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Abstract

The Cpx-envelope stress system regulates the expression of virulence factors in many

Gram-negative pathogens. In Salmonella enterica serovar Typhimurium deletion of the sen-

sor kinase CpxA but not of the response regulator CpxR results in the down regulation of the

key regulator for invasion, HilA encoded by the Salmonella pathogenicity island 1 (SPI-1).

Here, we provide evidence that cpxA deletion interferes with dephosphorylation of CpxR

resulting in increased levels of active CpxR and consequently in misregulation of target

genes. 14 potential operons were identified to be under direct control of CpxR. These

include the virulence determinants ecotin, the omptin PgtE, and the SPI-2 regulator SsrB.

The Tat-system and the PocR regulator that together promote anaerobic respiration of tetra-

thionate on 1,2-propanediol are also under direct CpxR control. Notably, 1,2-propanediol

represses hilA expression. Thus, our work demonstrates for the first time the involvement of

the Cpx system in a complex network mediating metabolism and virulence function.

Introduction

An important group of bacterial regulatory sensing systems are the two-component systems,

each of which enable bacteria to sense and respond to a specific subset of environmental

changes and stress factors [1–3]. Two-component systems recognize environmental changes
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via a membrane-anchored sensor kinase that mediates the response through phosphorylation

and dephosphorylation of its cognate response regulator [1]. The phosphorylated response

regulator modulates the expression of target genes [3]. The Cpx-envelope stress system is a

two-component system ubiquitous among Gram-negative pathogens [4, 5]. It is composed of

the sensor kinase CpxA, the response regulator CpxR and the auxiliary periplasmic protein

CpxP that inhibits CpxA presumably through a direct dynamic interaction [6, 7]. The Cpx-sys-

tem corresponds to signals that induce envelope stress such as elevated pH, increased osmolar-

ity, indole, adrenalin, surface contact and accumulation of adhesin subunits [5, 8–12].

Activation of the Cpx-system results in CpxA autophosphorylation and subsequently the phos-

phoryl group transferred to CpxR [6, 13]. Interestingly, all these signals typically emerge dur-

ing early stages of infection in the gut and, accordingly, the Cpx-system could be linked to the

virulence of enteropathogenic Escherichia, Salmonella, Shigella, Vibrio and Yersinia species [4,

5, 14–16]. A deletion of the Salmonella Cpx-system showed significantly reduced abilities to

colonize tissue and inner organs in pigs [17, 18].

Several studies demonstrated the impact of the Cpx-system for Salmonella enterica viru-

lence. In Salmonella enterica serovar Typhi (S. Typhi), the causative agent of human typhoid

fever, inactivation of CpxA results in a mutant defective for adherence and invasion of human

small intestinal epithelial cell lines [19]. Thereby, the expression of the cpxA is regulated under

conditions of high osmolarity (0.3 M NaCl) and is pH independent [19]. Inactivation of CpxA

in Salmonella enterica serovar Typhimurium (S. typhimurium), a causative agent of gastroen-

teritis in humans and a typhoid-like fever in mice, leads to a strain defective in both invasion

and transcription of the regulator for invasion HilA when grown under mild acid condition

[20]. In contrast, deletion of cpxR and growth under neutral or mild alkaline pH has no effect

[20, 21]. Moreover, a cpxA mutant, but not a cpxR mutant, was slightly attenuated in mice vir-

ulence after oral and parenteral infection [21]. From these cumulative results it was suggested

that CpxA might modulate the expression of HilA and consequently invasion independently

of its cognate response regulator CpxR, presumably through cross-talk with another regulator

[5, 20].

In addition to invasion, the Cpx-system is involved in resistance to cationic antimicrobial

peptides (CAMPs) [22]. Two N-acetylmuramoyl-L-alanin amidases, encoded by the genes

amiA and amiC, are direct CpxR targets in S. Typhimurium [22]. These amidases are secreted

by the twin arginine translocation [23] system to the periplasmic space and contribute to bac-

terial resistance to the CAMPs protamine, magainin 2 and melittin but do not contribute to

resistance tothe CAMPs HNP-1 and polymyxin B [22]. The authors confirmed the impact of

the Cpx-system on the resistance to CAMPs for protamine and magainin 2 and melittin and

suggested that the Cpx-system contributes resistance to protamine in a Tat-independent way

[22]. The Cpx system has been demonstrated to be implicated in neuroendocrine hormone-

mediated haemolysis in S. Typhi, indicating the importance of the Cpx system for pathogen-

host cross-talk [10].

A comprehensive analysis for the impact of the Cpx-system for the virulence of the model

S. Typhimurium SL1344 has been performed using inactivation and constitutive activation

strategies involving host interaction model [21]. However, a global analysis involving a

genome wide approach to identify S. Typhimurium specific CpxR targets that might contrib-

ute to virulence is missing. Here, we used a combination of global transcriptional and bioinfor-

matic analysis to uncover previously uncharacterized members of the CpxR regulatory

network. We identified 14 potential novel CpxR target genes and demonstrated that CpxR not

only directly controls the transcription of the serine protease inhibitor ecotin, the omptin

PgtE, the SPI-2 regulator SsrB and the Tat-system but also has an unsuspected role in the

metabolism of 1,2-propanediol, an abundant compound in the human intestine. Moreover, we
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provide evidence that cpxA deletion interferes with dephosphorylation of CpxR under inva-

sion inducing conditions. We propose that in the absence of CpxA under invasion inducing

conditions CpxR may be constitutively phosphorylated by another kinase or phosphodonor

leading to repression of the SPI-1 regulator HilA. Accordingly, dephosporylation of CpxR by

CpxA restores hilA expression by preventing the negative effects of active CpxR on this gene.

Thus, this study suggests that both activities of CpxA—phosphorylation and dephosphoryla-

tion of CpxR are critical to control CpxR-mediated virulence gene regulation.

Materials and methods

Growth media and conditions

Standard media for Salmonella enterica serovar Typhimurium (S. Typhimurium) and E. coli
was lysogeny broth [21], in the presence of appropriate antibiotics. Minimal medium was the

No-carbon-E (NCE) medium, supplemented with trace metals (0.3 mM CaCl2, 0.1 mM

ZnSO4, 0.045 mM FeSO4, 0.2 mM Na2Se2O3, 0.2 mM Na2MoO4, 2 mM MnSO4, 0.1 mM

CuSO4, 3 mM CoCl2, and 0.1 mM NiSO4) and 0.2% yeast extract as carbon source with or

without 80 mM propanediol (Sigma) [24]. The antibiotics used for bacterial selection on plates,

cultures were as follows: ampicillin 100 μg ml-1, kanamycin 50 μg ml-1, streptomycin 90 μg

ml-1 and chloramphenicol 20 μg ml-1. Salmonella invasion inducing media contained 0.3 M

NaCl in LB pH 7.0. For motility assays bacteria were precultured in Terrific Broth (TB).

Strain and plasmid construction

Bacterial strains and plasmids used in this study are listed in Table 1. E. coli strain JM109 was

used for cloning and E. coli strain BL21DE3 for protein expression. SL1344 is a standard viru-

lent strain of S. Typhimurium. The cpxA, cpxR and cpxRA deletion mutants were constructed

in S. Typhimurium LT2 as described [25–27], confirmed by PCR and P22 transduced into the

parent SL1344.

The coding region of cpxR was cloned into the NcoI and BamHI sites of pIVEX2.4, result-

ing in pIStmCpxR. pSSS11 was achieved by cloning the cpxRA coding region into the BamHI

and SalI sites of pACYC184. All constructed plasmids were confirmed by sequencing. DNA

manipulation, restriction digestion, ligations and transformations were performed using stan-

dard genetic and molecular techniques [35].

