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Abstract
Blood pressure (BP) variability is one of the important risk factors of cardiovascular disease (CVD). “Surge BP,” which
represents short-term BP variability, is defined as pathological exaggerated BP increase capable of triggering cardiovascular
events. Surge BP is effectively evaluated by our new BP monitoring device. To the best of our knowledge, we are the first to
develop an algorithm for the automatic detection of surge BP from continuous “beat-by-beat” (BbB) BPmeasurements. It enables
clinicians to save significant time identifying surge BP in big data from their patients’ continuous BbB BPmeasurements. A total
of 94 subjects (74 males and 20 females) participated in our study to develop the surge BP detection algorithm, resulting in a total
of 3272 surges collected from the study subjects. The surge BP detection algorithm is a simple classification model based on
supervised learning which formulates shape of surge BP as detection rules. Surge BP identified with our algorithm was evaluated
against surge BP manually labeled by experts with 5-fold cross validation. The recall and precision of the algorithm were 0.90
and 0.64, respectively. Processing time on each subject was 11.0 ± 4.7 s. Our algorithm is adequate for use in clinical practice and
will be helpful in efforts to better understand this unique aspect of the onset of CVD.

Keywords Clinical informatics .Medical informatics applications . Expert systems . Learning from labeled data . Blood pressure
monitors

1 Introduction

Management of 24 h blood pressure (BP) is important for
preventing the progress of hypertensive target organ damage
and onset of cardiovascular disease (CVD) such as stroke or
heart disease [1, 2]. As home BP monitoring (HBPM) devices

are increasingly used by consumers, it has become easier to
monitor and control morning and evening BP. However, even
if they are controlled, there is still a risk of masked uncon-
trolled BP (daytime or nighttime). In particular, several studies
have demonstrated that the mean value of nighttime BP mea-
surements taken by ambulatory BP monitoring (ABPM) with
fixed time intervals (e.g., 30 min.) is a stronger predictor of
cardiovascular (CV) events than daytime ambulatory or clinic
BP [3–6]. In addition, an increase in nighttime BP variability
(BPV), defined as the standard deviation of nighttime BP
measured by ABPM, is related to risks of CV events [2, 7].
It is assumed that some pathological factors such as obstruc-
tive sleep apnea (OSA) and microarousal increase nighttime
BPV. It is known that these pathological factors generate
short-term BPV [8–10]. Characteristic of this kind of BPV is
a sharp rise in BP over several tens of seconds. We define
pathological short-term exaggerated BP increase that can trig-
ger a CVevent as “surge BP” [1, 2, 11]. Although it is impor-
tant to detect such surge BP for detailed assessment of CV
risk, ABPM, which is the gold standard of nighttime BP mea-
surement, cannot detect surge BPs precisely because its
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intermittent measurements (at 15–30-min intervals) would
miss the surge BP peaks.

To resolve the unmet need to detect cases of surge BP
during sleep apnea episodes in OSA patients, we devel-
oped hypoxia-trigger nocturnal HBPM and have studied
the clinical implication and management of surge BPs in
OSA patients [1, 2, 11–17]. However, as this HBPM is
based on the oscillometric method, the peak of surge BP
might be underestimated. Consequently, we developed a
wearable continuous beat-by-beat (BbB) BP monitoring
device using a tonometry method [18], which measures
BP generated by each heartbeat. Using this device, we
already have observed surge BPs successfully in OSA
patients [1, 2, 11]. Further, we found that the peak of
surge BP detected by our BbB BP monitoring device
was higher than that detected by hypoxia-trigger BP
monitoring [2, 11].

However, in severe OSA patients, several hundred
surge BPs occur among > 30,000 BbB BP measurements
recorded in a single night. It is too time-consuming for
clinicians to review all the raw continuous BbB BP data
manually to identify these surge BPs correctly. Even if a
clinician spends a lot of time reviewing all the big data,
the results of surge BP could vary widely from clinician
to clinician because, as yet, there is no solid standard to
identify surge BP. Furthermore, even if the same clinician
reviews the entire dataset for a given patient, the clini-
cian’s judgment is still subjective and might change or
be in error depending on work environment or level of
fatigue.

Thus, in this study, we developed a detection algorithm that
automatically identifies surge BP by using fixed criteria from
significant amounts of raw continuous BP data. We evaluated
the performance of our algorithm by analyzing consistency
between surge BP results detected by the algorithm and those
identified by experts who have specialized knowledge about
CV medicine.

