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On-chip network-based computation, using biological agents, is a new hard-

ware-embedded approach which attempts to find solutions to combinatorial

problems, in principle, in a shorter time than the fast, but sequential elec-

tronic computers. This analytical review starts by describing the

underlying mathematical principles, presents several types of combinatorial

(including NP-complete) problems and shows current implementations of

proof of principle developments. Taking the subset sum problem as example

for in-depth analysis, the review presents various options of computing

agents, and compares several possible operation ‘run modes’ of network-

based computer systems. Given the brute force approach of network-

based systems for solving a problem of input size C, 2C solutions must be

visited. As this exponentially increasing workload needs to be distributed

in space, time, and per computing agent, this review identifies the scaling-

related key technological challenges in terms of chip fabrication, readout

reliability and energy efficiency. The estimated computing time of massively

parallel or combinatorially operating biological agents is then compared to

that of electronic computers. Among future developments which could con-

siderably improve network-based computing, labelling agents ‘on the fly’

and the readout of their travel history at network exits could offer promising

avenues for finding hardware-embedded solutions to combinatorial

problems.
1. Introduction
Many combinatorial problems of practical importance, including NP-complete

problems, appear to require that an extremely large number of possible candi-

date solutions is explored in a brute-force manner in order to discover the actual

solutions. Examples of such problems are the design and verification of circuits

[1], the folding [2] and design [3] of proteins, optimal network routing [4],

formal reasoning [5] and data clustering in complex networks [6]. When the

size of these problems grows, the time required to find solutions on sequential

computers grows exponentially. Consequently, solving these problems by any

computer that performs computations sequentially, including electronic
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computers, requires unreasonable computing times, even for

medium-sized problems, as implied by the NP-Hardness

Assumption [7]. Therefore, to solve these problems in practice

will require efficient parallel computation approaches [8], but

those presently proposed raise various critical technical

difficulties. For instance, DNA computing generates math-

ematical solutions by recombining DNA strands [9,10], or

DNA-static [11] or -dynamic [12] nanostructures, but this

approach requires impractically large amounts of DNA

[13–16]. Quantum computing appears to be limited in scale

by decoherence and by the small number of qubits that can

be integrated [17]. Finally, microfluidics-based parallel com-

putation [18] is difficult to scale up with the size of the

problem due to the rapidly diverging physical size and

complexity of the devices.

A recently proposed alternative, network-based compu-

tation [19], may be capable of overcoming some of these

scalability problems. A network-based computing device

comprises a network which is a physical embodiment of

a graph representing an instance of a mathematical

problem. The network-based computation consists of the

directed movement of motile physical objects—computation

agents—through the entries, conduits, nodes and exits of

the computer network. The history of the positions of the

exploring agents through the encoded network, if decoded,

represents the solution to the mathematical problem. Conse-

quently, DNA computing does not represent a subset of

network-based computation, although it does attempt to

solve an NP complete problem which does have a classical

graph-based representation. The core concept of network-

based computing is to map the set of all possible solutions

of mathematical problems into physical structured pathways

to encode the ‘content’ of the problems, and then to find the

solution(s) by exploring these pathways using a large popu-

lation of autonomous, self-propelled ‘agents’, such as

molecular motor-driven cytoskeletal filaments [20], or micro-

organisms [19]. This approach was used to demonstrate the

principle of solving in a combinatorial manner a small

instance of an NP-complete problem, the subset sum problem

(SSP) [20]. The estimated energetic efficiency in this compu-

tation approach also was orders of magnitude higher than

that of electronic computers, suggesting that such a technol-

ogy might circumvent the heat dissipation which is one of

the limiting factors in developing ever-larger classical super-

computers [21].

Like other alternatives to sequential computing, network-

based computation, in particular using biological agents,

faces scalability issues of its own. Consequently, it is impera-

tive to identify the engineering bottlenecks blocking the

progress and explore possible avenues for alternative sol-

utions. This methodological approach is expected to lead to

the aggregation of a ‘road map’, similar to the one formally

developed by the community of the semiconductor industry.

