually results in apoptosis. In addition 
to the aforementioned mechanisms, Al may create pro-inflammatory 
signals, innate immune disruption, altering NF-kβ, p53 and JNK path
ways and play a pivotal role in PD pathogenesis [144–146]. 

7. Calcium (Ca) 

7.1. Calcium dyshomeostasis and its role in PD pathogenesis 

Brain Ca2+ dyshomeostasis has been associated with PD and other 
neurodegenerative disorders. The peculiar dependence of SNpc DA 
neurons on voltage-dependent L-type Ca2+ channels make it more 
vulnerable for damage. The demands of sustained Ca2+ entry enhance 
the aging process and make SNpc DA neurons more vulnerable to genetic 
and environmental challenges [147–149]. Ca2+ dyshomeostasis is 
associated with PD pathology through various mechanisms. Ca2+ pro
motes αSyn toxicity through Ca2+-dependent protein phosphatase cal
cineurin. In addition, some studies have proven that αSyn interacts with 
membrane to cause Ca2+ dyshomeostasis. Aggregates of αSyn activate 
calcium pumps SERCA, which in turn causes Ca2+ dyshomeostasis 
[150–152]. Genetic mutations such as mutations in genes sequence of 
αSyn, Parkin, and DJ-1 play an important role in Ca2+ dyshomeostasis 
and PD [153]. Cysteine proteases such as calpains and caspases, are 
activated by Ca2+ that degrade various substrates, including cytoskel
eton proteins, metabolic enzymes and membrane receptors. It triggers 
apoptosis, through activation of pro-apoptotic proteins such as Bax, 
Par-4 and p53 [154]. Mitochondria are responsible for the “fine tuning” 
of Ca2+. Impairment of mitochondrial influx/efflux leads to Ca2+ dys
homeostasis and Ca2+ overload. This overload causes opening of 
permeability transition membrane pore (PTP). This mitochondrial Ca2+

dyshomeostasis is a key factor in PD pathogenesis. Ca2+ induces 
oxidative stress through various mechanisms, including activation of 
oxygenase such as arachidonic acid metabolism, mitochondrial Ca2+

perturbation, energy metabolism [155–157]. 

7.2. Lead (Pb) 

Pb leads to alterations and decreases in dopamine, serotonin and 
other metabolites in the cerebral cortex, the basal and medial hypo
thalamus and hippocampus. In addition, it may affect the functional 
capacity of noradrenergic, dopaminergic, cholinergic, and GABAergic 
systems. In PD, Pb damages morphology of DA neurons that alters DAT. 
The DAT alteration causes extracellular DA levels and as a consequence 
causes neurotoxicity in CNS. Evidence from previous work have shown 
that Pb causes an alteration in Ca2+- mediated cellular processes and 
mimics Ca2+ binding to regulatory proteins. Also, it affects the release 
and reuptake of several neurotransmitters controlled by voltage gated 
Ca2+ channels. In the hippocampus, Pb causes αSyn accumulation, 
resulting in apoptosis and autophagy. It also activates protein kinase C 
(PKC) leading to ROS generation. Pb also induces ER stress. Pb is 
involved in epigenetic changes. Glial cells reactivity in response to brain 
injury is one of the pathological hallmarks of neurotoxicity because 
reactive microglia and astrocytes release numerous neurotoxic products 
including ROS, nitric oxide, proinflamatory cytokines and excitatory 
amino acids. Pb is involved in the induction of glial reactivity. Pb 
toxicity can be ameliorated by Pb chelating therapy [158–162]. 