2 Materials and methods

We describe an overview of how the algorithm was devel-
oped. The requirements for the algorithm are presented in
the “Requirement of the algori thm” subsect ion.
Subsections and Beat-by-beat BP measurement” and
“Collection of surge BP labeled by CV experts” describe
the data collection procedures. These include labeling of
surge BPs to train the algorithm. The constitution of the
algorithm functions is provided in the “Development of the
algorithm” subsection and the methods used to evaluate
performance are given in the “Performance evaluation”
subsection.

2.1 Requirement of the algorithm

The standard criteria or algorithm of surge BP detection have
not existed until now. Thus, our algorithm could be an objec-
tive and reliable method to identify surge BP. It also could
encourage future clinical studies relating to surge BPs. Surge
BPs detected by the algorithm could be used for summary
reports, whereby clinicians could evaluate the results of over-
night BbB BP measurement and discuss their assessment with
their patients. Taking these situations into consideration, three
types of requirements (described below) are needed for the
algorithm:

1. High sensitivity of surge BP detection: To avoid underes-
timation of patients’ CV risks, surge BP should be detect-
ed with high sensitivity even if it includes undetermined
BPV in terms of its shape or degree.

2. Understandability of detection rules: To be an acceptable
algorithm for wide use among clinicians, the rule should
be fully understandable [19]. Experimental rules for iden-
tifying surge BP are formulated as detection rules in the
algorithm to gain acceptance of clinicians. Thus, surge
BPs should be reviewed and manually labeled by CV
experts. For explicability from a medical perspective,
knowledge of CV medicine should also be applied when
the algorithm works. The understandable detection rule is
easily edited even if the criteria are necessary to change
considering the result of the future clinical study, which
reveals features of surge BP associated with CVevents.

3. High processing speed: Because, as mentioned above, the
results of surge BP detection will be used for reports in
consultation with patients, it is necessary to generate a
report in a relatively short time.

2.2 Beat-by-beat BP measurement

2.2.1 Measurement device

This study was conducted by using BbB BP monitoring
device which we recently developed, which enables the
measurement of pulse waves at a sampling rate of 125 Hz
and calculates each BP from these pulse waves [1] (see
Fig. 1). The device consists of a tonometry sensor and a
BP measurement unit using the cuff oscillometric method
which is widely used in automatic BP monitors. The to-
nometry sensor consists of an array of pressure sensors
that are pressed against the skin over a radial artery. At
the beginning of continuous BP measurement, the pres-
sure measured by tonometry sensor must be calibrated by
BP measured using the oscillometric method to output
continuous absolute BP values. Recalibration is needed
when contact between the skin and the tonometry sensor
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changes because of body motion. Our device automatical-
ly recalibrates when the device senses abnormal BP
values.

2.2.2 Flow of study subject selection

Figure 2 shows the flowchart of the study subject selection.
Initially, 115 subjects were recruited for the study. The inclu-
sion criteria were an age of > 20 years and patients with a sleep
disorder or nocturnal hypertension who are expected to have
frequent surge BPs. The BbB BPmonitoring device was worn
on the subject’s left wrist in the supine position by the mem-
bers of the study. The subjects were able to turn over in bed
and go to the toilet. After wearing the device, they were re-
quested to sleep overnight. The length of recordings was ap-
proximately 10 h, which depended on the time of the device
setting and the patient’s wakeup time. This study was conduct-
ed at Washiya Hospital, Tochigi, Japan, from April 2016 to
March 2018. The study was approved by the institutional re-
search board of the Jichi Medical University School of
Medicine (rin-dai15-117 and rin-B17-028), and all subjects
provided their written informed consent to participate. After
excluding 21 subjects as shown in Fig. 2, a total of 94 subjects
were included as the study subjects. As shown in Fig. 2, sub-
jects with missing data or with < 30 min of effective BbB BP
data were excluded for their low reliability. Subjects with

atrial fibrillation (AF) were also excluded, because their
BbB BP data was not suitable as training data for developing
the algorithm due to the large variability of the time interval
between heart beats.

We developed the algorithm by using the BbB BP data
obtained from these 94 study subjects as described in Fig. 3
and below, in the “Collection of surge BP labeled by CV
experts” and “Development of the algorithm” sections.