Measurement of gene expression

The activity of the hilA-GFP fusion encoded on the plasmids pD2E, was measured under SPI-

1 inducing growth conditions (LB-pH7.0 with 0.3M NaCl under oxygen limiting static condi-

tions). A fresh colony was inoculated into 5 ml SPI-1 media and grown for 2 hours (OD600 of

0.5). For fluorimeter measurements cultures were diluted 1:50 in 150 μl SPI-1 Media and

transferred into Costar 96 black clear bottom plates (Corning Life Sciences; The Netherlands).

Plates were sealed with adhesive sealing films (Roth, Germany) and cell growth (OD620) and

GFP-production were monitored every 17 minutes over a timeline of 6 h in a Fluorimeter (BD

Biosciences). The fluorescent values were measured at excitation values set at 485 nm and

emission values set at 540 nm. Assays were performed with an n = 6 and normalized to the

wildtype control.

RNA isolation and labelling for DNA microarray

Total bacterial RNA was isolated from bacteria grown under different growth conditions after

killing by the addition of 0.2 volumes of 95% ethanol, 5% phenol, pH 4.3. Pellets were
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resuspended in 10 mM Tris, 1 mM EDTA containing 2 mg ml-1 lysozyme and incubated at

37˚C for 30 min. Cell lysis solution (Qiagen, Hilden, Germany) was added and the mixture

was incubated at 65˚C for 5 min and at room temperature for 10 min. After the addition of

precipitation solution (Qiagen, Hilden, Germany) and incubation on ice for 5 min cell debris,

proteins and DNA were pelleted. The RNA containing supernatant was mixed with ethanol

and loaded on a spin column (Promega). Further RNA purification and DNase digestion was

done as described by the manufacturer.

A total of 50 μg of RNA of six separate experiments was reverse transcribed to cDNA and

labelled with Cy3- or Cy5-conjugated dCTP (GE Healthcare) using reverse transcriptase

(SupersciptII, Invitrogen) and random hexamers as primers. RNA was removed by hot-alkali

treatment. Labelled cDNA was purified using a Qiaquick PCR purification kit and quantified

by Nano-Drop analysis (ND-1000 Spectrophotometer, Peqlab).

DNA microarrays and data analysis

Slides containing three replicate arrays spotted onto CMT-UltraGAPS (Corning) slides were

prehybridized in 25% formamide, 5 x SSC and 0.1% SDS at 42˚C. Probes were prepared by

mixing equal amounts of Cy3- or Cy5- labelled cDNA from wild type and the cpxA mutant

strain with an equal volume of hybridization solution (50% formamide, 10 x SSC and 0.2%

SDS). After hybridization and washing, arrays were scanned with a Microarray Scanner BA

(Agilent Technologies) at 5 μm resolution. Raw microarray image data were processed with

the Image Analysis / Feature Extraction software G2567AA (Version A.7.5, Agilent technolo-

gies). Data analysis was carried out on the Rosetta Inpharmatics platform Resolver

(Rosetta Biosoftware, Built 5.1). A color-swap dye reversal experimental setting was applied

[36]. Ratio profiles comprising single hybridizations were combined in an error-weighted fash-

ion to create ratio experiments. A two fold change expression cut-off ratio was applied together

with anti-correlation of ratio profiles rendering the microarray analysis set highly significant

(P-value > 0.01), robust and reproducible.

Table 1. E.coli strains and plasmids used in this study.

Strain / Plasmid Relevant Gentotype Reference or Source

MG1655 F- lambda- ilvG- rfb-50 rph-1 [28]

JM109 e14- (McrA-) recA1 endA1 gyrA96 thi-1 hsdR17 (rK
-mK

+) supE44 relA1 Stratagene

BL21DE3 F-, gal met r—m- hdsS λlysplacUV5-T7-Gen1 placIq lacI [29]

SL1344 wild-type, StrR hisG rpsL xyl [30]

KT04 SL1344 hisG46 rpsL fliC fljB Lab collection K.Tedin

NOS01 SL1344 cpxR::kan This study

SHS01 SL1344 cpxA::kan This study

pACYC184 cloning vector, p15A, CamR [31]

pBR322 cloning vector, TetR, AmpR [32]

pD2E pGFPOVA, hilA-gfpova, AmpR [33]

pGFPOVA pBR322 with GFP-OVA, AmpR [34]

pIVEX2.4 T7 overexpression vector, AmpR Roche

pIStmCpxR pIVEX2.4, cpxR STM
+, AmpR This Study

pKD4 [27]

pKD13

pKD46 [27]

pSSS11 This Study

https://doi.org/10.1371/journal.pone.0211584.t001
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Bioinformatics

A S. Typhimurium specific weight matrix which predicts the affinity of phosphorylated CpxR

for a given DNA sequence was developed using as input files the promoter regions of operons

cpxRA, cpxP, motABcheAW, tsr, spy, yihE-dsbA, degP (htrA), ppiA, yccA and rpoE-rseABC.

These promoters were chosen because among the best defined CpxR targets [37] these were

identified to be strongest affected in SHS01 under invasion-inducing conditions by our micro-

array analysis (S1 Table). We aligned 500-bp of the promoter regions upstream of the start

codons of these operons with the motif-finding program Target Explorer which is based on

the Gibbs sampling algorithm [38]. A conserved 15-bp motif was identified for each promoter

(see S2 Table). These 10 motifs were used to calculate a S. Typhimurium specific weight matrix

which was then used to search both strands of the genome (GenBank accession number

AE006468) and the pSLT plasmid (GenBank accession number AE006471) of S. Typhimurium

LT2 with the programs ScanACE [39], Prodoric Virtual Footprint [40, 41] and GeneSoap [42].

RNA extraction and RT-qPCR

Total RNA from cells grown under invasion inducing conditions was isolated after stabilizing

the RNA with RNAprotect (Qiagen, Hilden, Germany). Cell pellets were resuspended in 10

mM Tris, 1 mM EDTA containing 2 mg ml-1 lysozyme and incubated at 37˚C for 30 min. Cell

lysis solution (Qiagen, Hilden, Germany) was added and the mixture was incubated at 65˚C

for 5 min and at room temperature for 10 min. After the addition of precipitation solution

(Qiagen, Hilden, Germany) and incubation on ice for 5 min cell debris, proteins and DNA

were pelleted. The RNA containing supernatant was mixed with ethanol and loaded on a spin

column (Promega, WI, USA). Further RNA purification and DNase digestion was done as

described by the manufacturer (SV total RNA isolation system, Promega, WI, USA).

In total, 1 mg of total RNA was reverse transcribed with the reverse transcription kit (Qia-

gen, Hilden, Germany). Diluted cDNA samples were used as templates in Real-time qPCR

analysis using specific primer pairs and SYBR Green fluorescent dye. Real-time PCR was per-

formed using PowerSYBR Green PCR Mastermix on a 7500 Fast PCR Cycler (AppliedBiosys-

tems, Carlsbad, CA, USA). Uniformity of the product was checked for every PCR by the

determination of a dissociation curve. Pairs of primers with lengths of 19–21 nucleotides were

optimized for use at an annealing temperature of 51˚C. Each primer pair amplified a fragment

of 150–250 bp. Relative expression ratios were determined by the DDCt method as described

[43] and normalized to the level of 16S-RNA as a constitutive control. Experiments were

repeated nine times with biological triplicate performed in technical triplicate reactions/cDNA

dilution.

