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ABSTRACT

Motivation: De novo assembly of a eukaryotic genome with next-
generation sequencing data is still a challenging task. Over the past
few years several assemblers have been developed, often suitable
for one specific type of sequencing data. The number of known
genomes is expanding rapidly, therefore it becomes possible to use
multiple reference genomes for assembly projects. We introduce an
assembly integrator that makes use of all available data, i.e. multiple
de novo assemblies and mappings against multiple related genomes,
by optimizing a weighted combination of criteria.
Results: The developed algorithm was applied on the de novo
sequencing of the Saccharomyces cerevisiae CEN.PK 113-7D strain.
Using Solexa and 454 read data, two de novo and three comparative
assemblies were constructed and subsequently integrated, yielding
29 contigs, covering more than 12 Mbp; a drastic improvement
compared with the single assemblies.
Availability: MAIA is available as a Matlab package and can be
downloaded from http://bioinformatics.tudelft.nl
Contact: j.f.nijkamp@tudelft.nl

1 INTRODUCTION
Next-generation sequencing (NGS) platforms, such as 454 (Roche,
Branford, CT), Solid (AB, Foster City, CA) and Solexa (Illumina,
San Diego, CA) allow for gigabytes of data generation at an
affordable cost. The third generation sequencing platforms (Helicos,
Cambridge, MA; Pacific Biosciences, Menlo Park, CA) may even
let the cost per megabase drop under $1 per megabase (Shendure
and Ji, 2008). Considering the relatively low cost of these platforms,
compared with classical Sanger sequencing, it becomes possible to
use them for de novo sequencing projects. However, the millions of
short DNA sequences generated by NGS platforms, called reads, are
still relatively small. Given this limited read length and the many
repetitive regions in a eukaryotic genome, de novo assembly is still
a challenging task. To alleviate this problem it is essential to design
algorithms that make full use of all available data.

Over the past few years, several assemblers have been developed
for NGS data. Assemblers pull millions of reads together into
larger contiguous sequences, called contigs. A typical assembly of a
eukaryotic genome is a set with thousands of contigs. These contigs
are unordered as well as unoriented, i.e. it is unknown whether they
come from the forward or reverse strand. The process to determine
orientation and relative ordering of contigs is called scaffolding.

∗To whom correspondence should be addressed.

Some assemblers have built-in scaffolders; otherwise, an external
scaffolder can be used, such as Bambus (Pop et al., 2004b).
An alternative to de novo assembly is mapping the reads against
a finished or draft genome from a close relative (a template). From
such a mapping a consensus can be called, generating a comparative
assembly (Pop et al., 2004a). As the number of known genomes
is growing rapidly, in the future, it will be more often the case
that multiple close relative genomes are available to create such
assemblies. However, mapping against a closely related genome
will only yield those parts that are identical in target and template
genome. To get the unique components in the target genome, a
de novo assembly will always be required.

Assemblers are often specialized for a specific type of reads. De
Bruijn graph-based assemblers, such as Velvet (Zerbino and Birney,
2008), Abyss (Simpson et al., 2009) and ALLPATHS (Maccallum
et al., 2009) are most suitable for short reads (Solid; Solexa),
whereas overlap-layout-consensus algorithms, such as Newbler
(Roche) and CABOG (Miller et al., 2008), are more suitable
for the longer 454 sequences. It is not trivial to deal efficiently
with different read types simultaneously or to combine outputs
of different assemblers. Hybrid strategies (using two types of
sequencing data) mostly work by altering the output of a first
assembler to make it suitable for application on a second. Reinhardt
et al. (2009) generated contigs with VCAKE (Jeck et al., 2007) using
Solexa data, which were subsequently used as input to the Newbler
assembler together with 454 data. Goldberg et al. (2006) simulated
Sanger reads from a set of contigs assembled by Newbler with
454 data. These reads were subsequently used as input to the Celera
assembler combined with true Sanger reads. We are aware of only
one de novo assembler designed to integrate Sanger and NGS data,
called Forge (Diguistini et al., 2009). However, Forge does not allow
for integration of comparative assemblies. Other hybrid strategies
(Argueso et al., 2009; Salzberg et al., 2008) combine assemblies
using Minimus (Sommer et al., 2007). Minimus is restricted to only
two assemblies, so to combine three or more assemblies it has to
be applied iteratively. Minimus also does not allow for weighted
combinations of contigs.