2.3 Collection of surge BP labeled by CV experts

Our algorithm was developed using surge BPs labeled by a
CVexpert using the following procedures. For data cleansing,
we removed low-reliability measurement periods to ensure
high-quality data for training the algorithm. The procedure is
shown in the supplementary material section—Data cleans-
ing. After data cleansing, only surge BPs observed during
high-reliability periods were labeled to assure good quality
training data. The labels include the start, peak, and end
points. These “feature points” express the shape of the surge
BP. Surge BPs were screened and labeled in accordance with
the procedure and conditions as shown in Fig. 4.

In step I (Fig. 4), potential surge BPs that were in high-
reliability periods were screened manually with high sensitiv-
ity by nonexpert study staffs. The staff members received
training for > 1 week for surge BP labeling before they started
the work. In step II, surge BP candidates screened in step I
were subjected to screening refinement to reduce the impact of
subjective error induced by a staff’s condition (e.g., fatigue or
work environment). In step III, a CV expert visually checked
the shape of surge BP candidates to improve its precision and
classified them into three classes as: “surge BP,” undetermined
BPV,” and “noisy BPV” based on Table 1. The undetermined
BPV means that the BP varies certainly but neither surge BP
nor the noise. The judgment criteria used in steps I, II, and III
were reviewed and approved by a specialist clinician (Kario),
who is a coordinator of the study and has specialized knowl-
edge of CV medicine, and by an expert (Kuwabara) who has
considerable experience in clinical research in CV medicine.
Therefore, the developer of the algorithm (Kokubo) did not
get involved in the surge BP labeling but instead relied entire-
ly on these expert judgments.

2.4 Development of the algorithm

We developed an algorithm that classifies surge BP candidates
into “surge BP” or “not surge BP”. High detection sensitivity is
required in the algorithm. However, detecting surge BP is chal-
lenging because of fluctuations in BbB BP and various surge
BP patterns in terms of time and amplitude domains.We solved
these problems considering the variable and complex property
of surge BP and compose the algorithm of “feature variables
definition” and “classification model acquisition” (see Fig. 5).

Fig. 1 Beat-by-beat blood pressure monitoring device [1]

Fig. 2 Flowchart of the study subject selection. A total of 115 subjects
participated in this study and 94 subjects were included as the study
subjects
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In the feature variable definition block, the features of surge BP
were defined using knowledge of CV medicine. The process-
ing steps of feature variables definition were composed to grad-
ually narrow down the surge BP candidates to realize highly
sensitive detection. In classification model acquisition, features
to be used for the classification were selected, and their criteria
were determined using a supervised learning.

2.4.1 Feature variable definition

This block consists of “peak-point detection” and “start/end-
point detection,” which are the preprocessing steps, and “fea-
ture calculation” (see Fig. 5). Here the preprocessing parts are
described in the supplementary material section—Details of
feature variable definition.

In feature calculation, six categories of surge BP features
based on the surge BP shape were set (Fig. 5). They represent
the clinician’s viewpoint: reactivity phase, recovery phase,
amplitude, upward, downward, and whole duration. Then,
we designed 48 features in those categories, including some
features defined in a previous study [20], and used them as
input variables in later feature selection. These categories and
features were reviewed by experts to ensure meaningfulness
of them in terms of CV medicine.

2.4.2 Classification model acquisition

This block consists of two steps: “feature selection” and
“criteria determination” (see Fig. 5). The classifier was given
as a function f, which is the product of function g(xi, ai), where

Step Worker Conditions

I
Non-expert

(manually)

Short-term BPV cases that met the two following 

conditions were screened as Surge BP candidates.

1. Surge amplitude in upward period >20 mm Hg 

2. Shape was mountain type.

II
Computer

(automatically)

Surge BP candidates that met the four following 

conditions were rescreened as Surge BP candidates.

1. Candidates in high-reliability period.

2. Surge amplitude in upward period >20 mm Hg.

3. Duration time between start point and peak point 

< 25 sec. OR slope of SBP elevation  per unit time

> 1 [mm Hg/sec]

4. Duration time between start point and peak point 

> 3 sec.

AND that between start point and end point > 7 sec.

III
Expert

(manually)

Surge BP candidates were classified into three classes 

according to conditions described in Table I.