Expression and purification of the CpxR protein

Salmonella His6-CpxR was essentially overproduced and purified as described for the E. coli
protein from strain BL21DE3<pLysS|pIStmCpxR> using Ni-NTA agarose (Qiagen) and Pro-

tino Ni-TED 2000 column kit (Macherey-Nagel) [6].

Gel shift assay

The promoter regions of the genes eco (301 bp), pgtE (251 bp), pocR (301 bp), ssrB (301 bp)

and tatA (251 bp) were generated by PCR using the Salmonella SL1344 genomic DNA as tem-

plate. As control a 156 bp fragment of the Salmonella cpxP promoter region without the

CpxR~P recognition motif was used. Binding reactions were performed as previously

described for RovM using the purified His6-CpxR [44].
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In brief, phosphorylation of His6-CpxR was carried out using 50 mM acetyl phosphate in a

phosphorylation buffer (100 mM Tris, pH 7.4, 10 mM MgCl2, 125 mM KCl) for 1 h at 30˚C.

DNA fragments (0.15 pmol) were mixed with phosphorylated His6-CpxR (0–23 pmol) in a

10 μl reaction mixture containing DNA binding buffer (10 mM Tris, pH 7.4, 10 mM MgCl2,

100 mM KCl, 10% glycerol, 2 mM dithiothreitol, 30 μM BSA). The binding reaction was car-

ried out for 20 minutes at room temperature and subsequently loaded on a 4% non-denaturing

acrylamide gel and stained with ethidium bromide.

Motility

SL1344, NOS01, SL1344<pSSS11> and NOS01<pSSS11> were grown overnight in TB pH

7.0 and then freshly diluted 1 : 50 into TB pH 7.0. The cultures were grown until OD600 = 1.0

and then diluted to an OD600 of 0.1. 1 μl of the cultures were semi-stabbed into tryptone

motility agar plates (0.3% bacto agar) of pH 8.0. The plates were incubated at 30˚C for 10

hours. Strain KT04 (SL1344 fliC, fliB) was used as negative control.

Polymyxin B survival assay

The sensitivity to polymyxin B was performed as described previously [45]. The overnight cul-

tures of SL1344, NOS01 and NOS01 <pIStmCpxR> were diluted into fresh LB pH 8.0

medium with the colony-forming units (CFU) being kept constant at 4 x 105 CFU ml-1. Cells

were allowed to grow to OD600 = 0.14 at 37oC. 1 ml of the cultures were incubated with six

different concentrations (ng ml-1) of polymyxin B: 0, 100, 101, 102, 103, 104, 105, 106 in poly-

propylene tubes and allowed to stand at 37˚C for 1 h. After incubation cultures were washed

twice with 1 x PBS to remove the remnant polymyxin B hindering the growth of bacteria when

plated. During plating, 20 μl of the bacterial cells treated with the appropriate concentrations

of polymyxin B was mixed with 20 ml of molten Tryptic Soya Agar (55˚C) and the plates were

incubated overnight at 37˚C. All experiments were done in triplicates. For control purpose the

experiments were performed for a phoP::kan strain. The number of CFU from each plate was

counted and the % survival was determined taking the CFU counted from the plates with non-

polymyxin B treated bacteria.

DNaseI footprinting

For DNase I footprinting, different segments of the tatA and ssrB promoter regions were

amplified by PCR using a digoxigenin (DIG)-labelled primer and a non-labelled primer. Dif-

ferent primer combinations were chosen for the footprinting analysis of coding and non-cod-

ing strands (Table 2). The amplified promoter regions were 529 and 530 bp for ssrB-A (DIG-

coding strand) and ssrB-B (DIG-Non-coding strand) respectively. The amplified promoter

region was 524 bp, for tatA-A (coding strand) and tatA-B (non-coding strand). PCR fragments

were purified by Nucleospin plasmid kit (Macherey-Nagel) and incubated with the purified

phosphorylated His6-CpxR protein in 20 μl of DNA-binding buffer as described for the gel

shift assays. The PCR products were digested with DNaseI of an appropriate dilution and the

resulting products were separated and visualized as described [44]. The protected bands were

identified by comparison with a sequence ladder generated with the same DIG-labelled primer

used for PCR amplification of the fragment by using the Thermo Sequenase cycle sequencing

kit (USB).
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Cell growth on 1,2-propandiol

Anaerobic growth on 1,2-propaendiol was determined according to an established protocol

[24]. In brief, tubes were filled with NCE glycerol with or without 80 mM propanediol and pre-

incubated in an anaerobic chamber (Oxoid) with N2 gas for 24 h. Cells were grown aerobically

in NCE glycerol to stationary phase, washed in NCE and diluted to an turbidity at 650 nm of

0.1. The tubes were crimp capped and flushed with N2 gas. The cultures were incubated at

37˚C with shaking and turbidity was monitored with a tube spectrophotometer (Riele PM310)

at 650 nm.

Statistical analyses

Statistical analyses were performed using the Student’s t-test (two-tailed). A P-value < 0.05

was considered significant.

Table 2. Oligonucleotides used in this study.

Primer Name Sequence (5’-3’) Construct / Purpose

cpxA5-STM-PS1 ATTGCGTGGTCGCGGCTATCTGATGGTTTCCGCTTCATGAGTGTGTAGGCT SHS01

cpxA3-STM-PS4 CGAGATAAAAAATCGGCCTGCATTCGCAGGCCGATGGTTTATTCCGGGGAT NOS01

cpxR5-STM-PS1 GACGCCTGATGACGTAATTTCTGCCTCGGAGGTACGTAAACAGTGTGTAGGCTGGAGCTGCTCC NOS01

cpxR3-STM-PS2 CAACAAGAAGATGGCGAAGATGCGCGCGGTTAAACTTCCTACATATGAATATCCTCCTTAG VSM01

cpxAR5-STM-PS1 GACGCCTGATGACGTAATTTCTGCCTCGGAGGTACGTAAACAATGTGTAGGCTGGAGCTGCTTC- VSM01

cpxAR3-STM-PS2 ATCGGCCTGCATTCGCAGGCCGATGGTTTTTAGGTTCGCTTGTACATATGAATATCCTCCTTAG pIStmCpxR

NdeI_STMcpxR ATCATATGAATAAAATCCTG pSSS11

BamHI_SCpxRA CGGCGCGGATCCATGAATAAAATCCTGTTAGTTGATGA pSSS11

SCpxRA_SalI GGGGGCGTCGACTTAGGTTCGCTTGTACAGCGGTAGCC EMSA

PcpxR-Fw GCCGTCAAACATATGATT EMSA

PcpxR-Rev TCATTGTTTACGTACCTCCG EMSA

Peco-Fw CCGATAGAGGTAAATGCTG EMSA

Peco-Rev TTCATTTGATTGTTCACAGTAT EMSA

ppgtE-Fw GACAACATCAGCAACGATG EMSA

ppgtE-Rev CATTTCTCTTGTCCTCATATTC EMSA

ppocR-Fw CCTGTTATCGGCGCCTGTGCCGGAGCAGCCATATATC EMSA

ppocR-Rev CATGATAAAACCCCTCAGTTAATTTATTGTTATAAAC EMSA

PssrB-Fw GATATGGTCATTAATAGCAAG EMSA

PssrB-Rev ATTTTGCTGCCCTCGCGA EMSA

PtatA-Fw CAACCGCCCTGAATGGG EMSA

PtatA-Rev ACATGTTCCTCTGTGATAGA EMSA

PcpxP-control-fw ATGAATAAAATCCTGTTAGTTGA EMSA

PcpxP-control-rev AAAAGTAAATCGATGCTGTCAT EMSA

ssrB-A-Fw DIG-CCTCTTGCTGGCTGATATT footprinting

ssrB-A-Rev Non-DIG-ATATACTCTTGTTGGTATGCT footprinting

ssrB-B-Fw Non-DIG-CATGTTTGTGGCACTATCC footprinting

ssrB-B-Rev DIG-CGTCTACTAATAAGATCTTATA footprinting

tatA-A-Fw DIG- AGTTGTCTGGCTGGTTGG footprinting

tatA-A-Rev Non-DIG-TTCGCTAAAACCGATATCAAA footprinting

tatA-B-Fw Non-DIG-GCGCCGTTCTGGGTCG footprinting

tatA-B-Rev DIG-CAACAATCAACAACTGCCAA footprinting

https://doi.org/10.1371/journal.pone.0211584.t002
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Results