In this article, we describe MAIA(MultipleAssembly IntegrAtor),
a graph-based algorithm for integration of several de novo and
comparative assemblies. Assembly integration is related to both
de novo assembly and scaffolding, but differs in its input. An
assembler deals with short sequences (reads) and high genome
coverage to account for read errors and repeats in the genome.
A scaffolder tries to determine the relative ordering and orientation
of large sequences (contigs) of a single de novo assembly, assuming
the target genome is covered once. An integrator is a hybrid of
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Fig. 1. An overview of the process of integrating several assemblies with MAIA. (A) Multiple de novo and comparative assemblies are created using
specialized assemblers. (B) The resulting contigs are pairwise aligned to each other to find end-to-end overlaps. (C) An overlap graph is constructed, in
which nodes represent contigs and edges represent overlaps. A forward and a reverse edge is added between the pairs of nodes, but these are indicated by an
undirected edge for simplicity. A start node and an end node is determined using a reference genome. Edges are assigned weights based on several properties
of the alignments and contigs, combined using weighted Z-scores. (D) An orientation is assigned to the contigs by traversing the graph depth-first in order
of weight (indicated by the numbers). Edge 9 [dashed box in (B)] assigns reverse orientation to the blue node, while a forward orientation has already been
assigned via edge 1, therefore it is recognized as conflicting and it is removed. (E) Oriented contigs and end-to-end overlaps form a directed graph. (F) The
highest scoring path is found using a Tabu search procedure, which leads to the assembly of a chromosome.

these, dealing both with contigs and manifold genome coverage,
allowing a number of assemblies to be considered simultaneously.
MAIA is not restricted in the number of assemblies and uses the
full contigs produced, not requiring these to be broken into reads or
k-mers of any type. Pairwise alignments of contigs are calculated to
generate an overlap graph. In this graph nodes represent contigs and
edges represent alignments. These edges are weighted with several
properties of the contigs and alignments, which are combined using
weighted Z-scores. Assemblies are integrated at chromosome level
by finding the combination of contigs which yields the highest score.
This is achieved by optimizing a path in the overlap graph between
the contigs that align closest to the 5′ and 3′ ends of a reference
genome. The assembled chromosome directly follows from this
path.

The MAIA approach has two main advantages. First, multiple
known related genomes can be used simultaneously in the assembly
process. Second, different NGS sources can be assembled with
specific de novo assemblers, to be integrated afterwards with
MAIA. As a demonstration of the algorithm, MAIA is applied
to the Saccharomyces cerevisiae strain CEN.PK 113-7D, a strain
widely used for systems biology research and metabolic engineering
(Knijnenburg et al., 2008; Medina et al., 2010; Wisselink et al.,
2009). Its genome is assembled using Solexa reads, 454 reads and
three genomes of previously sequenced, closely related S.cerevisiae
strains. The method is compared with two other hybrid approaches,
using Minimus and Velvet.

2 METHODS
MAIA is an assembly integrator using the overlap-layout-consensus
paradigm, known from genome assembly algorithms, to combine several

assemblies into a single integrated assembly. The algorithm takes as input
sets of contigs, each set originating from either a de novo or a comparative
assembly, i.e. from mapping against a related genome (Fig. 1A). Overlap
between contigs is detected by pairwise aligning the contigs in an all-
vs-all fashion among the sets (Fig. 1B). An undirected overlap graph is
then constructed, with nodes representing contigs and edges representing
overlaps. Using a reference genome, i.e. the evolutionary closest of the
related genomes available that is of high quality, a 5′ start and 3′ end node
is determined to guide the integration (Fig. 1C). The edges are weighted,
reflecting the likelihood that the alignment represents an actual overlap in
the genome (Fig. 1D). The graph is then directed by assigning orientation to
the contigs, i.e. forward or reverse (Fig. 1E). Assembly integration is finally
achieved by finding a highest scoring path between the start and end nodes
in the overlap graph and calling the consensus (Fig. 1F). These steps are
described in detail below.

