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In magnetostrophic rotating magnetoconvection, a
fluid layer heated from below and cooled from above
is equidominantly influenced by the Lorentz and
the Coriolis forces. Strong rotation and magnetism
each act separately to suppress thermal convective
instability. However, when they act in concert and
are near in strength, convective onset occurs at less
extreme Rayleigh numbers (Ra, thermal forcing)
in the form of a stationary, large-scale, inertia-less,
inviscid magnetostrophic mode. Estimates suggest
that planetary interiors are in magnetostrophic
balance, fostering the idea that magnetostrophic
flow optimizes dynamo generation. However, it is
unclear if such a mono-modal theory is realistic
in turbulent geophysical settings. Donna Elbert first
discovered that there is a range of Ekman (Ek, rotation)
and Chandrasekhar (Ch, magnetism) numbers,
in which stationary large-scale magnetostrophic
and small-scale geostrophic modes coexist. We
extend her work by differentiating five regimes
of linear stationary rotating magnetoconvection
and by deriving asymptotic solutions for the
critical wavenumbers and Rayleigh numbers.
Coexistence is permitted if Ek< 16/(277)* and
Ch>277%. The most geophysically relevant regime,
the Elbert range, is bounded by the Elsasser numbers
%(44712 EN/B <A< %(34712Ek)_1/3. Laboratory and
Earth’s core predictions both exhibit stationary,
oscillatory, and wall-attached multi-modality within
the Elbert range.
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Figure 1. (a) Classical mono-modal linear stability prediction picture for Earth’s Ekman number of Fkg, [9,12]. The solid
lines mark the critical Rayleigh number Ra for the stationary onset of convection, corresponding to the geostrophic (yellow),
magnetostrophic (magenta) or magnetic (merlot) solution branches. The dotted light blue line marks the oscillatory onset. The
triple-dot-dashed vertical line demarcates Ay, the Elsasser number for mode switching between the small-scale geostrophic
to the large-scale magnetostophic onset mode. The dot-dashed vertical line demarcates A, the Elsasser number at which
the magnetostrophic onset mode is replaced by the magnetic one. The pink arrows indicate estimates for Earth’s Elsasser and
Rayleigh number range, with the circle approximating the lower bounding value. The lower bound for A neglects contributions
from the toroidal and unresolved poloidal components of the magnetic field, and thus, a more realistic estimate is about one
order of magnitude higher [1,13,14]. (b) Estimates of the Elbert coexistence range indicated by the cornflower blue vertical lines
for several celestial bodies, similar to (a), the pink symbols give estimates for A and circles indicate the lower bound [13,14].
(Online version in colour.)

1. Introduction

Earth’s magnetic field is generated through convective motions in its molten metal outer
core. These motions are affected by the Coriolis forces due to planetary rotation and by the
Lorentz forces due to the dynamo-generated magnetic fields. A long held tenet of dynamo
theory is that planetary magnetic field generation is optimized when the dynamics are in the
magnetostrophic state in which Coriolis and Lorentz forces are approximately in balance [1-8].
This ‘magnetostrophic dynamo hypothesis’ is born out of the classical linear stability analysis
[9-11], predicting that steady convection onsets most easily for magnetostrophy (figure 1a) and
then occurs in the form of a large-scale bulk mode. It is supposed that dynamo action will be
attracted to the magnetostrophic state where the most efficient dynamo generating flows are
assumed to naturally exist. Furthermore, estimates for Earth suggest that the outer core is in
the magnetostrophic state, since the intensity of the geomagnetic field appears to support this
hypothesis [13,15]. The fortuitousness of the Earth lying in this apparent soft spot has made the
stationary magnetostrophic mode the primary focus of a great deal of dynamo theory [1,4,8,11].

Magnetostrophic modes are also appealing because they do not depend on the fluid’s
viscosity, suggesting that viscosity plays no role in this range [12]. Overly large viscous forces
are considered the major shortcoming of present-day numerical simulations [7,14]. However,
if the inviscid magnetostrophic hypothesis holds, then current-day simulation results may be
meaningful nonetheless (cf. [8,16,17]).
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Figure 2. (a) Donna DeEtte Elbert (27 January 1928—15 January 2019). (b) Donna Elbert, Lillian Neff and Subrahmanyan
Chandrasekhar, 1950 (left to right). Images courtesy of Dianne Hofner Saphiere, Susan Elbert Steele, Joanne Elbert Kantner.
(Online version in colour.)

A mono-modal magnetostrophic theory, however, is not likely to be geophysically realistic
[18]. In rotating liquid metal convection without magnetic fields, even moderately supercritical
flows are always strongly multi-modal. Oscillatory bulk modes, boundary-attached modes
and stationary modes all exist simultaneously and interact nonlinearly [19-23]. Similarly,
magnetoconvection without rotation is multi-modal with a mix of stationary bulk and boundary-
attached modes [24-28]. Thus, unsurprisingly, multi-modality is also a characteristic feature of
rotating magnetoconvection with a mix of stationary and oscillatory bulk modes, as well as
drifting wall-attached modes [9,22,29,30].

The distinguishing and, at first glance, surprising feature of rotating magnetoconvection is
that linear stability analysis predicts a more complex onset behaviour even for the stationary
modes. In simple, rotating and magnetic Rayleigh-Bénard convection, exactly one mode describes
the stationary marginal stability. By contrast, in rotating magnetoconvection two different
types of stationary modes with length scales that are magnitudes apart can coexist for certain
combinations of the rotation rate and the magnetic field strength [9].

This magnetostrophic coexistence range was discovered by Donna DeEtte Elbert (figure 2).
Elbert was Nobel laureate Subrahmanyan Chandrasekhar’s technical assistant and, at that time,
was considered a ‘computer’. Nowadays, however, she would be recognized as a numerical and
computational researcher in her own right. Elbert was the first to note these essential and most
anomalous behaviours of the rotating magnetoconvection system that underlies magnetic field
generation in geo- and astrophysical objects. This discovery is acknowledged as being hers in a
footnote of Chandrasekhar’s seminal book Hydrodynamic and Hydromagnetic Stability [9, Chapter
V4, p.219]:

The fact that the curve R(a) defined by equations (59) and (60) has two minima for certain ranges of
the parameters Q1 and Ty was first observed by Donna Elbert.

In bringing these findings to Chandrasekhar, he was then able to lay the published ground
work that is the theoretical foundation of the magnetostrophic dynamo hypothesis [1,10,12,31].
Dynamo researchers have been chasing and seeking to prove or disprove these ideas ever
since [2-6,8,14,16,17,32-52]. Understanding the magnetostrophic coexistence range is essential
for our view of planetary core convection as the magnetostrophic dynamo hypothesis relies on
the nonlinear magnetohydrodynamics (MHD) in this range. We see in figure 1b that planetary
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dynamos in our solar system all likely exist in the coexistence range. Furthermore, the vast
majority of numerical models of planetary dynamo action reside there as well.

(@) Donna D. Elbert’s contributions to rotating magnetoconvective theory

Before delving into the details of rotating magnetoconvection, we will discuss the career and
scientific contributions of Donna DeEtte Elbert of Williams Bay, Wisconsin (27 January 1928-
15 January 2019), focusing on her 30-year collaboration with Chandrasekhar. In honour of her
contributions, we will name the most geophysically relevant rotating magnetoconvective regime
the Elbert range. The Elbert range is shown in figure 1b, together with quasi-static estimates of the
Elsasser number for various celestial bodies.