CpxA-mediated dephosphorylation of CpxR is required for hilA expression

The Cpx envelope stress system is implicated in the invasion process of Salmonella into non-

phagocytic cells which depends on the SPI-1 T3SS with HilA as the key transcriptional regula-

tor [19, 20, 46]. The expression of hilA at low pH requires the sensor kinase CpxA but not the

response regulator CpxR [47]. We asked whether hilA expression might also be dependent on

the Cpx envelope stress system under in vitro conditions that mimic invasion. Therefore, we

investigated the expression of a plasmid-coded hilA-GFP fusion under invasion inducing con-

ditions in a high-salt LB medium under low oxygen tension for S. Typhimurium knock out

strains SHS01 (cpxA::kan), NOS01 (cpxR::kan) and VSM01 (cpxRA::kan) in comparison to the

wild-type strain SL1344. We found under these invasion inducing conditions the expression of

hilA to be dependent on CpxA but not on CpxR (Fig 1) and confirmed that this effect is not

traceable in standard LB medium (S1 Fig) [20]. Interestingly, we observed no effect on hilA
expression for the S. Typhimurium cpxAR double deletion mutant VSM01 (Fig 1, dark grey

bars). It is well established that CpxR can be phosphorylated independent on CpxA by the

small phosphodonor acetyl-phosphate in vivo [48–50] and that CpxA acts under non-inducing

conditions as a phosphatase of phosphorylated CpxR [6, 51]. We would like to propose that

CpxR is constitutively phosphorylated in a S. Typhimurium cpxA knock out grown under

invasion inducing conditions leading to repression of hilA transcription. Therefore, our find-

ing suggests that dephosphorylation of CpxR by CpxA might be critical for hilA expression.

Genome wide screen for Cpx interactions

From our above results we conclude that CpxR is constitutively active in a cpxA knock out

strain (SHS01) under invasion inducing conditions. Consequently, we determined the extent

of the Cpx envelope stress system in S. Typhimurium by global transcriptional analysis of a

Fig 1. CpxR activity is responsible for hilA transcription. Fluorescence was determined for the SL1344 wild type

(white symbols), cpxA (black symbols), cpxR (silver symbols) or cpxRA (dark gray symbols) strains transformed with a

plasmid carrying a GFP fusion to the hilA promoter (pD.2E) [52]. Shown are the growth curves (circles) and

expression results (bares) for cultures grown under invasion inducing conditions. Shown are the means ± S.E.M. of

biological triplicates (t-test).

https://doi.org/10.1371/journal.pone.0211584.g001
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cpxA knock out strain (SHS01) grown under invasion inducing conditions with high osmolar-

ity (0.3 M NaCl) and found 392 genes to be differently regulated (S1 Table). The CpxR target

gene cpxP was the most strongly affected gene supporting our hypothesis that deletion of

CpxA results in high level of phosphorylated CpxR. This supports the widely accepted hypoth-

esis that CpxP can be only switched on by activation via the stress pathway [53]. To predict

among these genes those that are under direct control of CpxR, we compared the data of the

global transcriptional analysis with a bioinformatic approach using a S. Typhimurium specific

CpxR recognition motif (Fig 2B; S2 Table). This S. Typhimurium specific CpxR recognition

motif was generated by using among the best defined CpxR targets in E. coli [37] the promoter

regions of those 10 CpxR targets that were strongest affected in the S. Typhimurium cpxA
strain (SHS01) under invasion inducing conditions as determined by the transcriptional analy-

sis (S1 Table) (cpxRA, cpxP, motABcheAW, tsr, spy, yihE-dsbA, degP, ppiA, yccA and rpoE-
rseABC). For each promoter a conserved 15-bp motif was identified (S2 Table) and these 10

motifs were used to calculate a S. Typhimurium specific weight matrix (Fig 2B).

Fig 2. Genome wide identification of novel CpxR dependent genes in S. Typhimurium. A. Global transcriptional analysis was performed

by comparing the gene expression profile of a cpxA mutant (SHS01) to a wild-type strain (SL1344) grown under invasion inducing

conditions. Genes for which the ratio of the cpxA-null strain to the wild-type strain is e4 fold with a P value of<0.005 were clustered using

Tibco Spotfire DecisionSite default. B. Bioinformatics-based screening for direct CpxR targets. The sequence logo for the CpxR~P

recognition weight matrix in S. Typhimurium is given with the left (I) and right pentamers [28] and the 5-bp spacer marked by roman

numerals. The base conservation measured in bits is shown as the relative height of each base [54]. C. Potential novel Cpx regulon members

of S. Typhimurium identified by global transcriptional analysis and bioinformatic screening. The left (I) and right [28] pentamers and the

5-bp spacer [28] are displayed as a heat-map to show bases of high conservation (orange) from degenerate regions (light grey/white). The

genes controlled by these promoters are indicated to the left of the sequences.

https://doi.org/10.1371/journal.pone.0211584.g002
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We employed this weight matrix to screen the whole S. Typhimurium LT2 genomic and

pSLT sequences for possible CpxR recognition motifs by the use of three different motif-find-

ing programs applying different algorithms each: ScanACE, Prodoric Virtual Footprint and

GeneSoap [39, 40, 42]. 106 potential CpxR recognition motifs were commonly identified by all

three programs in an appropriate distance of less than 500 bp to an annotated open reading

frame (S3 Table). The comparison of bioinformatics and global transcriptional analysis data

resulted in 25 possible CpxR target genes (Fig 2C). Along with 11 known genes (chaA, cpxP,

cpxR, dsbA, motA, psd, tsr, ppiA, rpoE, spy, yccA) [37, 55–57] 14 potential novel CpxR target

genes could be identified (aldB, bioA, eco, glpT, pfkB, pgtE, ssrB, STM1269, STM2613, STM
3681,STM4562, tatA, ybiJ, yciG) (Fig 2C). These potential novel CpxR target genes were clus-

tered into genes with uncharacterized products (STM1269, STM2613, STM3681, STM4562,

ybiJ, yciG), products implicated in metabolism (aldB, bioA, glpT, pfkB) or Salmonella virulence

(eco, pgtE, ssrB, tatA). For our further studies we focused on four genes that have been demon-

strated to be important for Salmonella virulence: eco, pgtE, ssrB and tatA.

The eco gene encodes the serine protease inhibitor ecotin. Ecotin orthologues are present in

many Gram-negative bacteria and have been shown to be important for protecting the bacteria

against eukarytotic proteases that have translocated across the damaged outer membrane [58].