2.1 Constructing an overlap graph from pairwise
alignments of contigs

A graph G= (V ,E) is created in which V ={v1,v2,...,vn} is the set of
nodes and E ={{vi,vj}|vi,vj ∈ V} is the set of edges. Each contig c∈ C is
assigned to a node. Overlapping regions in contigs are detected by pairwise
aligning all contig pairs in different sets. For every aligned pair of contigs,
two filters are applied. First, only the longest mutually consistent set of
alignments is selected. Second, if there still is more than one match between
two contigs, only the longest is retained. For these steps we used Nucmer
and Delta-filter, both part of the Mummer package (Delcher et al., 2002),
although other tools could be used. The resulting alignments a∈A are used
to generate the edges in G. Contigs vi and vj that overlap end-to-end with
a minimum alignment length lA,min and maximum length lO,max of non-
aligned overhang (Fig. 2), i.e. the part of the contig that will be clipped
when merging the two, are then joined by a forward and a reverse edge,
(vi,vj) and (vj,vi).
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Fig. 2. Four pairwise aligned contigs. The alignment length lA, the contig
length lC and the length of the non-aligned overhang lO are three of the four
properties used for edge weighting, the fourth is an assembly quality score.

2.2 Weighting the edges in the overlap graph
A score Z(e) is assigned to each edge e∈ E to reflect the quality of the
alignment and the quality of the contig to which the edge leads. Edge weights
differ between forward and reverse edges. For three properties of contigs
and alignments (Fig. 2), a P-value is calculated. Null distributions for these
properties are inferred using all contigs and possible contig pairs. These
distributions reflect the probability that the property occurs by chance in a
pair of contigs, which do not overlap in the target genome. The P-values
are transformed into Z-scores using the inverse of the cumulative density
function N−1, and combined into Liptak–Stouffer’s weighted Z-score, where
the weights wi are user-specified per property (Hwang et al., 2005):

Z(e)= 1√∑
w2

i

[
3∑

i=1

wiN
−1(1−pi(e))+w4Z4(e)

]
(1)

For each edge e∈ E the following four properties (illustrated in Fig. 2) are
calculated:

(1) The length of the contig; longer contigs are preferred over smaller
contigs. A P-value for a particular contig c is estimated as p(lC ≥
lC
c )= |{c′∈ C|lC

c′ ≥lCc }|
|C| , where lC

c is the length of the contig c to which
edge e points and |C| is the total number of contigs.

(2) The length of the alignment; longer overlap between contigs is
preferred. For the calculation of the P-value, only the number of
correctly aligned nucleotides lA∗ = lA ·f A are considered, where lA

is the full length of the alignment and f A is the fraction of aligned
nucleotides that are identical. The P-value for a particular alignment

a is estimated as p(lA∗ ≥ lA∗
a )= |{a′∈ A|lA∗

a′ ≥lA∗
a }|

|A| where |A|=
n∏

x=1

|Cx | is

the total number of possible contig pairs, x is the assembly number
and n is the total number of assemblies.

(3) The percentage of non-aligned overhang; the length of the non-aligned
overhang lO should ideally be zero. For a particular alignment a a

P-value is calculated as p(lO ≤ lO
a )= |{a′∈A|qa′ ≤qa}|

|A| , where qa = lOa
la+lOa

is the fraction of non-aligned overhang and lO
a is the number of

nucleotides that have to be clipped if the two contigs would be merged.
We consider the number of nucleotides overhang relative to the contig
length to avoid connecting small contigs with large overhangs.