To this end, this contribution maps the current state-of-the-art

in network-based computation, with an emphasis on the use

of biological agents, starting with the mathematical prin-

ciples, comparing various types of computing agents,

technological challenges related to fabrication and readout,

and opportunities regarding energy efficiency. Drawing this

all together, we attempt to identify the advancements in sev-

eral ‘service technologies’ that are likely to be necessary for

network computing with biological agents to become useful

for real-world applications.
2. Network-based computing with agents
2.1. Network-based computing: concepts and tentative

implementations
Supposing that specific NP-complete problems can be formu-

lated as graphs [19], it is possible to translate these into designs
of physical networks, i.e. graphs with dimensions, e.g. distances

between vertices, widths of the lines connecting these vertices,

etc. These designs then can be the basis of the fabrication of

physical networks, such as microfluidic structures comprising

channels, nodes, entries and exits. These devices are essen-

tially computer networks that encode the NP-complete

problem of interest, which then ‘waits’ to be solved through

the stochastic exploration, in parallel, by a large number of

independent agents which act as ‘processors’ (pseudo-central

processing units (CPUs)), each searching independently for a

solution, through the process of moving from one junction to

another ‘downstream’ from the entry towards (one of) the

exit(s). Essentially, the physical network is not the computer

per se, but it is the physical input to calculations. Therefore, net-

work-based computing combines the ‘hardware’ design of

networks, encoding mathematical problems of interest (see

electronic supplementary material, SI-1, for the mathematical

formulation), with the ‘software’ or information-processing

capacity of a population of agents freely and stochastically

exploring this network in a combinatorial fashion.

This staged process, i.e. graph encoding a mathematical

problem! design of a physical network! fabrication of a

microfluidic device!massively parallel exploration of the

network by a large number of agents, has been recently pro-

posed [20] as a proof of principle for solving the SSP.

However, this strategy is amenable to other graph-based

formulations of NP-complete problems.

Various implementations of network computing schemes

encoding NP-complete problems, using various compu-

tational agents, have been attempted. Importantly, all

reported implementations used solely the combinatorial run

mode (see §2.2), i.e. a large number of agents exploring sim-

ultaneously a physical network encoding the mathematical

problem. Some of these problems, and their implementation

in proofs of principle devices, are reviewed (and presented

in figure 1).

2.1.1. Subset sum problem
The subset sum problem, a benchmark combinatorial problem

[22], asks whether, given a set S ¼ fs1, s2, . . ., sng of n integers,

there exists a subset of S whose elements sum to a target inte-

ger, T (figure 1a(i)). SSP has applications in various fields,

especially when optimizing resource usage under constraints,

and the ‘hardness’ of the problem is harnessed in certain

cryptographic systems to generate encoded messages [23],

due to its simple construction and resistance to quantum

attacks [24]. Also, SSP, or its variant, the knapsack problem

[25], finds applications in resource allocation for specialized

producers, in efficient throughput and congestion allocations

despite selfish users’ behaviour, in the allocation of band-

width in communication networks based on user requests,

and in auctions. A recent review [26] provides an insightful

discussion on existing and possible applications.