Fig. 4 Steps in surge BP labeling. BPV: blood pressure variability, SBP: systolic blood pressure

Fig. 3 Overall structure for
algorithm development. Collected
BbB BP data is given labels of
surge BP by cardiovascular
experts. These surge BP labels are
used for development of the
algorithm
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g is a threshold function that determines whether values of the
variable xi exceed a given threshold ai. The output of g is 1 if
surge BP or 0 if not. The functions of f and g are defined as:

f ¼ ∏
n

i¼1
g xi; aið Þ; ð1Þ

g xi; aið Þ ¼ 1 surge BPð Þ ; xi≥ai
0 not surge BPð Þ ; xi < ai

�
; ð2Þ

where x = (x1,…, xn) is the selected features from input vari-
ables x' (all of features), a = (a1,…, an) is the thresholds for x,

and n is the number of the selected features. The x and a were
selected and determined using categories of features known to
CV medicine.

In feature selection, x and a' (temporary thresholds) were
determined as follows. Figure 6a shows the flowchart of fea-
ture selection.

First, each feature xi' was treated as a classifier by
setting the thresholds. Then, three performance indexes
(recall, precision, and F-measure [21]) were calculated
for each threshold at each feature. The recall, precision,
and F-measure are defined as (3), (4), and (5) respec-
tively:

Fig. 5 Development steps for surge BP detection algorithm. Feature variables representing surge BPs are defined and used for modeling classifier

Table 1 Conditions for surge BP
classification Class Condition

Surge BP Surge BP candidates that were not otherwise classified.

Undetermined BPV Surge BP candidates that met any of the four following
conditions by cardiovascular expert’s subjective judgment.

1. Slope of SBP elevation per unit time was small.

2. Variability of SBP in upward period was large.

3. Physiological BPV caused by respiration.

4. Surge BP candidates, including instantaneous BPV due
to body motion.

Noisy BPV Surge BP candidates that met either of the two following
conditions by cardiovascular expert’s subjective judgment.

1. BPV caused by body motion.

2. Surge BP candidates that did not recover to the level of
SBP at start point from that at peak point in downward period.

BPV blood pressure variability, SBP systolic blood pressure
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Recall ¼ TP
TP þ FN

; ð3Þ

Precision ¼ TP
TP þ FP

; ð4Þ

F−measure ¼ 2� Recall� Precision

Recallþ Precision
; ð5Þ

where TP, FP, and FN indicate the number of true positives, the
number of false positives, and the number of false negatives,
respectively. The recall and precision are also known as sensi-
tivity and positive predictive value, respectively. F-measure
represents harmonic mean of the recall and precision. The xi
and ai' which had the highest F-measure were determined from
each threshold in each feature and were temporarily formulated
as function g. Surge BP candidates distinguished as “1” by the
temporary g were defined as “pre-surges.”

Second, the above-mentioned process was repeated several
times to “pre-surges” to help ensure exclusion of cases that
were not actual surge BP cases. In the repeated process, an-

other xi and a
0
i were selected from the remaining categories of

features that had not been selected in previous processing. By

applying this process to select xi and ai′ from each category,
the algorithm could cover the clinician’s viewpoints.

In criteria determination, values of a were determined by
fine tuning a' with grid search. Figure 6b shows the flowchart
of criteria determination. The determined x and a were formu-
lated as final g and the classifier f was composed as the prod-
uct of g. The cases determined as surge BP by the function f
were treated as detected surge BP by this algorithm. The al-
gorithm was developed with R using Rstudio.

2.5 Performance evaluation

The performance of the algorithm was evaluated by following
three viewpoints using data in high-reliability period, i.e., after
data cleansing was finished. The surge BP classified by ex-
perts in the process of surge BP labeling was set as the target
of reference for evaluation in 1 and 2, below.

1. Recall and precision: The mean values of recall and pre-
cision were calculated by using 5-fold cross validation to
assess the generalization ability of the detection. These
indexes (described as above) are also used as evaluation

Loop1: i = 1 to number of features

Loop2: j = 1 to number of threshold

SET th = a list of threshold 

points for the feature x’[i]

End of Loop1

End of Loop2

DETERMINE a’[i] = the best 

threshold in th

x’[i] >= th[j] ?