Donna Elbert began working with Chandrasekhar at Yerkes Observatory in the autumn of
1948 as a ‘computer’, as people using electric-powered calculators were called at the time. She
was 20 years of age and intended to work with Chandrasekhar only long enough to save up
sufficient funds to attend design school. Elbert, however, remained Chandrasekhar’s research
assistant, working at both Yerkes and the University of Chicago until 1979; their collaboration
stayed fruitful over the years [53]. She started with numerical work on Heisenberg’s turbulence
theory [54]. At the end of Chandrasekhar’s single author paper on this topic, he expresses
his ‘indebtedness to Miss Donna Elbert for valuable assistance with the various numerical
integrations...’, similar to acknowledgement statements he placed at the end of many of his
papers over the next three decades. She worked with him on the polarization of the sunlit sky
at about the same time, ultimately resulting in a co-authored journal article published in Nature
and later on in the Transactions of the American Philosophical Society [53,55,56].

Elbert mastered numerical methods and was as tenacious and hard-working as Chandrasekhar
himself [57]. Noting this, he encouraged her to take a series of advanced mathematics and calculus
courses at the University of Wisconsin-Madison [58]. However, she never earned a formal degree
in applied mathematics, but instead graduated years later, in 1974, from the School of the Art
Institute of Chicago with a Bachelor of Fine Arts.

Especially in the years from 1948 to 1960, when Chandrasekhar worked on turbulence,
MHD, rotating flows and convection, Elbert was indispensable and actively involved in this
research [53]. Elbert co-authored 16 papers with Chandrasekhar, in which she carried out most
of the numerical computations. Numerous times she developed solutions more elegant than
Chandrasekhar’s original ones, e.g. finding a better solution ansatz for the roots of the dispersion
relationship in rotating convection [9, Chapter III.2, p. 101]. According to Chandrasekhar’s
autobiography, Elbert repeatedly revised his calculations ‘with unbounded patience with [his]
errors’ [53]. Chandrasekhar also acknowledged that papers without her ‘numerical work [- - -]
might not have been written” [59] and that ‘her patience in carrying out the long (and often
tiresome) calculations [...] were necessary to obtain the concrete results” [60]. In addition to
her co-authored works with Chandrasekhar, Elbert also produced a single-authored publication
discussing ‘Bessel and Related Functions which Occur in Hydromagnetics” in the Astrophysical
Journal [61], an impressive feat for a female automath in the 1950s.

Most pertinent in the present context, however, is her contribution to Chandrasekhar’s
monograph Hydrodynamic and Hydromagnetic Stability [9], which is essential reading for those who
study convection and instability. As stated in the preface [9, p. V]:

I should, however, like to mention here the extent of my obligation to Miss Donna D. Elbert: in a real
sense this book is the outcome of our joint efforts over the years and without her part there would
have been no substance.

Indeed, ‘Elbert carried out the relevant numerical calculations for most of the problems treated in
this book; she is responsible for the numerical information included in all of the tables with the
exception of Tables I-VI, X, XXII-XXX, XXXVI-XXXIX, XLVII, XLIX, LXIV-LXVII and LXX.” That
statement implies that Elbert carried out the calculations for 47 of the 70 tables in this 654 page
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treatise. If Chandrasekhar’s treatise [9] were being published now, Elbert would almost certainly
have been a co-author (e.g. [62]).

During one of Chandrasekhar’s absences, on her own initiative, Elbert worked out the
marginal stability curves for stationary rotating magnetoconvection [53]. These results are
presented in Chapter V.4 The thermal instability of a layer of fluid heated from below: The effect of
rotation and magnetic field in [9]. Elbert found that the marginal stability curves can contain two
local minima, leading to a discontinuity at a critical magnetic field strength, and consequently
to an abrupt change in the length scales of the convective onset modes. She also numerically
determined that there exists a range of parameters over which small-scale geostrophic and
large-scale magnetostrophic convective modes can coexist.

Donna Elbert’s findings will be at the core of the present paper. We extend her work by
deriving asymptotically exact solutions for the wavenumbers and critical Rayleigh numbers in all
the possible regimes of stationary rotating magnetoconvection. We also derive novel analytical
expressions for the asymptotic bounds of Elbert’s coexistence range of stationary rotating
magnetoconvective modes. We use these linear stability analysis results to give predictions for
laboratory experiments and for Earth’s core.

2. Governing linear equations of rotating magnetoconvection

We will present the results of a linear stability analysis carried out in the spirit of Chandrasekhar
[9] and Eltayeb [12]. Asymptotically exact solutions are obtained using Laurent series expansions.
No attempt shall be made here to trace exact bifurcation scenarios. Rather our aim is to give
predictions for when to expect transitions in supercritical, turbulent settings. This is motivated by
the succesful application of this approach to rotating convection in liquid metals [19-21], where
we showed that these predictions give sufficiently accurate estimates of when changes occur
in flow morphology, including in the spatio-temporal scales, and in the heat and momentum
transport. Furthermore, we found that the signatures of the underlying instability mechanisms
remain present up to relatively high supercriticalities. This suggests that our results are relevant
in informing our understanding of planetary core convection [1,14].

We analyse the linear stability of a fluid in a (semi-)infinite plane layer with free-slip,
isothermal and electrically insulating boundary conditions. Asymptotically, i.e. with sufficiently
rapid rotation and strong magnetic field, the results do not depend on the mechanical, thermal or
magnetic boundary conditions at leading order. But deviations can be expected for less extreme
parameters due, for example, to viscous and Ekman-Hartmann boundary layers [12,63-71]. In
part II of this series, we will discuss corresponding nonlinear numerical simulations and also
compare them to experimental findings.

We consider a fluid with kinematic viscosity v, thermal diffusivity «, magnetic diffusivity
n, density p and electrical conductivity o. The fluid layer has thickness H, is heated from
below and is cooled above, resulting in a temperature difference A. The layer is also subject to
angular velocity £ = §2é, and magnetic field B = Be, vectors that are both aligned in the vertical
e,-direction.

We seek to determine the marginal state at which the conductive state becomes unstable
to convective motions, i.e. the onset of convection. The governing non-dimensional linear
equations of rotating magnetoconvection for the velocity field u = (ux, uy, ), the deviation of
the temperature from the conductive solution 6, pressure p and induced magnetic field b read
[9,12]

(3 — V2 u=—Vp — Ek" (&, x u) + Ch(é - V)b + Ra 6,

(

— Vb=, V)u, (2.2)
(Pr oy — V)0 = u, (
(

and V.u=V.b=0,
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with the reference scales H, A, B and H? /v for time. Here, we have employed the Oberbeck-
Boussinesq approximation [72-75] including rotation in the co-rotating frame of reference,
neglecting the centrifugal buoyancy force [76,77], and magnetic fields in the quasi-static MHD
approximation [78,79]. The main idea behind the quasi-static MHD approximation is that the
induced magnetic field b is negligible compared to the imposed external field B, and further
fluctuations are assumed to adapt instantaneously to the slowly varying velocity field, i.e.
9:b~0. This implies a small magnetic Reynolds number Rm =|u|H/n <1 and a negligible
magnetic Prandtl number Pm=v/n <« 1. The low-Rm approximation does not allow for self-
generated magnetic fields and consequently dynamo action, and it does also not permit magnetic
overstability [42]. However, the approximation is applicable for small-scale planetary core flows
[80] and also liquid metal experiments [22,81]. The finite-Pm case for the onset of oscillatory
convection is discussed in more detail by Chandrasekhar [9] and Julien et al. [42]. The stationary
onset predictions are not affected; they yield the same result under the quasi-static approximation
and in the full MHD system.