PgtE is a member of the omptin family of outer membrane aspartic proteases identified in

Gram-negative bacteria [23]. PgtE and its closest homologue of Pla of Yersinia pestis attack on

the innate immunity for instance by means of inactivating antimicrobial peptides or by affect-

ing the plasminogen/plasmin system by cleavage of the plasminogen activator inhibitor 1 [59–

61]. SsrB is the response regulator of the SsrAB two-component system which is essential for

the coordinated expression of a second T3SS encoded on the SPI-2 and almost all of its acces-

sory effector proteins [62, 63]. Salmonella requires the SPI-2 T3SS for intracellular survival

and persistence in macrophages [62, 64]. The tatA gene belongs to the operon for the twin-

arginine translocation [23] complex TatABC which promotes the secretion of folded proteins

across the cytoplasmic membrane and has recently been demonstrated to be implicated into

Salmonella invasion and resistance to antimicrobial peptides [22, 65].

To validate the identification of eco, pgtE, ssrB and tatA as direct CpxR target genes in S.

Typhimurium, real-time qPCR and electrophoretic mobility shift assays (EMSA) were per-

formed (Fig 3). Cells were grown under invasion inducing conditions and harvested at the end

of mid log phase for RNA preparation. The genes cpxP and motA served as controls. The

expression of all tested genes was dependent on CpxR (Fig 3A). We found eco (1.9 fold), ssrB
(8.2 fold) and tatA (2.6 fold) to be under positive and pgtE (-2.1-fold) to be under negative

CpxR control. In order to demonstrate direct binding of CpxR to the promoter regions of eco,

pgtE, ssrB and tatA we performed electrophoretic mobility shift assays (EMSA) with purified,

phosphorylated His6-CpxR (CpxR~P) tagged protein (Fig 3B). The mobility of all DNA frag-

ments covering the single promoter regions were retarded in the presence of phosphorylated

His6-CpxR (Fig 3B). To confirm the species specificity displayed by CpxR~P in binding to

tatA promoter of S. Typhimurium, we performed the EMSA for E. coli tatA promoter using

CpxR~P and found no significant shift (S2 Fig). Together, these results demonstrate that the

eco, pgtE, ssrB and tatABC operons are direct CpxR targets in S. Typhimurium.

The Cpx envelope stress system activates Salmonella motility

To our surprise, global transcriptional analysis and qRT-PCR revealed motA to be under posi-

tive control (50 fold) of the Cpx envelope stress system. In contrast, the genes for the flagellar

motor (motABcheAW) are under negative CpxR control in E. coli [37, 66]. We verified pheno-

typic difference between both closely related organisms by motility assay (Fig 4). Motility of S.
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Fig 3. The Salmonella virulence determinants eco, pgtE, ssrB and tatA are under direct CpxR control. A. qRT-PCR

analysis of CpxR target genes in the S. Typhimurium cpxR mutant NOS01. RNA samples were prepared from bacteria

grown under invasion inducing conditions. In addition to the relative expression levels of cpxP and motA, the levels of

eco, pgtE, ssrB and tatA were determined in NOS01 (sample) in comparison with the parental strain SL1344 (control)

according to the formula ratio = 2-[ΔCt, sample– ΔCt, control] [43]. Columns indicate the mean values of one representative

of biological triplicates together with the RQmin and RQmax. B. EMSA analysis verifies CpxR binding to the eco, pgtE,
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Typhimurium was drastically repressed in a cpxR deletion strain and could be restored by the

overexpression of CpxR. This finding underscores the remarkable difference in core gene reg-

ulation between Salmonella and Escherichia as has also been described for the tolQRA cluster,

SlyA, DegP, RpoS stability and copper homeostasis [67–71].

A cpxR mutant displays increased sensitivity to polymyxin B

We identified the omptin PgtE as a direct Cpx target. PgtE confers resistance towards the cat-

ionic antimicrobial peptides (CAMPs) protamine and polymyxin B [60]. Very recently, it has

been proven that the Cpx-system contributes to resistance to the CAMPs protamine, magai-

nin-2 and melittin through regulated expression of the two Tat-system dependent amidases

AmiA and AmiC [22]. AmiA and AmiC do not contribute to bacterial resistance to the

CAMPs HNP-1 and polymyxin B [22]. In order to investigate whether the Cpx pathway also

contributes resistance to polymyxin B, we performed a polymyxin B resistance assay. As

shown in Fig 5 resistance against polymyxin B is reduced in a cpxR deletion strain and could

ssrB and tatA promoters. Indicated promoter fragments (p) were incubated without or with increasing amounts of the

purified and phosphorylated CpxR protein. The DNA-CpxR~P complexes were separated on 4% polyacrylamide gels.

The corresponding molecular weights are indicated on the left. The positions of promoter fragments are indicated (p),

arrows show the higher molecular weight DNA-CpxR~P complexes. A fragment of cpxP promoter region without the

CpxR~P binding motif (-151 to -297) was used as negative control (c).

https://doi.org/10.1371/journal.pone.0211584.g003

Fig 4. S. typhimurium is immotile in the absence of CpxR. An equal number of freshly grown S. Typhimurium wild

type SL1344, the cpxR mutant NOS01, and the cpxRA overexpressing strains SL1344<pSSS11> and NOS01<pSSS11>

was spotted onto tryptone swarm soft agar plates pH 8.0 at 30˚C for 10h. KT04 (SL1344 fliC, fljB) was used as negative

control.

https://doi.org/10.1371/journal.pone.0211584.g004
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be partially restored by the overexpression of CpxR indicating that the Cpx-system modulates

the resistance to CAMPs in S. Typhimurium by regulating PgtE.

Detection of the CpxR binding sites for the ssrB and tatABC promoter

regions

To map the precise location of the CpxR binding sites for the ssrB and tatABC promoter

regions we performed DNase I footprint assays. For the ssrB promoter, a 250 bp DIG-labelled

DNA fragment including the CpxR recognition motif was incubated with increasing concen-

trations of purified and phosphorylated His6-CpxR (CpxR~P) prior to DNaseI on the non-

coding strand from positions +19 to +51 downstream of the transcriptional start site treatment

(Fig 6A). The analysis of both strands revealed one binding region for phosphorylated

His6-CpxR overlapping the CpxR recognition motif (Fig 6A and 6B). We checked the coding

strand of ssrB for binding of CpxR~P but did not observe significant binding (S3 Fig). This

result also indicates that phosphorylated His6-CpxR binds to its consensus motif on ssrB’s

non-coding strand specifically and serves as a direct regulator of ssrB’s expression.

To investigate the binding of CpxR to the tatABC promoter region, a 250 bp DIG-labelled

DNA fragment including the CpxR recognition motif was subjected to DNase I footprint anal-

ysis (Fig 7A and 7B). In contrast to the ssrB promoter region, binding regions for phosphory-

lated His6-CpxR were located on both strands (Fig 7A and 7B). The binding regions on the

coding strand flanked the Cpx recognition motif (Fig 7A and 7C) and overlapped the CpxR

recognition motif on the non-coding strand (Fig 7B and 7C).

Our data clearly assign the tatABC operon as a direct Cpx target in S. Typhimurium. In

contrast, the tatABC operon of E. coli has been described to be constitutively expressed [72]. In

order to clarify the discrepancy of tatABC regulation between S. Typhimurium and E. coli we

Fig 5. A cpxR mutant displays increased sensitivity to polymyxin B. S. Typhimurium wild type SL1344 (black

circles), the cpxR mutant NOS01 (white triangles), and the complementation strain NOS01<pIStmCpxR> (black

triangles) were treated with indicated polymyxin B concentrations at 37˚C for 1 h. Cells were centrifuged and washed

twice with 1x PBS before plating to determine their viability. The % survival confers to the non-polymyxin B treated

bacteria at time zero.

https://doi.org/10.1371/journal.pone.0211584.g005
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compared the structure and promoter sequences of the tatABC operons of both organisms.