Finally, a manually assigned score Z4 is added for the quality of the
assembly, which can differ per assembly source. This score attribute is used
to have MAIA prefer high-quality assemblies.

2.3 Directing the overlap graph
All contig alignments are end-to-end and can be represented as directed edges
in the overlap graph. The direction of each edge depends on the orientation
of the contigs it connects. If the upstream end of node vi aligns to the
downstream end of node vj , the edge in the graph would be e= (vi,vj). Since
the orientation of the contigs is unknown, taking the reverse complement of
the two contigs flips the edge to e= (vj,vi). These two edges represent the

forward and reverse strands of the DNA. Since only one strand needs to be
assembled, the orientation of the contigs is fixed.

Assigning an orientation to the contigs can cause problems, by introducing
cycles in the graph that disagree on orientation. These cycles are caused
by alignments of contigs that are not actually overlapping in the genome.
Edges causing these conflicts have to be removed. An optimal solution would
be to assign an orientation to the contigs which minimizes the number of
conflicting edges. Since this problem is non-deterministic polynomial-time
hard (NP-hard), a greedy approach is used, similar to the contig orientation
method in Bambus (Pop et al., 2004b). This approach starts by fixing the
orientation of the start node to forward. Next, the graph is traversed depth-
first in order of descending weights. For every node an orientation is assigned
based on the alignment and orientation of the previously visited node.

The contig orientation is illustrated by the example in Figure 2, in which
arrows represents contigs and dashes their alignments. Node v1 is the start
node and has a fixed forward orientation. The graph is traversed to v2. Since
the reverse complement of v2 aligns to v1 (opposing arrows), a reverse
orientation is assigned to v2. Subsequently, using the same reasoning, a
forward and reverse orientation will be assigned to v3 and v4, respectively. If
v4 had already been visited and was assigned a forward orientation, the edge
between v3 and v4 conflicts with the previously assigned orientation and will
be removed from the graph. After all nodes have been oriented it is known
for each end of a contig whether it is the up- or downstream end. The end-
to-end alignments can now be used to direct the graph, e.g. as node v2 aligns
to the downstream end of node v1, the directed edge will be e= (v1,v2).

2.4 Finding the highest scoring path
A chromosome can be assembled by finding a simple path P=v0v1v2...vk

connected by edges e1e2...ek in the overlap graph, visiting no node more than
once (Fig. 1F).Astart node v0 and end node vk are determined to avoid having
to evaluate paths between all possible node pairs in the graph. These nodes are
set to be those contigs that originate from the 5′ and 3′ ends of comparative
assembly against the reference genome (Fig. 1C). The combination of contigs
connecting v0 and vk is optimized by maximizing the sum of the edge
scores S(P)=max(

∑
e∈ P Z(e)). This optimization can be shown to be NP-

complete by taking an instance of G with only positively weighted edges,
thereby reducing the maximization to a search for a Hamiltonian path,
which is known to be NP-complete. This makes finding the global optimum
computationally expensive; therefore, we search for the highest scoring path
using a Tabu procedure (Glover, 1986).

The Tabu search starts by finding an initial solution for P by performing
a Dijkstra shortest path search on the graph with inverted edge weights
Ẑ(e). These inverted weights are calculated for each edge e as Ẑ(e)=
max

e
(Z(e))−Z(e)+1. The Tabu search proceeds by systematically applying

the change to the path that yields the most improvement in terms of S(P).
All pairs of adjacent edges in P are considered for modification (2-opt). Four
modifications are possible to a set of two edges. Figure 3 shows an example
for a set of three nodes vi, vj and vk , connected by the edges (vi,vj) and (vj,vk).
The possible modifications are: (i) vj is bypassed by directly connecting vi