The non-dimensional control parameters appearing in the governing equations (2.1)—(2.4) are
the Rayleigh, Prandtl, Ekman and Chandrasekhar numbers

agAH? v v oB2H?

Ra , Pr=—, Ek=—— and Ch= . (2.5)
KV K 202H2 oV

In the linear analysis, the balance of Lorentz and Coriolis forces is expressed as the quasi-static
Elsasser number [3]
4= _onrk 26
=50 " . (2.6)
Alternative control parameters found in the literature include the Rossby, Taylor, Hartmann and
Stuart numbers:

RaEk2 1 ChZPr
Ro=\/7, Ta=ﬁ, Ha=~/Ch and N=\/R7. (2.7)

The standard approach is to determine convective onset by seeking solutions in the form
of normal modes F(x,y, z, t) = F(z) exp(i(axx + ayy + o't)) where F represents any of the variables

6, u, p and b. The non-dimensional horizontal wavenumber is given by a =,/a% + aﬁ and o is
the non-dimensional frequency. Here, for example, ay = nw where n is the non-negative integer
mode number in the é,-direction. Note also that we will convert o to the more convenient non-
dimensional frequency , which is normalized by the rotation rate, i.e. w =20/Ek. As shown in
detail by Chandrasekhar [9] as well as Eltayeb [12], the solution to the linear stability problem
amounts to finding the solution of u;, all other variables are expressed in terms of it. This gives
1, = cos(nmz) for our set of boundary conditions. The most easily excited mode always has a
vertical modenumber of n=1. Higher n modes are excited at higher Ra, but this is beyond
the scope of the present study. Throughout the paper, we will start with the marginal stability
relation, obtained by substituting in the normal modes into equations (2.1)-(2.4) (e.g. [82]).
The critical Rayleigh number Ragyi; is then determined as the minimum of this curve, along with
the corresponding wavenumber a.i and, if applicable, wcyit. The set (Racrit, Acrit, @crit) then defines
the most easily excited linear convective mode [9,12].

To further simplify the analysis, we introduce auxilliary variables similar to Chandrasekhar
[9]:

2 Ch a?
Eky =Ekn~, Chlzﬁ, A=ChEk=ChEk; and k=1+§. (2.8)

Traditionally, the modified wavenumber k is chosen to be a?/x?, thus, all the polynomial
expressions given here are novel, albeit yielding the same solutions as previous
formulations.

The expected instability mechanisms occur in the form of stationary, oscillatory and wall-
attached convection modes. We refer to this variety of modes as multi-modality and only
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discuss the respective onset mode, notwithstanding that at higher supercriticalities several
modes of each type become unstable and are excited. We will focus on typical liquid
metals, that is Pr <1, but Pm <« Pr, in agreement with the quasi-static approximation. Thus,
we allow for oscillatory convection originating from the Coriolis but not from the Lorentz
force.

An interactive python Jupyter Notebook containing the full solutions (Racrit, Acrit, @crit) for all
the convective onset modes is provided as electronic supplementary material.

3. Linear stability of stationary rotating magnetoconvection

The onset of stationary convection is a fairly straightforward problem for Rayleigh-Bénard
convection, rotating convection and magnetoconvection. Analysis of the linear equations
provides exactly one global minimum and, hence, only one critical Rayleigh number for marginal
stability.

By contrast, in rotating magnetoconvection, the situation is more complicated. On their own,
both rotation and magnetic fields act to suppress convection and several of the results can
be carried over from one system to the other (e.g. [83]). The most significant differences are
that the magnetic field provides an additional source of dissipation because it effectively acts
as an additional, anisotropic viscosity [84,85], but unlike rotation it does not induce vorticity
and does not break horizontal symmetry [86]. As a consequence, magnetic fields and rotation
acting together have conflicting tendencies and, nonintuitively, can facilitate convection when the
Lorentz and Coriolis forces are approximately in balance [10].

The critical Rayleigh number Ras for the stationary onset is determined by minimization of
Chandrasekhar [9]

2 2
Ra= % ((a2 +72)? 4+ 72Ch +
a

7@ + ) ) . 3.1)

EK2((a% 4+ 72)2 + 72Ch)

These curves are shown in figure 3a for a typical laboratory-numerical value of Ek=10° and
in figure 3b for an Earth-like value of Ek= 10~15. For small or large Elsasser numbers, the
marginal Ra curves contain only one minimum. For A «1, rotational forces dominate and
convection onsets in the form of high wavenumber geostrophic modes. For A > 1, magnetic
forces dominate and convection onsets in the form of relatively high wavenumber magnetic
modes. In the intermediate Elsasser number range, A ~1, the marginal curves feature two
local minima, separated by a local maximum. As noted first by Donna Elbert [9], the two local
minima imply the coexistence of two distinct linearly unstable modes with a. values that can
be many magnitudes apart. The leftward minima, located near a = 7 in each panel, corresponds
to the large-scale magnetostrophic mode while the rightward minima correspond to the higher
wavenumber, smaller-scale geostrophic mode. Following this, Eltayeb [12] proposed that three
main regimes exist, one where rotation dominates, one where the magnetic field dominates and
another one where both are equidominant.

Here, instead, we will show that a full description of linear, stationary rotating
magnetoconvection requires five separate regimes, two of which feature coexisting dual-mode
stationary solutions. The onset of stationary rotating magnetoconvection is determined through
9cRa =0. This leads to a septic polynomial equation in (k, Ek;, Chy),

7ChiEK} +1
Ek?
Chi —5CHEK} ,  Chy, ChS
+— 1 - — 1o, (3.2)
2EK3 Ek? 2

K — §k6 +2CIk° — K+ cn2id
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Figure 3. Stationary marginal Rayleigh number Ra as a function of wavenumber a according to equation (3.1). There are either
one minimum, or two local minima and a local maximum, depending on the value of the quasi-static Elsasser number A for
(a) a laboratory-like Ekman number, £k = 105, (b) an Earth-like Ekg = 10" (Online version in colour.)

which can also be expressed in terms of (k, Ek1, A) as

ooy M _TEaAY L, A,
2

Eky 2EK2 Ek?
A — 5Ek; A? A A3
7;2——3 — (3.3)
2EK E  2EK
or in terms of (k, Chy, A) as
3 Chy(Chy +7A%)
K — 2K 4 2Chk® — == T Tt a2
> +2Chy A2 + Chy
CM%(Chl1 —542) , Ch ~ Ch}
Dl ity ' S — | 4
+ 242 A2 7 0 34

The three formulations above allow for the analysis of different asymptotic limits, which
demarcate the five separate stationary regimes in the following subsections.

The polynomial representation, used throughout this study and in the accompanying Jupyter
Notebook, has noteworthy advantages. Numerical root finding algorithms for polynomials are
extremely robust, fast and accurate [87]. Hence, the polynomial representation is preferable over
the classical way of finding the minimal value via a search over a range of different wavenumbers
k. The full solution in terms of the critical wavenumbers as and Rayleigh numbers Ras is shown
in figures 4 and 5. These solutions are obtained numerically and reveal fundamentally different
behaviours in different parameter ranges.