A methodology to solve the SSP that uses biological

agents has been proposed [19] and recently demonstrated

[20], using cytoskeletal filaments, i.e. actin filaments, or
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Figure 1. (a) Subset sum problem (SSP). (a(i)) Representation of a computation network for the subset sum of f1,3,5g. The agents start in the top left-hand
corner. The junctions of the paths are: filled circles: SPLIT junctions where the agents have a 50% probability of continuing their straight path or to turn, or empty
circles: PASS junctions where the agents always continue their straight path. Moving straight down at a split junction corresponds to not adding an integer to a
running sum ( purple example path). Moving diagonally down at a split junction corresponds to adding that integer (numbers 1 and 5 for the blue example path).
The actual value of the integer potentially added at a SPLIT junction is determined by the number of rows of PASS junctions following that particular SPLIT junction
(numbers indicated on the left of the paths). Green exit numbers represent sums for which a matching subset exists, and red numbers represent sums for which no
matching subsets exist. (a(ii)) SEM graphs and schematic of pass (left) and split (right) junctions [20], where entrance and exit channels are labelled a and 2
respectively for agents travelling on diagonal paths, while entrance and exit channels for agents moving in a vertical path are labelled b and 1. The yellow
dotted lines indicate diagonal paths and blue dotted lines indicate straight paths. (a(iii)) Fluorescence micrographs highlighting paths of moving microtubules
across a pass (left) and a split (right) junction. Images in the third row show the maximum projection of agents in motion. Figures (a(ii)) and (a(iii)) are adapted
from Nicolau et al. [20] (Copyright 2016) which also presents an animation detailing the function of the SSP computing principle. (b) Clique problem (CP). (b(i))
Maximum clique problem (MCP) computed on a given undirected graph G comprising nodes n ¼ fA, B, C, D, E, Fg. The maximum clique (highlighted in red)
results to be of size k ¼ 4 with vertices subset fA, B, C, Dg. (b(ii)) Schematic of a four-layer microfluidic device used in solving an MCP for a graph having three
vertices [18]. This three-dimensional microfluidic system has reservoirs—where a plug of fluorescent beads is injected—to represent all of the possible edges of a
graph with three vertices, and wells—where the fluorescent beads are collected by a size filter sandwiched between the bottom and the top three layers—to
represent all possible subgraphs of a three-vertex graph. The arrows in the schematic indicate directions of fluid flow; suction (house vacuum) is applied at the waste
reservoir to drive fluid flow from the reservoirs representing edges to the waste reservoir. (b(iii)) Fluorescence photograph of the actual device for solving a three-
vertex graph, viewed from the side. Figures (b(ii)) and (b(iii)) are adapted from Chiu et al. [18] (Copyright 2001 National Academy of Sciences, USA). (c) Steiner tree
problem (STP). Out of the possible connection paths between three nodes on an undirected graph, n ¼ fA, B, Cg a single Steiner point, S joins the vertices with
minimum distance. (d ) Travelling salesman problem (TSP). A representation of the TSP by an undirected graph with designated vertices vin ¼ M and vout ¼ S, for
which the minimum cost Hamiltonian path is M! N, N! L, L! C, C! E, E! T, T! S with as total cost, C ¼ 11.
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microtubules, propelled by protein molecular motors, i.e.

myosin, or kinesin, respectively (figure 1a(ii,iii)). Interest-

ingly, there have also been proposals for solving SSP by

optical computing [27,28], but it was found that the energy

required for large problems is prohibitive.
2.1.2. Clique problem
The clique problem (CP) asks, for a network G of n vertices and p
edges, if there are subsets of nodes with k vertices within G that

have the property of all their members being completely con-

nected to one another (‘cliques’). Several formulations of the

problem exist, of which the maximum clique problem (MCP)

is the best known. The MCP consists in listing all maximal cli-

ques that cannot be enlarged by solving the decision problem

on whether G contains a larger clique than the current size k.
MCP asks to determine a complete subgraph of maximum car-

dinality, or maximum vertices [29]. Figure 1b(i) represents the

MCP problem for a given graph G ¼ (n, p) with n ¼ fA, B, C,

D, E, Fg. A brute force algorithm exploring all possible

solutions finds out that the set of vertices fA, B, C, Dg is a

maximum clique of G, and therefore that the maximum k ¼
4. MCP is notable for its relevance to a large number of

applications, e.g. bio- and chemo-informatics, coding theory,

economics, examination planning, financial networks, sche-

duling, signal transmission analysis, social network analysis,

and wireless networks and telecommunications. A recent

review [29] provides a comprehensive bibliography.

CP has been solved [18] by means of network computing

using a multi-layered, three-dimensional microfluidics struc-

ture (figure 1b(ii),(iii)), which encodes the MCP for a simple

graph with six vertices, explored by beads carried by fluid
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flow. While the calculation and the readout are done in par-

allel, the computing process is biased, as the beads will

follow the lowest pressure lines in the flow, rather than inde-

pendently explore the solution space. Also, the power

required for pumping the fluid in microfluidic channels

grows exponentially with the size of the problem, resulting

in an unreasonable pressure build up [20]. The MCP has

also been solved by DNA computing [15].