7.3. Mercury (Hg) 

In developing countries, Hg toxicity accounts for 8-fold increase in 
PD incidence [163,164]. Hg is associated with nervous tissues damage in 
mammalian species as well as young and adult humans as high levels of 
Hg is found in deceased brain tissues of patients suffering from 

neurodegenerative diseases. Epidemiological, in-vivo and in-vitro 
studies have revealed that Hg toxicity depends upon its chemical 
forms, times and doses of exposure. MeHg toxicity and its involvement 
in neurological dysfunction have been proven by two epidemics. First 
epidemics; The Minamata bay disaster in Japan (1953) by ingestion of 
MeHg fish and shell fish and second epidemic; in Iraq (1971–1972) by 
ingestion of bread contaminated by organomercury fungicide. Both took 
1043 and 452 lives, respectively [165]. Hg can disrupt neurobiological 
processes such as synaptic transmission through over activation of 
NMDA receptors [166]. As Hg toxicity depends upon its form, different 
forms of Hg exert different toxicity levels through different mechanisms. 
Hg2+ form is very toxic for the brain because of its long half-life. It can 
cause brain damage due to its ability to bind irreversibly to thiol sulf
hydryl (–SH) group altering protein structure and inhibiting enzymatic 
functions, binding with cysteine residue and glutathione causes inacti
vation of hormones and Sulphur cofactor. It can cause tubule disruption 
by binding to the thiol group of α- and β-tubulin. It can impair Ca-ATP 
pumps alter Ca homeostasis. It has the ability to inhibits glutamate 
uptake, promoting its release in extra cellular space. MeHg can cross the 
BBB as well as its take up by neuronal cells through MeHg-L-cysteine 
complex where it targets CNS. Epidemiological studies have shown 
that MeHg can transfer from pregnant mother to fetus, and causes 
neuronal deficits in their offspring. MeHg interacts with, and oxidized 
nucleophilic groups of biomolecules, sulfhydryl groups (thiol/thiolate; – 
SH/–S) are the main targets in biological system. MeHg interaction with 
sulfhydryl-containing proteins such as neurotransmitter receptors, 
transporters, antioxidant enzymes and non-proteins thiols such as 
glutathione and cysteine are main neurotoxicity mediators. MeHg direct 
exposure causes depletion in GSH levels. Its interaction with seleno
hydryl (selenol/selenolate; –SeH/–Se) is important target of neurotox
icity [167–170]. 

Due to the induction of neuronal toxicity, Hg represents itself as one 
of the etiological factors for PD. Hg ingestion causes loss of DA neurons 
and glutathione depletion in SNpc, glutamate increase and mitochon
drial dysfunction. Occupational exposure to Hg causes parkinsonism. 
Many scientists have investigated and proved the correlation of PD with 
Hg levels [171]. Blood Hg levels in PD patients have six folds higher as 
compared with control group. Another study conducted in Taiwan has 
proved the correlation of PD with the presence of dental amalgam. 
Among several professionals’ dentist were most common in PD patients 
[172]. Another study investigated the correlation between PD and 
airborne metals in female nurses and found that among other metals, 
only Hg is associated with highest PD risk [173]. Numerous in vitro and 
in vivo experimental studies have proved the Hg toxicity and its possible 
mechanisms in the etiology of PD, Such as oxidative stress and ROS 
generation, Ca2+ dyshomeostasis, mitochondrial dysfunction, apoptosis 
and neuroinflammation [174–180]. 

7.4. Possible role of pesticides and deregulated miRNA to PD 

In spite of their beneficial role in agriculture, they have been asso
ciated with severe side effects on human health, such as acute poisoning 
and chronic consequences, even neurodegenerative diseases. PD is also 
strongly associated with environmental exposures to numerous sub
stances and pollutants, amongst them several pesticides [181–183]. 
Glutathione-S-transferase (GST) and total antioxidant capacity are 
greatly influenced by pesticides. Oxidative stress (OS) has been proven 
to play a major role in the manifestation of neurodegenerative diseases 
such as PD. Pesticides may lead to these neurotoxic processes via OS 
[184,185]. A meta-analysis concluded that prolonged pesticide expo
sure was associated with a higher risk for PD of up to 11 % [186]. 
Another meta-analysis of case-control studies concluded that pesticides 
are associated with a higher risk for PD and alterations in genes related 
to PD. Moreover, in France, PD has even considered a professional dis
ease of farmers applying pesticides [187,188]. In another case-control 
study Paraquat and rotenone were closely associated with higher risk 
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of developing PD [189,190]. 
MicroRNAs (miRNAs) are small non-coding RNA molecules, that 

control the expression of genes in several cellular processes and the 
translation of mRNAs following the transcription [191,192]. miRNAs 
are considered to modify more than half of protein-coding genes [193]. 
Several studies have validated the involvement of numerous miRNAs in 
the disease’s manifestation. In view of the wide interest of the scientific 
community on PD and miRNAs, many studies have been published [194, 
195]. 