There is no general algebraic solution, according to the Abel-Ruffini theorem, for a polynomial
of degree five or higher. This necessitates that we develop asymptotic solutions (figures 4-6)
based on series expansions in the following analyses of stationary rotating magnetoconvection.
These asymptotic expansions yield lower-order polynomials that describe the behaviour of the
critical Rayleigh numbers and wavenumbers in our five ranges: the geostrophic (G) range,
the geostrophic coexistence (MGj) range, the magnetostrophic coexistence (MG) range, the
magnetically dominated magnetostrophic (MGz) range and the magnetic (M) range.
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Figure 4. (a) Critical wavenumber a; and (b) corresponding Rayleigh number Ra; as a function of the Elsasser number A
for10~™ < £k < 10~ for stationary rotating magnetoconvection. (c) Critical wavenumber a, and (d) corresponding Rayleigh
number Ra;, similar to (a,b), but here as a function of the Chandrasekhar number Ch. The grey lines correspond to the local
maximum of the marginal Ra curve (3.1). The vertical dashed black lines in (c,d) mark the minimum Chandrasekhar number for
modal coexistence, Chy. = 2772 (3.11). The leading order asymptotic scalings are indicated in the figure and are summarized
in table 1. (Online version in colour.)

The magnetostrophic coexistence (MG>) range is the most relevant regime in geophysics and
planetary physics, and, thus, we choose to christen it the Elbert range in honour of Donna Elbert’s
seminal contributions to the field.

(@) The geostrophic range (G)

The geostrophic range (G) is characterized by a negligible magnetic field. Formally it exists in the
limit of Ch — 0, or, alternatively, if Lorentz forces are weak compared to the Coriolis forces, i.e.
A — 0. Then a zeroth order series expansion of either the polynomial (3.2) or (3.3), respectively,
yields the cubic polynomial,

s 321

- — - —=0. 35
2 2EK 9
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Figure 5. (a) Critical wavenumber g5 and (b) corresponding Rayleigh number Ra; as a function of the Elsasser number A for
107" < Ch < 10%. (c) Critical Wavenumber a; and (d) corresponding Rayleigh number Ra; as a function of the Ekman number
Ekfor10~" < Ch < 10®. The grey lines correspond to the local maximum of the marginal Ra curve (3.1). The vertical dashed
black lines in (c,d) mark the maximum Ekman number for modal coexistence, £k* = (22/(3*m))? (3.18). The leading order
asymptotic scalings are indicated in the figure and are summarized in table 1. (Online version in colour.)

Polynomial (3.5) is identical to the one describing the onset of purely rotating convection [9,88]
and has only one real valued root,

2/3
. (1/Ek%+1+1> <‘/Ek%+1—1>

kgeo = = +
B2 EK?/3 EK3/3

2/3

+1]. (3.6)

We can insert (3.6) into (3.1) to obtain the asymptotic critical wavenumber and Rayleigh number
(figure 6a,b). In the limit of rapid rotation, Ek; — 0, the leading order term yields the familiar
result

1/3 37r4/3
T ~1/3 7 —4/3
Ageo = WEk 3 and Rageo = YIE Ek%/ (B.7)
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Table 1. Leading order asymptotic behaviours of the critical wavenumbers and Rayleigh numbers in the five regimes of
stationary rotating magnetoconvection elucidated herein, see figure 6¢,d. Many of these relations can alternatively be expressed
in terms of Ch via A = Fk Ch. The boundaries between the regimes are given by A = 27 %Fk = 266.5Fk, Agy =
U EK)P = 4540 K, Ay = S B Ek) ™ = 0.054Fk "2, Ay = 5 Ek V2 = 0.225Ek /2,

regime Elsasser range Aqit Raqit
3 3o
6 A <A =G BP Rageo = % B
=1305 "3 = 8.696 Fk—*/
e e e
MGy A= A < Asy =GB Rage = % Bk
Imag = 70 Rmag = 4712%
_______________________________________________________________________________ b
max = 7T1/2 Ch1/4 Ramax = ? _2
A
..................................................................................................................... S
MG, Ay < A < Ay Iy = 7 B3 Rageo = 25 Ek—/3
(Elbert range) ams = 7T (14+ AY)V Rams = ”Z(H'A— VE?'AZ)Z
32
_______________________________________________________________________________________________________ ta=m2@  Rae=F
MG; A <A< Ay Ong) = 7 AV? R = 7%Ch
M A> Ay mg =@ Ramag =7Ch
=191 Ch"/°

(figure 6c,d). Under many circumstances the leading order term gives a sufficiently accurate
approximation [68,89,90] and it is this leading order term that is independent of different
boundary conditions [65].

(b) The geostrophic coexistence range (MG)

The onset of convection can also occur in the form of modes that are predominantly geostrophic
but whose behaviour is also non-negligibly determined by magnetic effects. Two types of modes
occur in this geostrophic coexistence range. One is the geostrophic mode determined above by
Ageo and Rageo of equation (3.7), which is the onset mode in this range. In addition, there is a
magnetic mode. In the limit Ek; — 0 or A — 0, a zeroth order series expansion of the respective
polynomials (3.2) or (3.4) yields the cubic polynomial

I — Chyk +2Chy =0. (3.8)

This polynomial has real-valued solutions with k>1 only for Ch; >27. There are two viable
solutions for Chy > 27. The first one corresponds to the magnetic branch,

(=3)Chy — (=3)!/3(,/3(27 = Cn) — 9)** i
3(,/327 — Chn) - 9) PPcny?

because it only depends on Chy (throughout this paper, we will use principal roots, e.g. (—3)!/3 =
(3173 4 i3%/6)/2). The other real-valued solution corresponds to the local maximum of the Rayleigh

number,
_ 313Ch + (,/3(27 — Chy) — 9)*°ciy”

T 323(/327 = Chy) — 9)Penl

While not corresponding to a physical mode, kmax gives insight into how the geostrophic
and magnetic/magnetostrophic modes are connected (figure 6). For Chy =27, both solutions

Kmag = , (3.9)

(3.10)
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Figure 6. Solution of the stationary rotating magnetoconvection linear stability problem at £k = 10~ The dotted black curves
show the solution of the full septic polynomial (3.2). (a,c) Critical wavenumbers g;. (b,d) Critical Rayleigh numbers Ra. The
different colours in (a,b) denote the various asymptotic solutions calculated using the reduced wavenumbers k =1+ (a/7)?
(i.e.a=mw~/k — 1), as shown in (a) and discussed in §83a—e. (¢,d) Similar to (a,b), but showing the leading order terms
of the asymptotic solutions (table 1); the yellow solid line gives the geostrophic, the merlot solid lines the magnetic, and the
pink dashed line the magnetostrophic solutions in each panel. The vertical lines in each panel indicate the regime boundaries
between the geostrophic range (G), the geostrophic coexistence range (MGy), Elbert’s magnetostrophic coexistence range (MG;),
the magnetically dominated magnetostrophic range (MGs) and the magnetic range (M). (Online version in colour.)

simplify to kmag/max = 3. The corresponding critical Rayleigh numbers and wavenumbers can
be determined accordingly.

The lower boundary of the coexistence range (lc), i.e. the Chandrasekhar or Elsasser number,
respectively, below which magnetic modes cease to exist, is

GSMGy: Chye=277%< Ay =2772Ek. (3.11)

Conversely, the lower bound of the coexistence range means that the geostrophic regime (G) can
only exist in systems with Ch < Chy.. If Ch > Ch, geostrophic modes do not exist mono-modally,
but instead must be coexistent with magnetic and magnetostrophic modes.