2.1.3. Steiner tree problem
The Steiner tree problem (STP), and one of its special cases, the

minimal Steiner tree problem (MSTP), asks, given a network

G comprising n nodes and p edges, and a special subset of

those edges (usually called terminals), for a tree that contains

all these terminals (but which may include additional ver-

tices) [30]. As with most NP-complete problems, there are a

number of variants, but all ask, ultimately, for an optimal

interconnect for a given set of objects, subject to a predefined

objective function. Figure 1c represents the STP problem com-

puted on an undirected graph G ¼ (n, p) with n ¼ fA, B, Cg.
An algorithm searching for the minimum cost connected set

that joins all the given nodes eventually decides that the sol-

ution lies at a single Steiner point S. STP is relevant to many

applications, e.g. VLSI physical design, FPGA routing place-

ment, telecommunication network design, keyword-based

selection of relational databases, data-centric routing in wire-

less sensor networks, multicast packing, network topology

control, and access strategies design for ISP networks.

A recent report [31] provides a detailed bibliography regarding

these applications.

STP, in particular the MSTP, has been solved [31,32] using a

slime mould (Physarum polycephalum) inspired algorithm.

It should be noted, however, that solving optimization pro-

blems, such as the STP and the travelling salesman problem

(see below) using slime moulds does not perfectly fit the defi-

nition of network computing with agents, because the edges of

the graph are not pre-determined, and because the slime

mould represents a collection of agents, i.e. tubular elements,

which do not operate independently.

2.1.4. Travelling salesman problem
The travelling salesman problem (TSP) is one of the best known

NP-complete problems. Given a graph such that cities are ver-

tices and the distances between them correspond to the graph’s

weighted edges, the problem asks for the shortest route (or

another performance criterion, e.g. lowest travelling cost)

between ‘cities’ under the condition that each valid route

visits each ‘city’ only once. In other words, the problem asks

to find the Hamiltonian cycle, being the path that visits every

node once, at minimum cost. Figure 1d shows an undirected

graph G ¼ (n, p) with n nodes being the set of cities and p
edges being the possible paths. For each new node visited,

the total cost C is incremented by the weight, equivalent to

the distance travelled to visit the new node. The algorithm com-

putes by brute force all possible tours under the initial

conditions of start, vin ¼M and finish point, vout ¼ S.

Thus, the Hamiltonian cycle of minimum cost is M! N,

N! L, L! C, C! E, E! T, T! S with C ¼ 11. A general-

ization of the TSP, very relevant for network computing with

agents, is the multiple TSP [33], which consists of determining

a set of routes for m salesmen who all start from and turn back

to a home ‘city’ (depot). Aside of the obvious relevance to
traffic and scheduling, TSP is being used in applications as

diverse as drilling of printed circuit boards, overhauling gas

turbine engines, X-ray crystallography, computer wiring and

order-picking in warehouses. A recent review [34] provides a

comprehensive compendium of TSP applications.

Despite being the first NP-complete problem to be solved

by brute force non-electronic computers, i.e. by DNA com-

puting [9], and despite the Hamiltonian graph being,

arguably, conceptually the closest to a physical network in

its native problem form, TSP has not been solved by physical
network computing using multiple agents, although a multi-

cellular organism, i.e. Physarum polycephalum, has been used

[35] to generate an approximate solution of TSP. This

under-representation of solving TSP by network computing

using multiple agents is even more surprising as an elaborate

mathematical framework exists for the exploration of TSP

networks using ant colony algorithms [36]. Instead, TSP

appeared as an operational problem in running digital micro-

fluidics, which needed to be solved by efficient algorithms

[37]. The TSP has also been solved by optical networks [38],

where the agents are essentially photons.

2.1.5. Maze solving
Maze-solving, asks, given a maze (a grid of n � n regularly

arranged nodes in which only connections between adjacent

nodes are permitted), for a path from an entrance point to an

exit point. Although the classical version is computationally

tractable, i.e. requires polynomial time on a sequential compu-

ter, some versions of maze-solving, such as the simultaneous

maze-solving problem [39] are NP-complete. Importantly, a

great deal of experimental work has been done using many

different kinds of agents to solve mazes [40–44].

Maze-solving has been classically used to experimentally

assess the optimality of behavioural response, or intelligence

of many organisms including ants, bees, mice, rats, octopi,

and humans [45], and more recently by fungi [8,46,47], bacteria

[48], Caenorhabditis elegans [44] and by an amoeboid [41], as well

as artificial intelligence-enabled robots. Despite this very large

body of experimental methodology, and very diverse use of bio-

logical agents, and despite the demonstration of the efficiency of

the space searching algorithms developed by microorganisms,

e.g. fungi [49], the exploration of mazes by multiple agents

has not been used as a means to solve any NP-complete

problem, e.g. the simultaneous maze-solving problem.