7.5. Some key deregulated miRNAs involvement in pesticide-related 
neuronal death and PD pathogenesis are as following 

Paraquat (PQ) is one of the most widely distributed herbicides. Since 
1882, before the discovery of its herbicidal activities, it was known as a 
redox agent. Its redox potential, that produces reactive oxygen species 
(ROS) and consumes NADPH is toxic to plants and mammals [196]. PQ 
has been linked with a significantly higher risk of developing PD. 
Possible mechanisms underlying its links to PD have been proposed, 
employing a multi-faceted theory [197]. It has been shown that it can 
enter dopaminergic neurons via dopamine transporters (DAT), and 
mutations in the DAT gene also confer susceptibility to PD upon expo
sure to PQ [198]. A study on PQ-exposed SHSY5Y dopaminergic neurons 
revealed an upregulation of the highly brain-specific miRNA− 153, 
which was linked to the researchers’ previous finding, that PQ leads to 
cellular death via oxidative stress [199,200]. Concerning PD, miR-153 
has increased in CSF samples from late onset of PD (LOPD) patients 
[201]. The in-vitro studies of pesticide exposure and the PD CSF results 
both show an upregulation, a common finding that could hint towards 
PQ being involved in PD pathogenesis [202]. A recent study on neuro-2a 
cells exposed to PQ indicated a significant downregulation of miR −
17− 5p, a molecule which promotes cell proliferation and suppresses 
apoptosis, alongside − 210− 3p, − 503− 5p and − 374− 5p. The re
searchers proposed that these molecules are involved in 
PD-pathogenesis via cellular death through endocytosis, 
ubiquitin-mediated proteolysis, cell cycle changes and the MAPK 
signaling pathway, especially the − 17− 5p molecule [203]. Numerous 
human sample investigations and in-vitro studies evident the fact that 
PD seems to be a derivative of environmental and genetic interactions in 
the individuals. We cannot deny the possibility that the miRNA dereg
ulation noted in the cell lines could be due a global response against the 
neurotoxicant applied. The PQ study found the miRNA let-7 family 
downregulated, which is in line with the studies with CSF and plasma 
samples from PD patients, hinting towards another common feature 
between PD and PQ. miR-29, which has been implicated in epi
thelial–mesenchymal transition (EMT), skeletal muscle cell and osteo
blast differentiation, as well as in cardiac fibrosis and systemic sclerosis 
which was found downregulated in human neural progenitor cells 
exposed to PQ [204]. It was also reported to decrease in CSF samples 
from PD patients [205]. It also possibly represents a common link be
tween PQ and PD. miR-181, with -181b downregulated in the PQ study. 
Two studies have shown decreased levels of miR-181a in serum and 
brain tissue of late onset PD patients [206]. 

As a whole, PQ seems to be the main culprit in the oxidative pro
cedures that may link pesticides with PD. Regarding microRNAs, several 
of those that have been reported as deregulated in a PD context have 
emerged in PQ-related research as well. 

7.6. Organophosphates 

Organophosphate (OP) pesticides are mostly insecticides, which are 
frequently applied in agricultural production and occasionally for in
dustrial or residential use. OPs mechanism of action is the inhibition of 
acetylcholinesterase (Ache) [207]. Following acute OP poisoning, 
let-7 g were found downregulated, which are also downregulated in the 
CSF of PD patients [208]. Moreover, miR-141 was also found 

downregulated (miR-141–5p) upon acute OP poisoning, was reported 
downregulated (miR-141− 3p) in neuron samples from PD patients. 
MiR-126 was found upregulated in the serum of patients exposed to OP 
and in two studies on dopaminergic neuron samples from PD patients 
[209]. 