Expressions (3.9) and (3.10) provide asymptotic relations in the limit of Ch; — oo with the
following leading order terms

Ch
fmag =7, Rimag =4n2ﬁ; (3.12)
and
7 Ch3/2
Amax =7 /2ChY4, Ramax = AT (3.13)

Interestingly, the critical Rayleigh numbers of these magnetic branches, Ramag and Ramax, depend
on Ch, Ek and A, even though kmag and kmax depend only on Ch.
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(c) The Elbert magnetostrophic coexistence range (MG;)

The key feature of MG, the Elbert range, is the existence of a large-scale, inertia-less, inviscid
magnetostrophic mode, which has long been purported to solely dominate dynamo action in
planetary core settings (e.g. [1]). Classically, the regime boundary between MGy and MG, is
the onset mode switching point Agy (as defined below), corresponding to the well-known
discontinuity in the critical Rayleigh number curve, Ras(A). In MG, the geostrophic mode is the
first to onset. In MGy, the magnetostrophic mode is the most linearly unstable mode of stationary
rotating magnetoconvection. This has led to the idea that the magnetostrophic mode replaces
the geostrophic mode in MG, and is the only mode relevant to dynamo action in the A ~1
regime. However, as first elucidated by Donna Elbert, the geostrophic mode does not disappear
but instead, at sufficiently high Ra, coexists with the magnetostrophic mode, likely leading to
multi-modal magnetostrophic turbulence.

The mathematical description of the asymptotic behaviour in the Elbert range requires taking
the double limit Chy — oo and Ek; — 0, i.e. simultaneously assuming that the magnetic field is
strong and the rotation is rapid. This is best achieved by keeping A = ChyEk; a finite constant and
then taking a single limit. Hence, the critical mode in the Elbert range is derived by taking either
the limit of Ek; — 0 of the full polynomial (3.3) expressed in terms of Ek; and A or the limit of
Chy — oo of the full polynomial (3.4) expressed in terms of Chy and A. In either case, we arrive at
the simple quadratic polynomial,

K> — 2k — A2 =0. (3.14)

The leads to the famous magnetostrophic solution [1,12]

kms =141+ A2, (3.15)

resulting in the critical wavenumber and the critical Rayleigh number

m2(1+V1+ A2? w21+ /14 A2)2Ch
AEk B A2 ’

For A — 0, the magnetostrophic solution (3.16) connects smoothly to the magnetic solution
(3.12) in MGy, such that ams — dmag and Rams — Ramag, as can be seen in figure 6¢,d.

The large-scale magnetostrophic mode (ams, Rams) supersedes the small-scale geostrophic
mode (4geo, Rageo) as onset mode at the mode switching Elsasser number Agy. It is determined
by the condition that the transition from the geostrophic coexistence range MG; to Elbert’s
magnetostrophic coexistence range MG, is smooth [1,12], i.e. where Rageo = Rams. However,
the solution of Rageo = Rams is difficult to attain analytically. Using the asymptotic expression

Ramag in place of Rams then yields the known mode switching result [1,12] that marks the border
between MGq and MGy,

ams = (1 + A2)1/4, Rams =

(3.16)

4 1
MG; SMGy: Agy = g(4n215k)1/3 = 3%&*1/2. (3.17)

In addition, relation (3.17) allows us to determine the maximal Ekman number Ek* below which
the coexistence range emerges,

) 2
Aje = Agw = Ek*= (2> . (3.18)
337
Prior to this work, Ek* =16/(277)? =2.223 x 103 had to be approximated numerically [1,9],
without analytical justification.
The overall minimum of the critical Rayleigh number and the corresponding Elsasser and
wavenumber [1] is found via 94 Rapys =0, viz.

Amin =32, Ramin =3%?72Ek™! and  amin =+/27. (3.19)

In decimal form, the relations for the overall minimum correspond to Amin =1.732, Ramin =
51.28 Ek~1 and amin = 4.443.
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The leading order approximation to the geostrophic and maximum modes are, respectively,
given by (dgeo, Rageo), equation (3.7), and (dmax, Ramax), equation (3.13), as shown in figure 6¢,d.
In contrast to the accurate corresponding solutions (3.9) and (3.10) that capture the connection
between the magnetic branch and the maximum branch in MGy, these leading order terms do
not capture the connection point between the geostrophic branch and the maximum branch in
MG; (figure 6c). Consequentially, we cannot use equations (3.7) and (3.13) to determine the upper
boundary, Ayc, of Elbert’s magnetostrophic coexistence range, MG,.

In order then to find Ayc, we divide the full septic polynomial (3.3) by the quadratic
polynomial (3.14). This yields a quintic polynomial and gives the proper asymptotic solution for
the geostrophic and maximum branches in MG,

k5+%k4+(1+2—A+A2)k3+(2—L+i+ﬁ)k2

Ekq 2Ek% 2Ekq 2
1 A , AT 243,
4 — 4 A+ 4 A
+( e T T T )
+8 + A +2A+14A2 A2+9A3 +9A4—0 (3.20)
EkZ  2EK  Eki EK2 " 2Bk 2 ’

This polynomial cannot be solved in radicals, but a solution with elliptical functions is possible,
e.g. by following the approach by Kiepert [91]. It is joyously presented in the appendix. In
addition, Bairstow’s method [92] provides an approximation to the real-valued geostrophic and
maximum branch as

kgeo2 = % (21/3Ek§/ 3(—1808A% + 55242 + 9) — 24Ek; (576 A% — 20943 + 34)
+18 x 22PEk; 2 + 66 x 22°Ek) (A — 44%)
—36 x 2V AEK; P — 9647 + 18) (3.21)
and

kmaxa = 4A% 4 Ek (576 A% — 2094°% +34)

A VEK1(80A% — 2442 —
b [ A gy YEREO ) (3.22)
Eky 2/ A

As the initial guess for Bairstow’s method, we used the default quotients formed by coefficients
of the highest powers of the polynomial (3.20), i.e. a4/as =1/2 and a3 /a5 = (2A/Eky) + A% + 1.

Interestingly, during the first iteration, we obtain ky = % \/ 4Q2A/Eky + A2 +1) + % + %), which

captures the exact point where the geostrophic and the maximum branch intersect. We substitute
k, into the quintic polynomial (3.20), allowing us to find the asymptotic upper bound of the
magnetostrophic coexistence range (uc) and, thus, the Elbert range, viz.

- . L 2ppy-1/3 _ 1 Ch \"*

(d) The magnetically dominated magnetostrophic range (MGs)

The magnetostrophic mode (ams, Rams) of equation (3.16) continues to exists for A > Ayc, whereas
the geostrophic mode is no longer present. In this magnetically dominated magnetostrophic range
(MGs3), the A — oo leading order solution is

Amg) = 7AY?  and Ramg = 72Ch. (3.24)

The three magnetostrophic regimes elucidated above, MG1, MG, and MGg, only exist if Ek <
Ek* (3.18).
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(e) The magnetic range (M)

If the Lorentz force dominates over the Coriolis force, i.e. formally in the limit of A — oo, a zeroth
order series expansion of the polynomial (3.4) yields the known equation for magnetoconvection
[l

2k — 3k*> — Chy =0. (3.25)

The only real-valued, physical solution is
1
kmag2 = 5 (1 4 (/Chy + /Chy + 1)72/3 4 (/Chy + v/Chy + 1)2/3) : (3.26)
In the limit of Ch — oo, the leading order term of the critical wave and Rayleigh number are,

2/3

T

fmag2 = ché and Ramagz = 72Ch, (3.27)
respectively. While the critical Rayleigh number is the same as in the MG3 range, the wavenumber
is different, this is also visible in figure 6. We define the border between these two ranges, A, by
the condition amagy = ams2, resulting in

1 o Ch\'?
— . — - =
MG3 S M: Ay = /2 Ek™/“= (277) . (3.28)

For fixed Ek > Ek* and varying A (figure 4), or for fixed Ch < Chy. and varying A (figure 5),
the geostrophic range (G) connects directly to the magnetic range (M), with no existing
magnetostrophic regimes.