and vk with edge (vj,vk); (ii) vi and vk are connected via a fourth node vl ;
(iii) vi or vj are connected via vl ; and (iv) vi and vj are connected via vl .
After the change has been applied, the inverse of the change (the ‘undo’)
is stored in the Tabu list. Changes in the Tabu list are not allowed to be
applied to avoid entrapment in cycles of repeated identical changes. After
a certain number of cycles (here, 3) the change is removed from the Tabu
list. The algorithm proceeds until for a certain number of changes (15) no
improvement is seen compared with the best path found so far. As the initial
solution is often close to the final one, convergence is often fast. In practice,
the algorithm is limited by memory size (to hold the overlap graph) rather
than computational complexity.

2.5 Connecting unconnected subgraphs
If no path exists between start and end node, contigs from one or more
assemblies are aligned to the reference. If a region of the reference genome
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Fig. 3. Four types of modifications that are applied iteratively to the path by
the Tabu search procedure.
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Fig. 4. A pseudo node ṽ4 is inserted in the graph if no path exists between
start and end node. An initial path P=v1v2v3ṽ4v5v6v7 has been found. If
ṽ4 exceeds the maximum size lmax

c̃ , the path is subsequently split into P1 =
v1v2v3 and P2 =v5v6v7. P1 and P2 are backtracked (red arrows) to the nearest
branchpoints (v2 and v5, respectively) and greedily extended to v9 and v10

yielding P3 =v1v2v8v9 and P4 =v10v11v5v6v7. Finally, the highest scoring
paths are chosen from {P1,P3} and {P2,P4}.

is not covered by an aligned contig, a pseudo node ṽ is created, containing
the DNA sequence of this non-covered region (Fig. 4). Edges with a low
score (i.e. a penalty) are inserted between ṽ and the pair of nodes that align
on both sides of ṽ. The number of pseudo nodes in the graph is kept minimal
by gradually increasing the allowed pseudo node size until a path between
start and end node is found.

2.6 Post-processing of the path
The start and end node determined using the reference genome are not
necessarily the ends of the target chromosome. Therefore, the path P is
greedily extended toward the 5′ and 3′ extremes of the target genome. P is
iteratively extended from the current last node to the node connected with
the highest edge weight, provided that it has a specified minimum alignment
length lA,min and minimum percentage alignment identity f A,min.

The maximum size of a pseudo node is set to lC,max
c̃ . P is split at pseudo

nodes exceeding lC,max
c̃ and backtracked to the nearest branchpoint on both

sides of the pseudo node. From there on the paths are greedily extended
until no extension is possible, similar to the end extension described above,
resulting in multiple contigs per chromosome. Figure 4 gives an example of
splitting P at a large pseudo node.

2.7 Calling the consensus
Finally, the integrated contigs follow from the path found by the Tabu search.
The contigs and their associated pairwise alignments are transformed into an
alignment matrix with one row for every source assembly. The consensus is

called by taking for each column the base or gap (arising from the nucmer
gapped alignment) of the highest quality assembly present in that column. In
the resulting consensus, gaps are removed and the bases are tagged with the
assembly from which they originate. This information can be used in further
analyses of the assembly.

2.8 Assembly validation
To assess the quality of both the individual assemblies and the MAIA
integrated assembly, the paired-end Solexa reads were mapped onto the
assemblies using the Burrows-Wheeler Alignment tool BWA (Li and Durbin,
2009). Two statistics were extracted from the mappings using Samtools (Li
et al., 2009). First, to assess the completeness of an assembly, the percentage
of reads that mapped on the assembly was calculated. Second, to assess the
accuracy of an assembly, the percentage supporting read pairs was calculated.
This is calculated as the percentage of the total number of mapped pairs
that map at a proper distance from each other on a contig. The insert size
distribution N(208,13) and the maximum allowed insert size (∼6σ) were
estimated by BWA.