7.7. Triazines 

Triazines are herbicides. Atrazine, a widely-used triazine has been 
shown to be directly toxic for the dopaminergic neurons. It has been 
confirmed that miR-126 contributes to parkinsonism via the down
regulation of factors in IGF-1/PI3K signaling and the rendering of cells 
susceptible to neurotoxins [210,211]. 

7.8. Organochlorines 

Organochlorine (OC) pesticides represent another well-known 
insecticide class. OC substances exert their action due to their similar
ity to γ-aminobutyric acid (GABA) receptor antagonist picrotoxin, 
consequently blocking the inhibitory action of GABA [212]. The upre
gulation of the miRNA− 190 family in animal models exposed to DDT, in 
several tissue samples, while their target gene product, Tp53inp1, was 
unsurprisingly decreased [213]. Tp53inp1 has involved in oxidative 
stress response, and its product acts as an antioxidant. Thus, miRNA’s 
deregulation could also be involved in the OS procedure that leads to 
dopaminergic neuron death [214]. OCs have been shown to induce CYP 
polymorphisms, and thus they have been implicated in the etiology of 
neurodegenerative processes, such as in Alzheimer’s disease and PD 
[207,215]. 

7.9. Rotenone 

Rotenone is the prototypical member of the rotenoid family of 
naturally-occurring substances with insecticidal abilities. It inhibits 
mitochondrial complex I, resulting in reduced ATP generation, ROS 
generation and oxidative stress [216]. An odds ratio of 2.5 for humans 
exposed to rotenone to develop PD and attributed the rotenone-induced 
mitochondrial dysfunction [217]. The researchers studied the concen
trations of several PD-related miRNAs in the striatum of the rotenone 
exposed rats and found a significant increase in miR-26a and miR-34a, 
and a significant decrease in miR − 7and let-7a [218]. MiR-34 was 
found increased in PQ-exposed neural progenitor cells. Taken together, 
this persistent upregulation in experiments with three pesticide cate
gories (rotenone, OCs, PQ) have been associated with PD literature, 
could indicate that pesticides may be indeed associated with PD. MiR-7, 
in the rotenone experiment shown decreased, was also found decreased 
in an in-vitro study of manganese exposure, which also causes a 
Parkinsonian syndrome, and in brain samples of LOPD patients. 
miR-26a, here significantly increased, was also reported upregulated in 
both neuronal, and CSF samples from PD patients [219]. 

The aforementioned studies suggest a common pattern indicating 
that specific miRNAs are deregulated in a PD context, and several of 
those are also deregulated as a result of pesticide exposure, raising the 
possibility of a likely link between the two. 

8. Conclusion 

Metals ions which are essential for the operation of many physio
logical processes in the human body have a prominent role in the sus
tenance of healthy life. Furthermore, the homeostasis and forms of these 
metals in the human body is also of great concern. Even though the 
fundamental molecular mechanisms of PD etiology and pathogenesis is 
still obscure, metals toxicity have been documented in the implication of 
PD pathogenesis by several epidemiological studies with several po
tential mechanisms. In many cases, the metals equilibrium is disturbed, 
which leads to deleterious effect on the entire body including the brain. 
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Such changes in the brain lead to impairment of neurons by different 
mechanisms including oxidative stress, mitochondrial dysfunctions, 
neuroinflammation and apoptosis. Consequently, the development of 
neurodegenerative diseases including PD occurs. Several metals such as 
Fe, Cu, Pb have a synergistic effect among themselves and with Hg, 
which adds to their neuronal toxicity. Among metals, Hg is the most 
toxic because it is neurotoxic in every chemical form. Due to high 
tubulin content, nigral dopaminergic neurons are most sensitive to Hg. 
Taken together, metals have a fundamental role in PD etiology and 
pathogenesis. In addition to metals, numerous studies have revealed the 
deregulation of specific miRNAs due to pesticides exposure, and their 
involvement in PD pathogenesis. The results finding from various 
studies suggest that in addition to standard treatment, using of chelating 
agents and antioxidants might contribute to the treatment of PD. Metals 
toxicity are still unclear; understanding the underlying mechanisms is 
essential for designation of novel therapeutic approaches. A Better un
derstanding of these mechanisms will assist in the development of 
multifactorial approaches to delay or cure PD progression. 
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