4. Linear stability of oscillatory rotating magnetoconvection

Our focus up till now has been on the Pr- and Pm-independent stationary onset modes of rotating
magnetoconvection. However, for small Pr and Pm, convection can onset via time-dependent
oscillatory motions, also known as overstability. The theory for oscillatory convection in rotating
magnetoconvection is well developed [9,12,88]. We consider Pm « Pr fluids, e.g. liquid metals,
here. The resulting thermal-inertial oscillations are similar to the ones occurring in non-magnetic
rotating convection [9,19,20,66,93,94]. Thus, we will summarize the results of the standard linear
stability approach [9].

The critical wavenumber a,, Rayleigh number Ra, and frequency w, for the oscillatory onset
of rotating magnetoconvection are determined through minimization of the following equations

[9,12]:
2
2, 2 2, 22 2 2 2
Ra:2n4n’ +a (7= +a°)"+n-Ch 1+a . wPr 1)
a?> (72 +4a2)2(1 — Pr) — 2 PrCh 2 27 2Ek

2
S 47*Ek (7% 4+ a%)*(1 — Pr) — n2PrCh uERAt 1+ﬁ N 72Ch
72 44?2 (n2 + a2)2(1 + Pr) + n2PrCh 72 n?4q2

and

(4.2)

The oscillatory onset is then determined through ;Ra = 0, which leads to the nonic polynomial,
3¢ 2CmPr ., ChER(Pr+1)@8Pr+1)+Pr* . ChiPr
2 Pr+1 2EKZ (Pr + 1) (Pr+1)2
Ch1Pr(ChyEK3(Pr + 1)(6Pr + 1) + Pr(2Pr + 3))

2EK3(Pr + 1)
Ch1Pr?(1 — 2CH{EK3(Pr + 1))
EK3(Pr+1)3
Ch2Pr*(ChiEK? — Pr) 2 Chipr® . CHiPr _
2EK3(Pr + 1) (Pr+1)3°  2(Pr+1)3

k9 5

k4

k3

(4.3)
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The polynomial (4.3) is reduced to ninth order, instead of the 12 order polynomial given by
Eltayeb [12]. This lower-order polynomial results advantageously from our choice of k=1 +
a%/7? instead of a? /2.

The polynomial (4.3) is numerically straightforward to solve using current polynomial root
finding algorithms. However, the original numerical calculations were time consuming and
complicated. Indeed, these calculations were first made by Donna Elbert in the summer of 1955
during one of Chandrasekhar’s absences [53,88]. Further, Chandrasekhar made an error in the
formulae, requiring Elbert to carry out these laborious calculations not once, but twice [53].

Unlike stationary rotating magnetoconvection, the oscillatory problem has a single, unique
real-valued solution, k,. The critical wavenumber is a, =7k, — 1 and the critical oscillatory
frequency is calculated as

o 8k, B 4(EK3(Chy + k2)* + ko) (4.4)
’ ChPr+Kki(Pr+1) K2 ' '
Oscillatory convection is permitted only if wg > 0.
The critical Rayleigh number is given by
. 74ko(Chy + k2)(AEK3KZ + w?2Pr?) @5)

~ 2EK3(k, — 1)(Chy Pr + K2(1 — Pr))’

We note that setting @2 =0 in (4.5) does not generally lead to the solution for stationary onset
convection. The denominator in equation (4.5) shows that Pr needs to be less than unity for Ra to
be positive, hence, 0 < Pr < 1. More specifically, requiring w? > 0, Ch > 0 and Ek; > 0, equations
(4.5) and (4.4) give the following restrictions

/2 k2(k — Ek3(Chy + K2)?) K
5 and Pr< 5 < 2"
Chy +k (Chi + K2)(k + EK3(Chy + k2)2) ~ Chy +k

Eky <

(4.6)

The full numerical solutions of (4.3)-(4.5) for w,, a, and Ra, depend on Pr, Ek and Ch. In
particular, the smaller Ek, the lower the oscillation frequency, but the broader the Ch = A/Ek
range in which oscillatory convection is possible, as demonstrated visually in figure 7. Note
that the maximum permitted Pr for oscillatory rotating magnetoconvection differs from that of
non-magnetic rotating convection, in which oscillatory solutions are found for Pr < 0.6766 [88].

For Pr— 0, we can express the asymptotic solution in terms of radicals. In the zeroth order
series expansion in Pr, minimization of Ra only requires the solution of the cubic polynomial
Chy + (3 — 2k)k? =0. Since Chy > 0, the discriminant —108Chy(1 + Chy) is negative and, hence,
the polynomial has one real and two non-real complex-conjugate roots. Only the real root is
physically relevant and has critical wavenumber

1 ~2/3 2/3
ko=§<(,/ch1+ Chi+1) "+ (VCin + /iy +1) +1), 4.7)

which can be used to calculate w,, 4, and Ra,. We obtain an upper bound on the oscillation
frequency when Ch— 0, namely, wup =,/ % — 9EK2. For Pr— 0 and using the restrictions in
(4.6), oscillatory rotating magnetoconvection is only found to be possible for A < (2x2Ek)~1/5.
However, for Pr > 0, oscillatory convection is permitted for slightly larger A, and thus, it does not
constitute an upper bound. Numerical evaluation further shows that the Pr — 0 solutions do not
accurately describe finite Pr solutions at small Ek, see figure 7d—f.

We can also consider the limit of A — 0 since the oscillations originate from rotating and
not magnetic overstability. This results in the following zeroth order Chj-independent cubic
polynomial,

EK3(Pr 4 1)*(2k — 3)k* — Pr* =0. (4.8)
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Figure 7. Onset predictions for oscillatory rotating magnetoconvection. The upper panels (a—c) show the predictions for
Ek =107, while the lower panels (d—f) show Fkg = 10~". The solid coloured line show the predictions for (a,d) the
onset frequency w,, (b,e) the critical wavenumber a,, and (c, f) the critical Rayleigh number Ra, for Prandtl numbers
Pre {10=2,107°,1073,0.01,0.025, 0.1} by solving equations (4.3)—(4.5). The dark purple line indicates the limit Pr — 0
obtained by using the modified wavenumber (4.7). The dark purple dash-dotted lines in (a,d) indicate the upper bounding

oscillation frequency of wyp, = / § — 9Fk2. The dashed lines indicate the corresponding limit of A — 0 using the modified

wavenumber (4.9). For reference, the grey lines in (b,c.e, f) indicate the corresponding solutions for stationary rotating
magnetoconvection. The open circles in (b,c.e, f) mark where w, =0, as shown in (a,d); for higher A oscillatory linear
solutions do not exist. (Online version in colour.)

The only real-valued solution is

1/3 2\ 1/3
30 (3 )

2 ¢ d (4.9)
with ¢ = Eki (1 4+ Pr), & = (Pr+ /P2 + £2)2,

and correspondingly calculated wo, 4, and Ra, are shown by the dashed lines in figure 7. As
Ekq — 0, solution (4.9) approaches that of non-magnetic rotating convection [12,88], as is expected.