2.9 Experimental setup
DNA of the S.cerevisiae lab strain CEN.PK 113-7D (MATa MAL2-8c SUC2)
was prepared (Burke et al., 2000). A library of 200 bp fragments was created
and sequenced paired-end using the Illumina Solexa system, generating
∼56 million paired reads. A second library with mate-pair reads with an
insert size of 8 kb was prepared sequenced on the Roche 454 Titanium.
Both libraries were prepared according to manufacturer recommendations
(Illumina and Roche). The pairing rate for the 454 mate pair library was
19%, yielding 149 900 paired reads.

De novo unscaffolded assemblies were performed with Abyss (Simpson
et al., 2009) and the Celera assembler (Miller et al., 2008) on the Solexa and
454 reads, respectively. Abyss was tested for all combinations of k-mer size
∈{23,...,33} and coverage cut-off ∈{0,...,12}; the combination yielding the
best N50 was chosen. The Celera assembler was used with standard settings
as described in Lee (2007). Comparative assemblies were made by mapping
the Solexa reads to the (draft) genomes of the S.cerevisiae strains S288c,
YJM789 and RM11-1Ausing MAQ (Li et al., 2008). These genomes are 99.3,
98.4 and 98.0% identical to CEN.PK, calculated by dividing the number of
identical bases by the length of the genome. The consensus sequences were
split into contigs at every occurrence of an ‘N’. Contigs <200 bp have been
discarded.

Integration of the assemblies with MAIA has been performed per
chromosome. From the S288c comparative assembly, only contigs
originating from the chromosome being assembled were used. A minimum
alignment length lA,min of 20 nt is used for finding pairwise alignments.
MAIA finds all contigs that align end-to-end. The maximum allowed non-
aligned overhang lO,max was set to 10 nt. Scores for the assembly qualities
were set to Z =3,2.5,2,1,0.5 for the Abyss, Celera, S288c, YJM789
and RM11-1A assembly, respectively, reflecting our beliefs concerning
the relative quality of the assemblies. De novo assemblies received the
highest Z-scores, since these may contain structural variants unique to the
target genome. The weights in the combined Z-score for the contig length,
alignment length, non-aligned overlap and assembly quality were rather
arbitrarily set to be 0.35, 0.25, 0.15 and 0.25, respectively, corresponding
to the relative importance of the forms of evidence for merging contigs.
Pseudo nodes are iteratively added with increasing sizes until a path from
start to end node is found. Only contigs from the S288c assembly were used
to create pseudo nodes. The edge weight of a pseudo node is set to −10 and
maximum pseudo node size lC,max

c̃ was set to 250.
Two other hybrid methods were applied as a comparison. First, a de novo

assembly with Velvet was performed on a combination of the Solexa reads
and 454 data-based contigs pre-assembled by the Celera assembler. The
parameters (k-mer size and coverage cut-off) were optimized w.r.t. the N50.
The paired-end information of the Solexa reads was then used for scaffolding.
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Table 1. CEN.PK assembly statistics of single input and hybrid assemblies

Strategy Assembly Package # contigs Total size (Mb) N50 (kb) Mapped reads (%) Supporting pairs (%)

Single input De novo Abyss 1223 11.64 20 84.8 97.6
De novo Celera 4148 9.03 3 62.8 98.5
Comparative (S288c) Maq 375 12.06 162 96.9 99.0
Comparative (YJM789) Maq 907 11.77 44 90.8 98.3
Comparative (RM11-1A) Maq 795 11.54 41 78.2 98.5

Hybrid De novo Velvet 654 11.40 72 75.5 97.7
De novo + comparative Minimus 71 12.21 290 92.1 99.3
De novo + comparative MAIA 29 12.01 918 96.5 99.3

Only contigs ≥200 bp were used to generate statistics (two rightmost columns).

Second, an assembly integration with Minimus was performed by merging
two assemblies and iteratively applying Minimus to the merged result and
a next assembly, whereby the singletons were discarded in every step. The
order of combination was: S288c +Abyss, + Celera, + YJM789, + RM11-1A.