2.1.6. Satisfiability problem
The satisfiability problem (SAT) asks, given an input Boolean

formula built from variables and constraints using the

NOT, AND, and OR operations, if TRUE or FALSE can

consistently replace the elements of the input formula in

such a way that the overall formula evaluates to TRUE. Satis-

fiability is an important NP-complete problem, with

extremely varied applications, from ordinary ones, e.g. sche-

dule events depending on the availability of actors and

venues, and seating assignment consistent with various

imposed rules, to critical decisions, e.g. design and verifica-

tion of digital circuits, planning in artificial intelligence

with practical use in space exploration and industrial micro-

processor verification [50]. Despite this importance, and

despite often using graphs to articulate relevant algorithms,

SAT was not yet translated in a design of a physical network

amenable to the exploration by biological agents.
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Sum-up. There is a rather larger body of experimental

work attempting to implement various solving approaches

of NP-complete problems using the framework of network

computing, and the majority of these efforts use a large

variety of biological agents. Despite this interest, there

are NP-complete problems intrinsically encoded as a net-

work, e.g. the TSP, which have not been solved by

multiple biological agents, whereas others, such as the

SAT, e.g. 3-SAT, are waiting to be theoretically encoded

in designs of networks amenable to the exploration by

biological agents.
2.2. Agent run modes for network computing
The exploration of networks encoding combinatorial

problems, such as NP-complete problems, by motile agents,

can be conducted in various run modes. Figure 2 schemati-

cally presents these operational modes, taking the

SSP-encoded network [19,20] as a benchmarking example.

The SSP network has a triangular structure with a single

starting point (top left corner in the panels in figure 2). The

network features split junctions (where traffic can change

direction) and pass junctions (where traffic crosses without

interaction). The exits at the bottom, representing the
solutions, are connected by a feedback line to the starting

point (if agents are to be recycled). An agent can, therefore,

be considered to be a ‘moving processor’ (a pseudo-CPU).

The sequential run mode. The exploration of the network by

only one agent at a time is equivalent to a purely sequential

processing, even if that individual agent is recycled at the

end of the computation. The green and purple flippers in

figure 2 represent logical switches at the split junctions,

which are systematically set before every exploration run by

the computing agent, in order to explore the complete

parameter space. This run mode is operationally equivalent

to the computing process in a typical single-core electronic

computer system.

The combinatorial run mode. This run mode, demonstrated

recently using cytoskeletal filaments [20], is essentially a con-

catenation of two serial processes, i.e. the feeding of the

network by agents waiting in a queue, which is equivalent

to the booting of the computer, and the actual computation.

If the agents are fed to the computer at a frequency higher

than that equivalent to the full exploration of the network

by an individual agent, as in the purely sequential run

mode, the computation progresses in a ‘super massively par-

allel’ manner, or more appropriately, in a combinatorial

manner. Indeed, parallel computation processes, including
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‘massively parallel’ ones, involve the processing of infor-

mation by a constant, even if large, number of processors

during the calculation, whereas for the run mode described

here, the number of ‘processors’ (initially) increases as the

computation progresses. Furthermore, the larger the network

and the feeding frequency, the larger the number of agents

(as before, the agents can also be recycled).

As an agent in the queue, before entering the network,

does not need to wait for the previous one to exit the network

(but just to leave the entering point), the computational net-

work accumulates agents exploring the network in parallel.

As a consequence, however, in this run mode, no switches

can be operated at the split junctions, and the right- or

left-direction of an agent in the split junctions is a purely

stochastic process, preferably with a 50%–50% distribution,

induced by a local mirror-symmetric design of the split junc-

tion. Consequently, some combinations of SSP parameters,

i.e. a specific subset sum, may appear multiple times before

all various combinations have been visited. In order to have a

very high probability that all combinations are being explored,

the number of agent runs has to be enlarged by a factor that can

be estimated using the formalism of the ‘coupon collector’s pro-

blem’ [51]. A major drawback of the purely combinatorial mode

is that the inefficient, serial ‘upstream’ booting process will limit

the overall computing time.