DETERMINE surge BP 

candidates as “Surge BP”

CALCULATE Recall, Precision,  

and F_measure at x’[i] and th[j]

DETERMINE surge BP

candidates as 

“ NOT Surge BP”

DETERMINE f_best[i] = 

F_measure value at a’[i]

DETERMINE x = the feature 

which satisfied maximum 

F_measure in f_best[] and 

belonged to a category which 

has not selected ever

x >= a’ ?

DETERMINE surge BP 

candidates as pre-surges

Start

End

Loop: i = 1 to number of grid points

SET list of threshold points 

around a’ in each x

End of Loop

Start

End

Make all grid point

CALCULATE Recall, Precision, 

and F_measure at each grid 

point

DETERMINE a = best 

thresholds in all grid points

Fig. 6 Algorithms of feature selection and criteria determination
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indexes. Study subjects were randomly assigned to five
balanced groups by considering the frequency of surge
BP of each group.

2. Mean absolute error between labeled surge BP and detect-
ed surge BP: To evaluate the detection accuracy of start
points, we calculated the mean absolute error (MAE) [22]
between time at start points of surge BP labeled by expert
and those of detected surge BPs and the MAE between
surge amplitudes of labeled surge BPs and those of de-
tected surge BPs as:

MAE ¼ 1

n
∑
n

i¼1
Sli−Sdij j; ð6Þ

where n is the number of surge BPs, Sli is an evaluation value
of labeled surge BP, and Sdi is an evaluation value of detected
surge BP. The surge amplitude is defined as the difference
between the SBP at the peak and the start points. The detection
accuracy of start point of surge BP would reflect the quality of
its detection because the start point is a foundation of the
feature values. The detection accuracy of surge amplitude is
important in clinical practice because it is regarded as a prom-
ising indicator of BPV, which reflects the additional risk factor
of CVevents.

3. Mean processing time to output the result: To evaluate the
requirement of “high processing speed”, mean time of
processing one measurement data point for study subjects
was calculated for the following PC specifications that are
common among clinicians in their clinical practice.

Number of CPU: 2
RAM: 7.5GB
CPU: Intel® Xeon®, 2.20GHz

3 Results

Table 2 shows the clinical characteristics of the 94 study subjects.
After the stage of “collection of surge BP labeled cases by CV

Table 2 Clinical characteristics and BP measured by oscillometric BP
monitor

Characteristics

Age 61.7 ± 11.6

Male:female 74:20

BMI, kg/m2 27.2 ± 5.2

Hypertension, % 64.8

Sleep apnea syndrome, % 33.0

Evening BP

SBP, mmHg 131.3 ± 15.5

DBP, mmHg 78.0 ± 9.6

PR, beats/min 68.7 ± 9.6

BMI body mass index; SBP systolic blood pressure; DBP diastolic blood
pressure; PR pulse rate. Data is expressed as mean ± standard deviation,
number, or percentage. Evening BP values were measured by
oscillometric BP monitor in supine position before starting BbB BP
measurement.

Fig. 7 Typical cases of detected
surge BP by the algorithm. a
Successful cases. b Over-detected
cases

Med Biol Eng Comput (2020) 58:1393–1404 1399



experts”, a total of 3272 surge BPs were collected as so labeled
from a total of 2,997,784 beats of continuous BbB BP data.

During the development of the algorithm, the features were
selected from four categories including upward, downward,
reactivity phase, and recovery phase. Although the maximum
number of selected features is six, we selected four features
because the highest F-measure was at three or four. In case of
the four features, the reactivity phase, which was important for
clinical BP evaluation, [20] was selected; this was not includ-
ed in three features. The features that reflect clinical signifi-
cance, such as “recovery time,” were selected. All absolute
values of correlation coefficients between the selected features
were < 0.37, which suggests no multicollinearity.

Figure 7 shows typical cases of surge BP detection by the
algorithm. Figure 7a presents a subject who had many surge
BPs in a short period all of which were successfully surge BP
detected. However, some start points detected by the algo-
rithm differed from those of the labeled surge BPs.
Figure 7b presents a subject who had overdetection of surge
BP. Although there were three detected cases, two cases on the
left side in the figure were not labeled by experts.