3 RESULTS AND DISCUSSION
MAIA has been developed to integrate multiple assemblies. An
integrated assembly of the S.cerevisiae lab strain CEN.PK 113-7D,
from hereon called CEN.PK, has been constructed to demonstrate
the algorithm.

3.1 Individual assemblies are fragmented and vary in
error rates

Two de novo and three comparative assemblies have been made
for CEN.PK. The results for the individual assemblies are shown
in Table 1. Despite the high genome coverage (∼160X for the
Solexa and ∼20X for the 454 data), the Abyss and Celera de novo
assemblers generated fragmented assemblies, with an N50 of 20.3
and 2.7 kb, respectively. The N50 is the smallest possible contig
length, such that the sum of lengths of all contigs c′ ∈ C with
lCc′ ≥N50 is at least 50% of the total assembly size.

The level of fragmentation of the comparative assemblies
depends on evolutionary closeness and quality of the genome.
The comparative assembly using S288c as template yields the best
individual assembly, covering 12.06 million nucleotides with only
375 contigs. The available S288c genome is of high quality and
evolutionary closer to CEN.PK than the other strains (Schacherer
et al., 2009). Most reads could be mapped to the S288c comparative
assembly, which is therefore the most complete; only 3.1% of the
reads could not be mapped. The least number of reads mapped to the
Celera and Velvet hybrid assemblies. Running Velvet to assemble
only Solexa reads (results not shown) allowed 10% more reads to
be mapped. That the use of more 454 reads lowers the percentage
of mapped Solexa reads, hints at 454 data quality problems.

3.2 MAIA drastically lowers the number of contigs
The number of contigs >200 bp in the individual source assemblies
range from 375 to 1,223. MAIA reduces this to 29. Most
chromosomes have been assembled in a single contig, except
for chromosomes 1, 3, 8, 10, 12 and the mitochondrial DNA,
which consist of 5, 4, 3, 2, 2 and 2 contigs, respectively.
These chromosomes are known to be relatively divergent among

Fig. 5. Usage of the different assemblies in the input per chromosome.

S.cerevisiae strains. Schacherer et al. (2009) showed deleted regions
in every one of these chomosomes using a whole-genome tiling
array. The most apparent of these deletions is the 10 kb deleted
region at the extreme of the left arm of chromosome 1, which is also
seen in the MAIA assembly (Fig. 5). The splits in the chromosomes
assembled by MAIA are generally observed near their ends, which
are known to be divergent regions in yeast (Argueso et al., 2009).
Divergent regions can benefit less from comparative assemblies and
therefore MAIA cannot fully close the genome.

The final integrated CEN.PK genome is compiled of five source
assemblies; two de novo and three comparative assemblies. Four
additional MAIA runs were performed where in each step one
of the assemblies was incrementally added to its input, starting
with only the S288c comparative assembly. Figure 6 shows that
each individual input assembly positively contributes to the final
result. Table 1 and Figure 5 show the assemblies and their use for
integration. The usage differs from only 0.8% for the comparative
assembly with RM11-1Aas template to 80% with S288c as template.
The S288c genome is fully finished and of high quality. S288c and
CEN.PK are both laboratory strains, known to be evolutionary close
(Schacherer et al., 2009); therefore mapping yields large contigs.
Both contig quality and contig length are reflected in the Z-scores
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Fig. 6. MAIA results for the incremental addition of input assemblies.
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Fig. 7. The overlap graph for chromosome 9. The highest scoring path found
by the Tabu search is indicated by the red arrows.

on the edges in the overlap graph. Therefore, MAIA has a preference
for the S288c contigs and often selects them for integration. On the
contrary, the RM11-1A genome is a draft genome composed of a
set of supercontigs. RM11-1A is a phylogenetically more distant
wine strain and therefore contributed to a much lower extend in the
final assembly. The MAIA assembly contains 0.04% sequences from
102 pseudo nodes, which are 4340 nt in stretches individually not
>250 bp. These sequences do no originate from read data, but from
the reference genome.