The total booting time can be calculated as 2C divided by

the booting frequency, where the power C stands for the car-

dinality of the set, i.e. how many members the set has (as

shown in figure 2). The booting frequency is derived from

the agent speed divided by the (average) distance between

two agents (effective body length). This distance can be

chosen as the agent body length (assuming head to tail

queueing), or, e.g. twice the body length of the agent (assum-

ing a 50% duty cycle at the entering point of the network).

The multiplication run mode. Given the inefficient, seriality-

based booting of the network computing running in

combinatorial mode, a fundamentally more efficient strategy

would be based on multiplication of the agents inside the com-

puting network, i.e. downstream from the feeding point.

Intuitively, the maximum benefit in computing time will

occur if the agents multiply at every split junction. For example,

bacteria could undergo cell division while exploring the net-

work. If this would be possible, at the starting point only one

computing agent would be needed, multiplying ‘on the fly’,

and all the routes and exits are visited by the off-spring of

the original, ‘mother’ agent. However, while the multiplication

after each split junction is an ideal option, multiplication itself,

at a reasonable frequency, would counter the exponential

increase in the number of possible solutions versus problem

size with the exponential increase in the number of computing

agents. The consequences on the traffic density in the network

depend on the compactness of the specific series encoded in the

SSP, as will be discussed in §4.1.
3. Biological agents
In order to efficiently explore the networks encoding combi-

natorial mathematical problems, in particular NP-complete

ones, the computing agents must possess several perform-

ance parameters: (i) they need to be available in large

numbers, to be able to explore the whole ‘solution space’,

which for problems challenging sequential computers could
run in the range of millions to billions; (ii) they need to

have similar dimensions, to allow standardized designs of

the networks, e.g. channel widths; (iii) these dimensions are

preferably small, in the nanometre or micrometre range, to

allow a high density of calculations per unit area; (iv) impor-

tantly, the agents must be autonomously motile, i.e. each

agent needs to possess its own propulsion, with higher

speeds translating into shorter computing times; (v) the

agents must not interact with each other, to enable an inde-

pendent search of the ‘solution space’; (vi) while small, the

agents must be independently distinguishable by a readout

system; moreover, preferably the agents should be indepen-

dently identifiable, i.e. each having its own ‘ID’; and (vii)

they need to exhibit additional physical properties as

required by the respective implementation of the computing

networks, e.g. non-adherent to the walls of the microfluidic

channels and non-clogging.

The computing agents asked to explore mathematically

encoded networks could have an abiotic, or biological nature.

In the class of abiotic agents, laminar fluids have been used

[52] to ‘solve’ mazes and more recently micrometre-sized

abiotic beads have been used as computing agents [18] to

solve the NP-complete clique problem. However, although

the beads would bring some stochasticity into the compu-

tation, they do not have independent propulsion systems,

as they are carried by (and follow) the minimum pressure

paths of the fluids passing through the microfluidic network,

thus not exploring comprehensively (and independently) the

solution space. In principle, the Janus particle technology

[53], in particular self-propelling anisotropic beads [54],

could fulfil many of the desiderata outlined above, but pre-

sently their application appears to be limited by their size

(mm range), generation of micro-bubbles (making them ineli-

gible for movement in microfluidic networks) and possibly

shorter lifetime of movement.

In contrast to the early development of potential abiotic

computing agents, biological agents exhibit an extremely

large variety—the result of evolution in motile biological sys-

tems, from biomolecules to cells and multicellular organisms.

Table 1 presents a synthetic comparison of the estimated

performance of various biological systems attempting to

solve SSPs.

Cytoskeletal filaments, which are aggregates of proteins,

i.e. actin filaments, or microtubules, propelled by protein

molecular motors, i.e. myosin, or kinesin, respectively, have

the potential of fulfilling most of the technical requirements

for motile computing agents. Indeed, both systems have

been used to solve a small instance of the SSP [20]. The

small size, reasonable velocity (in particular for actin

filaments), distributed energy consumption (they require

ATP (adenosine triphosphate) from the surrounding environ-

ment), and availability of elaborate biomolecular engineering

techniques for tagging, functionalization and splitting, are

among the many advantages of cytoskeletal filaments.