3.1 Result of performance evaluation

The performance results for recall and precision by 5-fold
cross validation are shown in Fig. 8. The mean value and
standard deviation of recalls and of precisions in five groups
were 0.90 ± 0.03 and 0.64 ± 0.05, respectively. The confusion
matrix of detection result presents the number of surge BPs
that were labeled or not by the expert (in columns) and the

number of surge BPs detected or not by the algorithm (in
rows), namely 2950 cases were successfully detected by the
algorithm, 322 cases were not detected by the algorithm, and
1698 cases were overdetection cases.

The accuracy of start points is shown in Fig. 9.
Figure 9a shows a histogram of the time difference of
the start points surge BP between labeled surge BP and
detected surge BPs. Positive values on the horizontal axis
mean that the detected start point is later than the labeled
one. Most differences are distributed around 0 s, and the
MAE was 2.4 s. Figure 9b is a scatterplot of surge ampli-
tude of labeled surge BP vs. detected surge BPs. The
MAE between surge amplitudes of labeled surge BP and
detected surge BPs was 2.8 mmHg. Most of them were
distributed on a line, which means no difference, or in the
area above the line.

The mean value and standard deviation of processing time
of the algorithm for 94 study subjects were 11.0 ± 4.7 sec.

Fig. 8 Performance of surge BP detection. Numeric values in each cell in
confusion matrix are numbers of cases. The “-“indicates uncountable

Fig. 9 Performance of algorithm in detecting start point and calculation
of surge amplitude in upward period

Med Biol Eng Comput (2020) 58:1393–14041400



3.2 Comparison studies

Different classifiers that used the same features as our classi-
fier were evaluated for comparison and are listed as follows:
(1) linear discriminant analysis (LDA), (2) CART decision
tree (C-DT), (3) logistic regression (LR), (4) support vector
machine (SVM) using RBF kernel, and (5) AdaBoost (AB).
The R packages used in LDA and LRAwere {MASS}, C-DT
was {rpart}, SVM was {e1071}, and AB was {adabag}.

The hyper-parameters in C-DT, SVM, and AB were set to
default values. These are representativemethods for classifiers
and include both linear and nonlinear models. The results of
the comparative performance evaluation are shown in Fig. 10.
There were no statistically significant differences between our
classifier and the other classifiers, analyzed using the
Wilcoxon signed rank test. We performed the tests using an
R package {exactRankTests}.

4 Discussion

We developed an automatic detection algorithm for surge BPs
based on supervised learning using a BbB BP measurement
device for the first time. This algorithm detected surge BPs by
applying fixed criteria, and it satisfied the requirements of
“high sensitivity of surge BP detection”, “understandability
of detection rules”, and “high processing speed”. The details
are described as below.

From the viewpoint of the high sensitivity requirement, our
algorithm could detect surge BP with a high recall value of
0.90, which indicates that the algorithm is very useful to col-
lect surge BP cases at an acceptable level for use in clinical

practice, whereas clinicians needed to identify them visually
in the past, which took a lot of time.

Precisionwas 0.64, whichwaswithin expectation considering
the high sensitivity requirement for surge BP detection. As we
showed in Fig. 7b, our algorithm detected non-labeled cases.
There are several possibilities for this. First, these non-labeled
but detected cases may be difficult for nonexpert staffs to identify
surge BP because most of them occurred around surge BP
thresholds. If the start point was identified as the very next beat
by a nonexpert staff, some of these non-labeled cases detected by
the algorithm satisfied the criteria of surge BP in that labeling
phase. Second, human-error oversights of surge BPs by staffs
would have occurred to some extent [23]. Smith [24] reported
the error rate in routine tasks requiring careful workwas over 1%.
Because surge labeling requiresmore attention than routine tasks,
the error rate by staffs could be even greater, especially when
their stress or fatigue is cumulative. Third, the cases detected by
the algorithm would include noisy BPVs. Further consideration
is needed to exclude these cases from detection results from
applying the algorithm. Although detected cases may include
non-labeled cases due to reasons mentioned above, all detected
cases will be used in future clinical studies. If more detailed
features of surge BP that are associated with CVD risk are re-
vealed in future clinical studies, the criteria of the algorithm could
be improved to establish better standards for detecting surge BP.