As an illustration the overlap graph of chromosome 9 is shown
in Figure 7. All five input assemblies are used to construct
chromosome 9 of CEN.PK. The contigs of the YJM789 comparative
assembly have been grouped by the chromosome from which they
originate and are divided among three levels in the layout, indicated
by the arrows in Figure 7. Contigs originating from YJM789’s
chromosomes 14 and 15 appear in this graph because of repeat
sequences that are present in both these chromosomes and CEN.PK’s
chromosome 9. Although these repeat-induced connections are
present, the Tabu search does not include them in the path. Only the
contigs originating from YJM789’s chromosome 9 are incorporated
in the MAIA integrated chromosome 9 of CEN.PK.

3.3 MAIA integrates assemblies at low error rate
The quality of both the integrated and single assemblies has been
assessed using the percentage of mapped pairs that map at a proper
distance from each other (Table 1). These supporting pairs reflect
the accuracy of the assembly algorithms. In both the MAIA and the
Minimus assemblies, 99.3% of the mapped pairs can be mapped
at their proper distance, showing that these assemblies are of the
highest quality in the list. However, only 92.1% of the reads mapped
on the Minimus assembly.

The S288c comparative assembly is 50 kb longer than the MAIA
assembly. This is also reflected in the percentage of reads that map
to the assemblies; 96.9% of the reads map to the S288c comparative
assembly compared with 96.5% to the MAIA assembly (Table 1).

10
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5

Coverage
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S288c

Fig. 8. Histograms of coverage of reads mapped on the MAIA integrated
assembly and the S288c comparative assembly.

The length difference can be partially attributed to the relaxed
comparative assembly settings that were used for Maq; no minimum
read depth and mapping quality was used. Analysis of the reads
mapped by BWA on both the MAIA integrated assembly and the
S288c comparative assembly showed that a far larger part of the
latter is covered by only few reads (Fig. 8). In particular, 15 kb of
the nucleotides were covered by five reads or less, whereas for the
MAIA assembly this was the case for only 3 kb.

3.4 Other hybrid strategies are less complete
The Minimus assembly contains >12 million base pairs, but only
92.1% of the reads mapped to it. This indicates the iterative approach
taken with Minimus results in overlapping information within the
integrated assembly. The hybrid de novo assembly generated with
Velvet is less complete than the MAIA assembly; only 75.5% of the
reads can be mapped to it.

4 CONCLUSIONS
We developed MAIA, an integrator for assembly information. Our
work extends previously developed algorithms for de novo and
comparative assembly, enabling integration of multiple assemblies
at once. MAIA makes it possible to use specific assemblers for
different NGS data sources, to use multiple reference genomes for
comparative assemblies or to combine outputs of different runs of an
assembler. The number of known genomes is currently increasing
rapidly. In the future it will be more common that multiple closely
related genomes are available, as is the case already for S.cerevisiae.
These genomes can be leveraged by using MAIA in combination
with a comparative assembler.

MAIA improves genome assemblies by making use of all
available information. The algorithm integrates single assemblies
from different sources into longer contigs, up to chromosomal
length as shown in the S.cerevisiae assembly integration. Five single
assemblies were integrated into 29 contigs covering 12.01 Mb. In the
MAIA integrated assembly, 99.3% of the mapped read pairs mapped
at a correct distance from each other. This percentage is higher
than for each of the single assemblies, indicating that the integrated
assembly is of higher quality than the single assemblies.

The edge weighting system in MAIA can be extended. Integration
is achieved by building an overlap graph from pairwise aligned
contigs and subsequently finding the highest scoring path. Edges
in this graph are weighted by properties of the involved contigs
and alignments. Currently, four properties for the edge weighting
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are implemented. These can be extended by calculating P-values
for additional properties such as alignment-overspanning mate pair
data, distances of contigs on the related genomes, or physical or
genetic map information.
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