The tatABC promoter of E. coli is substantially shorter than that of S. Typhimurium and lacks

the Cpx recognition motif (Fig 7C). We asked whether the tatABC operon might be CpxR-

dependent regulated in pathogenic E. coli strains or other pathogenic genera like Shigella, Yer-
sinia or Legionella. The Cpx recognition motif could only be identified in the tatABC promoter

region of different Salmonella strains (Fig 7D) indicating an adaptation of Salmonella to a spe-

cific niche that depends on a substrate of the Tat complex. D. Comparison of the promoter

sequence of the tatABDC operon of S. Typhimurium (STM), S. Typhi (STY), E. coli MG1655

(ECO_K12), E. coli UTI89 (ECO_UPEC), Shigella flexneri (SFL), Klebsiella pneumophila
(KPN), Vibrio cholerae El Tor (VCO), Legionella pneumophila lens (LPN) and Yersinia pseudo-
tuberculosis (YPS). Given are the homologue tatABCD promoter regions of each strain. Boxed

bases indicate those nucleotides that were identified by weight matrix anlaysis as a CpxR rec-

ognition motif for S. Typhimurium.

The Cpx envelope stress system inhibits anaerobic growth on

1,2-propanediol

From the above results we hypothesized, that the efficient transport of one or several specific

substrates of the Tat-system might be the reason that the tatABC operon is adirect CpxR target

in Salmonella but not in other Gram-negative pathogens. The α-subunit of the tetrathionate

reductase TtrA was described as a Salmonella specific Tat-dependent substrate [74, 75]. The

intriguing ttrBCA operon also includes TtrB subunit with a Tat motif where the invariant argi-

nines are swapped with lysines [76]. The tetrathionate reductase is a membrane-bound

enzyme that contains the guanine dinucleotide cofactor as a prosthetic group and confers

anaerobic respiration of Salmonella on tetrathionate as terminal electron acceptor [24, 74, 77,

78].

Tetrathionate respiration is coupled with the degradation of 1,2-propanediol and ethano-

leamine, respectively, that act as electron donors and that are both abundant in the human

intestine [24, 76]. Interestingly, 1,2-propanediol was described to repress hilA expression [47].

Among the 28 novel CpxR target genes with well annotated functions identified by bioinfor-

matics based screening, we found two genes implicated in 1,2-propanediol utilization: glhA
and pocR (Fig 8B) not being differently regulated under invasion inducing conditions. The

glhA encodes a glycerol dehydrogenase with 1,2-propanediol as substrate and is a suppressor

of cpxA in S. Typhimurium SL1344 rescuing hilA expression [47]. The pocR encodes an AraC

type regulator modulating the cobalamine synthesis [79] and the 1,2-propanediol utilization

(pdu) gene cluster [80–82]. EMSA verified the regulator PocR as a direct CpxR target (Fig 8C).

In order to analyze the impact of the Cpx pathway on 1,2-propanediol utilization, we analyzed

the fermentative growth on 1,2-propanediol according to an established protocol [24]. Of

note, fermentative growth on 1,2-propanediol depends on dilute yeast extract (0.2%) as addi-

tional carbon source that cannot support anaerobic growth alone [24]. Fermentative growth

on 1,2-propanediol was enhanced in a cpxR deletion strain (Fig 8D) supporting our assump-

tion that the Cpx-system modulates through the regulator PocR the utilization of

Fig 6. Determination of CpxR binding sites for the ssrB promoter region. A. DNase I footprinting analysis of the

ssrB promoter performed with the probe for the non-coding strand and increasing amounts of 6His-CpxR~P protein

(see Experimental Procedures). The CpxR~P binding site is indicated by a solid line. Numbers are relative to the

transcription start site of the ssrB gene obtained by [73]. B. DNA sequence of the ssrB promoter region. The sequence

corresponds to the coding strand of the fragment used for DNase I footprinting analysis presented in (A). Boxed bases

indicate the CpxR~P recognition motif. The reported transcription start site [73] is indicated by an arrow and the gene

coding region in bold. The black line indicates the identified CpxR~P binding site.

https://doi.org/10.1371/journal.pone.0211584.g006
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1,2-propanediol as the electron donor for the alternative electron acceptor tetrathionate in

anaerobic respiration.

Conclusions

In the last decades the Cpx-envelope stress system of Gram-negative bacteria has been exten-

sively studied and assigned to be crucially involved during the invasion of host cells [4, 5, 14,

83]. Previous studies revealed for the food-born pathogen S. Typhimurium that deletion of the

sensor kinase CpxA represses expression of the SPI-1 T3SS regulator HilA and attenuates viru-

lence but surprisingly, deletion of the response regulator CpxR had neither effect on hilA
expression nor on virulence when the bacteria were grown under mild acid conditions [20].

Here, we confirmed this effect for S. Typhimurium SL1344 grown in SPI-1 inducing medium.

Interestingly, we observed in addition that a S. Typhimurium strain lacking CpxA and CpxR

showed no decrease in hilA expression. Notably, CpxA represents a bifunctional sensor kinase

that is able not only to phosphorylate its signaling partner CpxR but also to hold the balance

between active and inactive CpxR by dephosphorylation [6, 51]. In previous studies it has been

reported that CpxR can be phosphorylated by additional phosphate donors as the acetyl-CoA

pathway, independent of CpxA [49]. In this case, CpxR would remain in an activated phos-

phorylated state in the absence of CpxA and therefore CpxR would be able to inhibit hilA
expression. Interestingly, similar effects were reported for the QseCB quorum sensing system

involved in virulence regulation of uropathogenic E. coli (UPEC) [50]. Deletion of the sensor

kinase QseC but not of the response regulator QseB significantly attenuated intracellular bac-

terial community formation and virulence [50]. Moreover, a qseBC deletion mutant behaved

like wild-type strain contradicting the hypothesis that QseC may function through different

response regulators but suggesting that dephosphorylation of QseB is required for virulence

gene expression [50]. In agreement with this we suggest that the phosphatase activity of CpxA

is important for hilA expression by inactivating the inhibitory effect of phosphorylated CpxR.

Here, we identified 1,2-propanediol degradation system (pocR) and the Tat-system

(tatABC) which are involved in the expression of hilA to be under direct control of CpxR (Fig

8) [47, 65]. Interestingly, these two operons are functionally linked. Together they promote the

anaerobic respiration of tetrathionate as electron acceptor on 1,2-propanediol as electron

donor [24]. Anaerobic respiration on tetrathionate is a differential ability of Salmonella and

therefore used in clinical diagnostic in a standard enrichment medium [74, 84, 85]. The

ttrABCRS cluster responsible for tetrathionate respiration is located on SPI-2 [62, 74]. It was

show that reactive oxygen species generated during inflammation, caused by the activity of

both S. Typhimurium T3SSs [86], react with endogenous sulphur compounds to form tetra-

thionate which inhibits coliforms [77]. Consequently, tetrathionate respiration has been linked

to Salmonella specific host adaptation that results in a growth advantage for S. Typhimurium

over the competing microbiota in the lumen of the inflamed gut [77]. 1,2-Propanediol, the

electron donor for the anaerobic respiration of tetrathionate, is a fermentative product from

rhamnose and fucose catabolism, two sugars commonly present in the mammalian intestinal

Fig 7. Determination of CpxR binding sites for the tatABC promoter region. DNase I footprinting analysis of the tatA promoter

performed with probes for the coding strand (A) and non-coding-strand (B) with increasing amounts of 6His-CpxR~P protein (see

Experimental Procedures). Solid vertical lines correspond to regions protected by the 6His-CpxR~P protein. Numbers are relative to

the translational start site of the S. Typhimurium tatA gene. C. Comparison of the promoter sequence of the tatABC operon of S.