Regarding the accuracy of detecting start points, which is a
quite important function for determining the performance of
the algorithm, most of them were detected correctly by the
algorithm. However, some of those detected differed from
those for the labeled surge BPs. In those cases, the detected
start points tended to be closer to the peak than those in labeled
surge BPs. This difference seems to have occurred due to a
tendency that our algorithm detects a part of a surge BP that

0

0.2

0.4

0.6

0.8

1

P value
LDA C-DT LR SVM AB

Recall 0.313 0.063 0.313 0.063 0.063
Precision 0.688 0.063 0.313 0.063 0.063
F-measure 0.125 0.063 0.063 0.063 0.063

b Wilcoxon signed rank test between our classifier and other classifiers

Fig. 10 A comparison of our
classifier vs. other classifiers. a
Each bar graph indicates mean of
recall, mean of precision, and
mean of F-measure from left to
right. These performance values
were calculated through 5-fold
cross validation. LDA: linear dis-
criminant analysis; C-DT: CART
decision tree; LR: logistic regres-
sion; SVM: support vector ma-
chine using RBF kernel; AB:
AdaBoost are indicated. b The
result of Wilcoxon signed rank
test between our classifier and
other classifiers
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has a long upward period, and some surge BPs have two
phases of increase in a single upward period (see lower case
in Fig. 9a). (Upward period is the period between start point
and peak point, and downward period is period between peak
point and end point of surge BP candidates). Considering its
mechanism, when sleep apnea occurs, the patient’s BP is grad-
ually increased through the increase of sympathetic nerve ac-
tivity induced by arterial oxygen desaturation [25]. After this
phase of gradual BP increase, BP is rapidly and markedly
increased at the time of release of sleep apnea; this is because
the amount of venous return is increased during apnea due to
increase of intrathoracic negative pressure [8]. Our algorithm
tends to detect this rapid BP changing point as the start point.

The processing time of the algorithm was 11.0 ± 4.7 s, a
relatively quick speed that is fit for actual medical consulta-
tion. It will not keep a clinician and a patient waiting for a long
time to obtain an output of a surge report.

Finally, from the comparison studies, performance of our
classifier was found to be as good as other classifiers; howev-
er, our classifier provides more explainability and understand-
ability than comparative methods due to the clarity of each
feature’s thresholds without clinician’s knowledge of classifi-
cationmodel. To be an understandable algorithm for clinicians
is quite important because the purpose of the algorithm is to
assist establishing standard of surge BP in clinical study.
Furthermore, only our classifier enables users to edit the
threshold values for each feature independently. When useful
features related to the mechanisms of BP surges become clear
during future clinical studies, clinicians will be able to focus
on and edit only the useful features.

Considering the mechanism of the BP variability is also im-
portant. The baroreflex is one of the most important physiolog-
ical reflexes controlling arterial blood pressure [26]. Themorning
BP surge is one of the phenotypes of the BP variability closely
determined by the sympathetic baroreflex [27]. In addition to
surge BP, assessing the baroreflex sensitivity by customizing
methods based on spontaneous variations [28, 29] is also neces-
sary to reveal the mechanism of the variability.

Our study has limitations. First, it is not suitable for AF
patients because they have large variations of BbB BP. This
affects the detecting feature points and calculating feature
values of surge BP. Second, we found in our previous study
that the BP measured by the wrist-type device in the supine
position tend to be approximately 5 mmHg higher than using
the auscultation method at the upper arm in the supine position
[30]. Therefore, the BbB BP values calibrated by the device in
the present study have a potential error in the BP level.

5 Conclusions

We developed an algorithm for automatic surge BP detec-
tion for clinical practice. The algorithm was developed by

using supervised learning with labeled surge BPs. The
classification model was very simple, and it enables the
clinician to understand the detection rules. Although surge
BPs were needed to be reviewed out manually in the past,
a visual process that took a long time, this algorithm can
correctly detect surge BPs with a recall of over 0.9. The
result also suggests that the algorithm can detect surge
BPs by using fixed criteria even if it is difficult for a staff
to identify surge BP manually. Moreover, processing
speed is enough to use in a typical medical consultation
setting.

Clinicians would be able to see the patient’s summary re-
port of nighttime surge BPs using our algorithm. The report
provides the frequency of surge BPs and their peaks and am-
plitudes, which relate to risks of CV events. Understanding
risks is important to both clinicians and patients in preventing
CVevents. Our automatic surge BP detection algorithm could
contribute to clinical study on nocturnal hypertension, and it
will be helpful to understand the mechanism of sleep onset of
CVD events.
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