5. Linear stability of wall-attached rotating magnetoconvection

In confined containers, the onset of rotating magnetoconvection can also occur via wall-attached
boundary modes, also known as wallmodes. These modes originate from the destabilizing
effect of the sidewall and exponentially decay towards the interior. Thus, the bulk fluid
remains virtually quiescent if no other instabilities are present [19,22]. Wallmodes have received
considerable recent attention in the nonlinear regime of non-magnetic rotating convection [19-
21,30,75,95-100]. They are, however, also of importance for rotating magnetoconvection [22].
The comprehensive linear theoretical framework for rotating magnetoconvective wallmodes
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was developed by Sanchez-Alvarez et al. [29] assuming a cylinder with zero curvature, i.e. a
semi-infinite plane layer. Additional details are given in the supplementary Jupyter Notebook.

In the limit of A — 0, the wallmodes behave as in rotating convection without magnetic
field [29,66,86,101-104], showing Stewartson-layer characteristics, i.e. the critical frequency,
wavenumber and Rayleigh number are given by

Ek
0w — —(271)%(6 + 3\/5)1/2ﬁ, ap — (2 + V/3)1/2 )

and Ray, — 72(67/3)/2Ek!.

Similarly, for A — oo, the wallmodes behave as in magnetoconvection without rotation
[24,25,28,105], showing Shercliff-layer characteristics with the critical values

ww—0, apy—>nv2 and Ray — 3712\/371/2Ch3/4. (5.2)

Importantly, because there is no horizontal magnetic symmetry breaking in this quasi-static
framework, fully magnetic wallmodes do not drift, i.e. wp=0. In the intermediate A~1
magnetostrophic range, no asymptotic solution has been derived for rotating magnetoconvective
wallmodes. It is only in this intermediate range that (a,, Ray) vary as a function of Ek, Ch and Pr.
Similarly to stationary rotating magnetoconvection, the critical Rayleigh number, Ray, attains a
minimum value for magnetostrophic wallmodes [29]. However, the location of this minimum is
shifted relative to Amin = 3!/2, equation (3.19). Typically the magnetostrophic wall mode well is
broader, shallower and found at higher A values, as shown via the dashed green lines in figures
8b and 9b.

6. Summary and discussion

In this study, we have mapped out the regimes of liquid metal (Pm < Pr) planar rotating
magnetoconvection. There exists stationary, oscillatory and wall-attached linear convective
modes. There are five distinct regimes of stationary onset: G, MG1, MGy, MG3 and M (see table 1).
The oscillatory branch only exists in the form of Coriolis-restored motions, since oscillatory modes
cannot be driven by Lorentz forces in Pm — 0 fluids. In finite geometries, the first instability
occurs via wall-attached convection, since wallmodes have the lowest Rasi¢ in the vicinity of
A ~1 (cf. [22]).

The stationary and oscillatory solutions are expressed in septic and nonic polynomial forms,
(3.2) and (4.3), respectively. We solve them here using standard, fast and robust numerical root
finding algorithms that did not exist in the 1950s when Chandrasekhar and Elbert first studied
these systems. A Jupyter Notebook containing solutions that make use of this root finding
approach is provided to the reader in the electronic supplementary material.

We have established an asymptotic framework for the five different regimes of stationary
rotating magnetoconvection. Our framework yields novel analytical expressions that demarcate
the boundaries between the regimes, i.e. (3.11) and (3.23). Further, when parsing the A-space, we
have shown that all five regimes only exist when a fixed Ek < Ek* = 16/(277)? is employed; for
Ek > Ek*, the geostrophic branch (G) connects directly to the magnetic branch (M) with no access
to the multi-modal and magnetostrophic MG1, MG, and MGg regimes (figure 4). By contrast,
when parsing the A-space at a constant magnetic field strength Ch, two possible scenarios exist.
The four regimes MG1-MG3 and M exist if Ch > Chy, = 2772, Otherwise, if Ch < Chy, there are
only the geostrophic (G) and the magnetic (M) branches (figure 5). Importantly, then, the Elbert
range MG, does not exist for Ek > Ek*, which leads us to argue that realistic models of planetary
core convective processes (figure 1b) must be carried out at Ek <« Ek* (e.g. [8,17,106], cf. [107-109]).

Figure 8 shows the entire zoo of functions characterized here under laboratory-like conditions.
The Prandtl number, Pr = 0.025, corresponds to that of a liquid metal [4]. In figure 8a,b, the angular
rotation rate is held fixed such that Ek=107° (e.g. [21,22]), whereas the imposed magnetic field
strength is held fixed in figure 8c,d such that Ch= 100 (e.g. [26,27]). The Elbert range MG, is
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Figure 8. Laboratory predictions for multi-modal rotating magnetoconvection in a Pr = 0.025 liquid metallic fluid. The Ekman
number is held fixed at £k = 10~ in (a,b), whereas the Chandrasekhar number is held fixed at Ch = 10° in (c,d). The semi-
transparent cornflower blue region demarcates the Elbert coexistence range in each panel. The geostrophic range (G) does not
exist in (c,d) because the fixed value of Ch = 10° used there exceeds (. = 2772 (3.11). The open blue circle in each panel
marks where w, = 0; no oscillatory solutions exist at higher A. By contrast to the oscillatory and wallmodes, the stationary
modes are independent of Pr. (Online version in colour.)

shaded cornflower blue. The onset of the oscillatory, wall and stationary magnetostrophic modes
all occur within an order of magnitude of each other, 107 < Ragit < 108, in the vicinity of Amin.
Further, the stationary geostrophic mode onsets at roughly one order of magnitude higher in Ra.
Thus, MG; flows are expected to be richly multi-modal, possibly even more so than the multi-
modality found in supercritical low Pr non-magnetic rotating convection (cf. [20]).

Figure 9 is similar to figure 8, but corresponds to Earth-like conditions, with Pr=0.1[110,111]
and the Ekman number held fixed at Ekg = 10715 in figure 94,b and the Chandrasekhar number
held fixed at Chg = 101 in figure 9¢,d. The Elbert range increases with decreasing Ek or increasing
Ch, respectively, covering between eight and nine orders of magnitude in A under Earth-like
conditions, whereas it covers roughly two orders of magnitude under laboratory conditions. The
ordering of the critical Ra values differs near Ap;, with the stationary magnetostrophic mode
onsetting just after the wall mode instability. The oscillatory and geostrophic modes onset at
higher supercriticalities.
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Figure 9. Earth’s core predictions for multi-modal rotating magnetoconvection in a Prq, = 0.1 core-like fluid. The Ekman
number is held fixed at the Earth-like value fkg = 10" in (a,b), whereas the Chandrasekhar number is held fixed at the
Earth-like value Chg, = 10" in (c,d). The semi-transparent cornflower blue region demarcates the Elbert coexistence range in
each panel. The geostrophic range (G) does not exist in (¢,d) because Chg, > Chy.. The open blue circle in each panel marks
where w, = 0; no oscillatory solutions exist at higher A. The stationary modes are independent of Pr, whereas the oscillatory
and wall-attached modes are not. (Online version in colour.)

It is this ordering of supercriticalities in figure 9 that has led to the mono-modal
magnetostrophic dynamo hypothesis (e.g. [16], cf. [80,112]). However, estimates of the Rayleigh
number for thermal convection in Earth’s core to lie roughly between 102 < Rag < 10%°
[113,114] (figure 1a). Given this Rag range, we expect that all of the possible modes in Elbert’s
magnetostrophic coexistence range will be strongly excited in Earth’s core, similarly to what is
achievable in turbulent laboratory experiments. This makes Elbert’s original discovery highly
relevant for our understanding of planetary core rotating magnetoconvection, and likely for the
dynamo action it generates. What remains to be answered is to what degree Elbert’s different
modes are differentiable in remote indirect measures of core turbulence and which, if any, of them
dominate over the others in strongly nonlinear, turbulent laboratory, planetary and astrophysical
settings.