Typhimurium and E. coli (ECO). Boxed bases indicate those nucleotides that were identified by weight matrix anlaysis as a CpxR~P

recognition motif. The reported transcription start site for the E. coli promoter [72] is indicated by an arrow. The gene coding

sequences are highlighted in bold letters. Bases that are protected by CpxR~P are indicated by black lines. Lines on top of the bases

show protection regions identified for the coding strand and lines below the bases show regions identified for the non-coding strand.

https://doi.org/10.1371/journal.pone.0211584.g007
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Fig 8. Cpx envelope stress system enhances 1,2-propanediol-dependent anaerobic growth of S. Typhimurium. A. The diagram outlines

the principle steps in the metabolism of 1,2-propanediol (PDO). B. Potential novel Cpx regulon members of S. Typhimurium identified by

bioinformatics based screening. The left (I) and right [28] pentamers and the 5-bp spacer [28] are displayed as a heat-map to show bases of

high conservation (dark grey) from degenerate regions (light grey/white) (compare Fig 2). The genes controlled by these promoters are

indicated to the left of the sequences. C. EMSA analysis verifies CpxR binding to the pocR promoter. PocR promoter fragment (p) was

incubated without or with increasing amounts of the purified and phosphorylated CpxR protein. The DNA-CpxR~P complexes were

separated on 4% polyacrylamide gels. The corresponding molecular weights are indicated on the left. The positions of the promoter

fragments are indicated (p), arrows show the higher molecular weight DNA-CpxR~P complexes. A fragment of the cpxP promoter region

without the CpxR~P binding motif (-151 to -297) was used as negative control (c). D. Stimulation of anaerobic growth by 1,2-propanediol

(PDO) was determined according to an established protocol [24]. Cells of wild-type S. Typhimurium strain SL1344, the cpxR mutant

NOS01, and the cpxRA overexpressing strain NOS01<pSSS11> were grown anaerobically on minimal NCE medium supplemented with

0.2% yeast extract as carbon source with or without 80 mM PDO as energy source. Shown are the means ± S.E.M. of biological quadruples

(t-test).

https://doi.org/10.1371/journal.pone.0211584.g008
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tract by e.g. plant cell walls [87]. The degradation of 1,2-propanediol is a complex process per-

formed in an specific 1,2-propanediol utilization (Pdu) microcompartment in a Vit B12

dependent manner [79, 88]. Salmonella upregulates proteins for the utilization of 1,2-propane-

diol (pdu-cob cluster) under invasion-mimicking conditions [89]. Expression of the pdu-cob
cluster is inhibited by PocR, induced by 1,2-propanediol and globally controlled by the ArcA

and Crp systems [90]. The combined results indicate that deletion of CpxA results in active

CpxR inducing expression (Fig 8). The PocR regulator inhibits expression of the pdu-cob clus-

ter resulting in the accumulation of 1,2,-propanediol (PDO) and finally in hilA repression.

Thus, our finding that the regulator for the degradation of 1,2,-propanediol PocR is under

direct CpxR control suggests that the Cpx envelope stress system links metabolism with viru-

lence regulation.

However, the exact mechanism of how the degradation of 1,2-propanediol and the Tat-sys-

tem impacts the expression of hilA is not known. Transcription of hilA is controlled by a com-

plex feed-forward loop including RtsA, HilC and HilD [46]. Environmental signals feed into

this network and mediate hilA expression through post-transcriptional or post-translational

control of hilD. One of the known post-transcriptional hilD regulators is the EnvZ/OmpR

two-component system [46]. Recently, it was demonstrated that the CpxR target MzrA modu-

lates the activity of EnvZ by direct protein-protein interaction in E. coli [91–93]. Accordingly,

MzrA can be defined as an auxiliary protein that connects two two-component systems [94].

We identified the mzrA gene by global transcriptional analysis to be under global control of

the Cpx envelope stress system. Of note, we also identified CpxR recognition motif in the

mzrA promoter region in S. Typhimurium as described in E. coli suggesting that MzrA might

play the mediator protein role between the CpxAR and the EnvZ/OmpR systems to modulate

hilA expression (Fig 8 and S2 Fig) [92].

Identification of the Tat-system (tatABCD) as direct CpxR target in S. Typhimurium was

unexpected since the tatABCD operon was described to be constitutively expressed in E. coli
[72]. The Tat-system facilitates the export of cofactor-containing proteins across the cyto-

plasmic membrane [95]. In E. coli, the Tat-system consists of TatA, TatB, TatC, TatD and TatE

proteins that are encoded on the tatABCD operon and tatE [96] respectively. The promoter

region of the tatE gene that is thought to be a cryptic gene duplication of tatA does not consist

of a CpxR recognition motif. Interestingly, a CpxR recognition motif could also not be identi-

fied upstream of the tatABCD operon in several other species including pathogenic E. coli
strains, indicating that the regulated expression of tatABCD by CpxR is species-specific (Fig

6D). In line with this is the observation that for several pathogens the effects for tat mutants

vary including growth rate, motility, biofilm formation, host colonization and virulence [65,

97–99]. As an example, tat mutants of Escherichia, Agrobacterium and Pseudomonas become

non-motile [97, 100, 101] whereas no effect on Vibrio motility could be observed [98]. A Sal-
monella specific substrate of the Tat-system is the A subunit of the anaerobic tetrathionate

reductase [74]. As stated above, anaerobic respiration on tetrathionate promotes Salmonella a

growth advantage over the competing microbiota [77]. Moreover, two Tat-system dependent

amidase (AmiA and AmiC) that confer resistance to cationic antimicrobial peptides (CAMPs)

were shown to be under direct CpxR control [22]. Taking our experimental findings into con-

sideration we conclude that the Cpx-dependent expression of the Tat-system is important in

the ecology of Salmonella.

In addition to the disparate regulation of the Tat-system, we found a phenotypic variation

of Cpx-dependent motility (motABcheAW). Motility of S. Typhimurium is under positive

CpxR control, whereas E. coli motility is negatively regulated by the response regulator [37]. A

phenotypic difference between E. coli and S. Typhimurium was first described for the resis-

tance to the antimicrobial peptide polymyxin B, which is governed by the PmrA/PmrB system
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[102]. In contrast to E. coli, S. Typhimurium is resistant to polymyxin B under low Mg2+ con-

dition [45]. In S. Typhimurium but not in E. coli dephosphorylation of the PmrA response reg-

ulator is prevented by the PmrD connector protein expressed by the PhoP/PhoQ system and

responds to low extracellular Mg2+ [102, 103]. Moreover, many studies have underlined the

difference in regulatory strategies between Salmonella and Escherichia coli [67–71]. Thus, our

finding underlines the remarkable diversity in regulatory circuits between the closely related

species Escherichia and Salmonella and exemplifies the assumption that disparate regulation of

conserved genes has consequences for the ecological niches bacterial species can colonize

[102].

Phenotypic differences among related bacteria are mainly assigned to species-specific

genes. Here, we identified the genes for the SPI-2 regulator SsrB and the omptin PgtE as direct

CpxR targets (Fig 8). SsrB is the response regulator of the SsrAB two-component system that

activates the expression of the SPI-2 T3SS. In contrast to many other two-component systems

expression of the sensor kinase SsrA and the response regulator SsrB is independently regu-

lated from each other [73]. SsrB directly controls the expression of the SPI-2 T3SS and its effec-

tors that provide Salmonella to survive in host cells [63, 104]. It has been reported that the SPI-

2 T3SS is also expressed in the intestine independently of the invasion process but without sub-

strate protein secretion [79] supporting a previous suggestion that the acidic pH environment

typical for the interior of macrophages might be an essential trigger for the secretion of SPI-2

T3SS substrate proteins [104]. Consistent with this, we found no difference in the secretion

pattern for the SPI-2 T3SS substrate protein SseB (S5 Fig). These data also support the observa-

tion that deletion of the Cpx-system results in only slight attenuated growth of S. Typhimur-

ium in macrophages [21]. Accordingly, our results indicate that the Cpx-system might be

involved in preparing Salmonella for its life in host cells.

PgtE belongs to the omptin family of outer membrane β-barrel proteases that promote viru-

lence associated functions of different pathogens [105]. Pla of Yersinia pestis is located on the

virulence plasmid pPCP1, and advances the migration of the plaque bacteria through tissues

[106]. SopA of Shigella flexneri is encoded on the plasmid pWR100 and is important for the

intracellular mobility [105]. PgtE of Salmonella enterica promotes resistance towards CAMPs

like polymyxin B and protamine [107]. CAMPs as part of the innate immune system are typi-

cally amphiphatic peptides of 12–45 residues length with wide variations in their sequences

and secondary structures [108, 109]. Very recently, it has been proven that the Cpx-envelope

stress system confers resistance to the CAMPs protamine, magainin-2 an melittin through reg-

ulated expression of the two Tat-system dependent amidase AmiA and AmiC [22]. These Tat-

dependent amidases contribute to bacterial resistance to the CAMPs protamine, magainin 2

and melittin but not to the CAMPs HNP-1 and polymyxin B [22]. Recent studies in S. Typhi-

murium carrying pgtE deletions had 2-fold lower minimum inhibitory concentrations (MICs)

to two CAMPs namely human LL-37 and its murine ortholog CRAMP [107], while pgtE over-

expression increased the MIC by 8-fold (Band and Weiss 2015). Here, we demonstrate that the

Cpx-system contributes also resistance to polymyxin B. Other CpxR targets that are known to

confer resistance to CAMPs are the inner membrane protein of unknown function YqjA (S4

Fig) and extracytoplasmic sigma factor sE (RpoE) [110, 111]. As the Cpx-targets PgtE and

YqjA which contributes to resistance towards protamine, our finding suggests the regulation

of these two loci as the Tat-independent mechanism of Cpx pathway promoted protamine

resistance. Collectively, our data point the Cpx-envelope stress system of S. Typhimurium a

critical function during the early stage of infection. Starting with the competition with the

invasion process (hilA, pocR, tatABC) to the preparation for the escape from the host cell

immunity (eco, ssrB). Taking all findings together we are reporting here a comprehensive

model depicting network regulated by Cpx pathway (Fig 9). Moreover, it seems that S.
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Typhimurium is able to tolerate a complete loss of the whole Cpx system better than an

impaired incomplete system [21]. A recent quantitative proteome study identified a need for

10-fold excess of CpxP to inhibit the CpxRA two-component system [112]. The interaction of

Cpx-system with other regulatory networks like small non-coding RNAs (sRNAs) has been

reported [113].Thus, although the Cpx system appears not to be essential it still can be assigned

to an important role in fine-tuning virulence. Further studies could shed light on if the Cpx

system is involved in physical interaction with other regulatory networks like sRNAs. Together

with the general ability of the Cpx system to sense a wide range of different external stimuli

this work supports the notion that the Cpx system plays a central role in a complex network

regulating the interaction between pathogen and host.

Supporting information

S1 Fig. CpxA-mediated transcription of hilA is specific for SPI-1 inducing conditions. Pro-

moter-GFP fusion assay of SL1344 wild type (WT; white), cpxA (MA; red) strains transformed

with a plasmid carrying the GFP fusion to the hilA promoter (pD.2E). Shown are the expres-

sion results (bars) for cultures grown under normal conditions (LB medium, pH 7.0) (A) or

under SPI-1 inducing conditions (B). Fluorescent values were measured at values set at 485/

540 nm, cell growth of bacterial cultures was monitored at OD620. Data represents means ± S.

E.M. of at least biological triplicates (t-test).

(TIF)

Fig 9. Model of the Cpx envelope stress network in S. Typhimurium. Genes are pictured within big arrows.

Regulator genes are depicted within black arrows and the enzyme or transporters are depicted within white arrows.

Thin arrows indicate a positive effect. Line with blunt ends note a negative effect. Solid lines represent direct

transcriptional regulation. Regulation that is not known to be direct or indirect is represented by short-dashed lines.

Long-dashed lines indicate post-translational effects. For clarity, the genes encoding HilD, HilC and RtsA are not

shown. Abbreviations used are CAMPs, cationic antimicrobial peptides; PDO, 1,2-propaendiol; T3SS, type three

secretion system. See text for details and references.

https://doi.org/10.1371/journal.pone.0211584.g009
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S2 Fig. EMSA analysis for E.coli tatA promoter. EMSA analysis to verify the species specific-

ity shown by CpxR towards E. coli tatA promoter. Indicated promoter fragments (p) were

incubated without or with increasing amounts of the purified and phosphorylated CpxR pro-

tein. The DNA-CpxR~P complexes were separated on 4% polyacrylamide gels. The corre-

sponding molecular weights are indicated on the left. The positions of the promoter fragments

are indicated (p), arrows show the higher molecular weight DNA-CpxR~P complexes. A frag-

ment of the cpxP promoter region without the CpxR~P binding motif (-151 to -297) was used

as negative control (c).

(TIF)

S3 Fig. DNAse I footprinting assay for Forward strand of ssrB. DNase I footprinting analysis

of the ssrB promoter performed with the probe for the coding strand with increasing amounts

of 6His-CpxR~P protein (see Experimental Procedures). No significant binding of CpxR~P

was observed.

(TIF)

S4 Fig. DNA sequence comparison for yqjA-mzrA promoter region of E. coli and S. Typhi-

murium. Underlined nucleotide indicate the CpxR binding motif identified and confirmed in

E. coli [114]. The starts of the coding sequences are highlighted in bold letters.

(TIF)

S5 Fig. Effect of cpxR deletion on SseB secretion. S. Typhimurium wild type (SL1344), the

cpxR mutant NOS01 and the complementation strain NOS01+pSSS11 were grown in

MgM-MES medium. Hexadecane and cell pellet fractions were obtained as described above

(SI Experimental procedures) and analyzed by immunoblotting. Given is a representative of

three biological replicates.

(TIF)

S1 Table. Global transcriptional analysis. Matrix of expression ratios between S. Typhimur-

ium SL1344 and S. Typhimurium SL1344 cpxA::kan (SHS01) strains invasion inducing condi-

tion labeled with functional descriptions (provided as separate Excel spreadsheet). Raw data

are available online (http://www.webarraydb.org).

(XLSX)

S2 Table. CpxR~P controlled input operons used to construct the CpxR~P recognition

weight matrix. (provided as separate Excel spreadsheet).

(XLSX)

S3 Table. Putative CpxR~P target operons identified by in silico data analysis in S. Typhi-

murium LT2. (Provided as separate Excel spreadsheet).

(XLSX)
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