Data accessibility. The supplementary Jupyter Notebook allows the reader to recreate all our plots and, thus,
access all the quantitative information presented in this manuscript.
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Appendix A. Solution of the Elbert range quintic polynomial

The quintic polynomial in the Elbert range, MGy, is given by

1 24 1 A 5A%

5 4 2 3 2
= = T+~ 44 2 —— —_— Al
p(x) x+2x +(+Ek1+ )x +< 2Ek%+2Ek1+ z)x (A1)

1 A A? 243
4— — 4 —— 4+ 6A%F o+ —— At A2
+( Ek§+Ekl+ +Ek§+Ek1+ )x (A2)
2 A 24 , A% 9A%  9pt

8— s+t o + 1A% - o A3
* EK? " 2EK3 Tt Ek? T 28 T2 49

where we replaced the wavenumber k by a general variable x. We further define

A==
2

B=1+ 22 4 a2
~ Ek

A 5A2

22 T2 T 2

1 A A% 248
D=4— —5+-—+6A%+ — +—— 4+ a4

B Ek ER ' Ek
2 A 24 , A% 9A%  9pt
E=8— — 4+ —— 4+ — +14A° - — + — +
2 2ee Bk T B2 2Bk T2
and p(x) = x>+ Ax* + Bx® + Cx®> + Dx + E.

We first apply a quadratic Tschirnhaus transformation
z=x>+ux+v (A4)
to transform equation (A 2) to the principal quintic form
2° 45122 + 5mz + n=0. (A5)
The coefficient 1 in equation (A 4) is determined by any of the solutions to the quadratic equation

(2A% — 5B)u? + (4A3 — 13AB + 15C)u
(A6)
+ (2A* — 8A%B + 10AC + 3B% — 10D) =0,
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which yields

1
T 2Eki(Ek1(10A2 + 9) + 20 A)

|:—2Ek%(31A2 +24) + 11Ek; A + 15

++5 {Ekl (Ekf(—112A6 —28A% 410242 4 45) — 4EK3 A(88A* + 44342 4 282)

— Ek1(224A* +183A% 4 180) + 6443 + 306/1) + 45}1/2} (A7)
and the coefficient v is determined through
5v=—Au — A% + 2B. (A8)
The coefficients I, m, n, are given by
51 = —C(u® + Au® + Bu + C) + D(4u? + 3Au + 2B) — E(5u + 2A) — 1003 (A9)
5m = D(u* + Au® + Bu* + Cu + D) — E(5u® + 4Au® + 3Bu2C) — 5v* — 10lv (A 10)
and n=—E®u’® + Au* + Bu® + Cu? + Du + E) — v° — 51v> — 5mu. (A11)
A second Tschirnhaus transformation
i

then transforms the principal quintic to the Brioschi quintic [115] which only depends on the
single parameter ¢,

y> —10¢y° 4 45¢%y — ¢? =0. (A13)

(We could also depress the cubic term using an additional transformation to arrive at the Bring—
Jerrard form.) The coefficient « is any of the roots of the quadratic equation

(I* + Imn — m®)a® + (=118Bm + In® — 2m®n)a — 277 + 641°m* — mn®> =0, (A14)
where we chose

B (11Pm — In? + 2m%n)

A15
2(I* + Imn — m3) (A15)
VA1Bm — n2 4 2m2n)2 — 4(1* 4 Imn — m3)(—27Bn + 6412m? — mn?)
+ . (Al9)
2(14 + Imn — m3)
and the other coefficients in equation (A 12) are given by
yI2 — 8a’l — 720%m — 72an
- , A17
P o2l +am+n ( )
) (lo? — 3mo — 3n)°
=— thy = . A18
¢ 1728 — y Wity 2(Ina — m2a — mn) (A18)
The roots of the Brioschi quintic are given by
— 1 1/2
Yr= %[(500 —&)&r2 — &43)(Erqa — fr-&—l)] , TEZ/5 (A19)
where £, and &, are the roots of the Jacobi sextic
10 12 5
6, V.3 1482 Do
& +A§ A2§+A2 0. (A20)
The roots of the Jacobi sextic can be obtained by evaluating the elliptic integral
[o¢]
- v (A21)

©(®) /4¢-3 — ¥ —g3
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which is the inverse to the Weierstraf3 elliptic function p(¢). The invariants g and g3 and the
discriminant A are given by

_ja-17280) A _ 1
= 17282 B = 77 and A= { (A22)

The key quantity needed for solving the sextic and the quintic polynomial equation hereby is the
corresponding half period ratio T = o'/w, with the fundamental periods o’ and w of the elliptic
integral (A 21). These periods are related to the Jacobi nome /= exp(int) = exp(irw’/w). Kiepert
suggested to derive /1 through hypergeometric series as functions of the absolute invariant gg /A
[116,117]. However, here we follow a slightly different approach instead by calculating the half
period ratio by means of the complete integral of the first kind K with the elliptic modulus k and
the complementary elliptic modulus k' = v/1 — k2,
K(K) KH1-k2)

‘L’EZZZK(k) =i CH (A 23)

The elliptic modulus k can be expressed in terms of the roots of the cubic equation in the
denominator of equation (A 21),

43 — gy — g3 =0. (A24)

The three roots are given by

1 \7@,/275% — g +993
€1 = <
2

=7 + 82 ) (A25)
v [t~ + 981
(1 - iﬁ) \3/ﬁ,/27g§ - g% +9¢3 (1 + i«/g) 19}
e =— - ’ (A 26)
432/3
4%\3/ V3,/2785 — 83 + 983
(1+iv3) \3/ V3,/2762 — ¢ +9¢5 (1-iv3) g2
and e3=— 1323 — , (A27)
4%\3/ V3,/27¢3 — g3 + 983
and the modulus by

k= |27 (A28)
e1—es

We then evaluate the complete elliptic integrals of the first kind K(k) and K(k') which can be easily
done using e.g. MATHEMATICA with | El |'i pti cK[ 1- k2] / El i pti cK[ k?] . Further using the
Dedekind-n function defined as

)
7](0) — Z (_1))L eain(6k+1)z/12, (A 29)

A=—00
and implemented as Dedeki ndEt a( o) in MATHEMATICA, the roots of the Jacobi sextic (A 20)
read

_ 5ol
AV

[1((1/5)(24r + 0)I*

o0 INELOE

and & =

(A30)

In general it needs to be verified that the correct ordering of the roots e1, e and e3 is used, as there
are six possible permutations of {1, 2,3}, and the correct roots are used, i.e. the following needs to

€LE02207 8L i 205 2014 edsi/feuinof BioBuiysiignd/iaposiefor



hold:
4
10 12 5
_ g6 3 82

(s—soo)ﬂ(s—&)—s + 8-t o (A31)
However, this is the case for k, e1, e, and e3 defined by equations (A 25)-(A 28) for our specific
polynomial equation (A 3).

Now using equation (A 19)

11 2 o 24r+1
= %Ané(h)[<5” o0 -r(%57)) (432
y <n2<24(r+2)+r)_n2(24(r+3)+r)) (A33)
5 5
y <n2<24(r+4)+r> _n2<24(r+ 1)+r))i| A34)
5 5
and transforming the roots according to equation (A 12),
o+ Byr
=, (A35)
-3

the general solution to the quintic, and thus, also to equation (A 3), is given by

E+ (z; — v)@® + Au? + Bu + C) + (zr — v)2(2u + A)
u* + Aud + Bu? + Cu+ D + (z; — v)(3u? + 2Au + B) + (z, — v)?’

X = (A 36)
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