Presently, their further use as computing agents may be

hampered by the ‘open’ architecture of the microfluidic

devices required for easy access and renewal of ATP, leading

to computational errors due to accidental loss or addition of

filaments. Finally, the technology for multiplication of fila-

ments, required by specific designs of NP-problem-encoded

networks, such as SSP, is difficult.

Because network-based computing using biological agents

is a relatively new development, presently only cytoskeletal
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filaments have been used in proof of principle bio-computation

devices. However, unlike cytoskeletal filaments with only two

types of agents, prokaryotes, comprising the large classes of bac-

teria and archaea, are vastly more diverse. While usually larger

than cytoskeletal filaments, some of the bacteria [55] and

archaea [59] can move at very high velocities, with body

lengths per second one or two orders of magnitude higher

than that of cytoskeletal filaments. Although the optimum

in vitro growth conditions are not fully known for many of

these rapid swimmers, for some, e.g. Escherichia coli, a large

body of knowledge exists, including regarding a multitude of

fully described, genetically engineered mutants. Additionally,

prokaryotes can live in aerobic, or anaerobic conditions,

making them amenable to various growth conditions in

confined spaces.

Finally, eukaryotes appear to have an even larger diversity

than prokaryotes. However, their larger sizes, leading to

larger areas required for computation, and their lower vel-

ocities relative to their body dimensions, translating into

excessively long computing times, suggest that eukaryotes

are unlikely to be serious contenders for efficient biological

agents solving combinatorial problems. Instead, capitalizing

on their more complex space searching and space partition-

ing strategies [8,47], eukaryotes are likely to offer insights

into efficient natural algorithms, which can be subsequently

reverse-engineered [49].

Sum-up. Network computing can benefit from an extre-

mely large variety in biological agents of different nature, i.e.

biomolecular, mono-cellular, or multicellular organisms, exhi-

biting various properties relevant to bio-computation, i.e. sizes,

velocities, and motility mechanisms. In fact, this large variabil-

ity of parameters makes the choice of biological agents for

network computing difficult, as many other, less studied par-

ameters, e.g. behaviour in confined spaces, could downgrade

their expected performance in bio-computation.
4. Scaling of networks
4.1. Scaling the computing area and number of agents
The size of an SSP network is determined by (i) its unit cell

size, designed for a specific computing agent; (ii) the cardin-

ality of the problem, i.e. the number of elements in the set;

and (iii) the compactness of the series, i.e. the relative distance

between the numbers in the set.

The SSP unit cell size is determined by the geometrical

parameters of the computing agents, e.g. width, length and

secure distance between two agents. The SSP cardinality

determines the number of computing agents required to

solve the problem, including some additional number to

offset possible errors. Consequently, for a given compactness

of the series, the size and the number of computing agents

needed determine the area of the SSP computing system.

In principle, a larger combinatorial problem requires, by

necessity, a larger number of computing agents. However,

network-based computing, as described before for SSP

[19,63] presents specific advantages, and disadvantages,

regarding its scalability when compared to other massively

parallel bio-computing approaches, e.g. DNA computing

[9]. Indeed, DNA computing [9] requires an impractically

large mass of DNA [13], as all the DNA mass needed for

the calculation (approx. 2C) must be simultaneously present

in the reaction step, leaving the ‘pruning’ of all combinations
to a sequence of post-computation biochemical selection pro-

cesses. In contrast, in network-based computation of SSP, the

exploration of the 2C computation paths is distributed in time

and space, by recycling of agents. Consequently, network-

based SSP calculation will use considerably less mass of

agents, but at the expense of a much larger computation time.

Presently, network-based computing of SSP assumes [20]

that the agents do not perform any function other than visiting

junctions, and thus calculating various paths in the SSP-encod-

ing network. In principle, as discussed further, the agents

could perform additional functions, e.g. recording the history

of their trajectories, and report on this at their exit, or in real

time. However, this higher technological complexity of the

agents, while valuable in accelerating the overall calculation,

will not decrease the number of agents required to solve the

problem, which is determined by the SSP cardinality. More-

over, it is possible that additional ‘hardware’ associated with

each computing agent will increase their size, thus increasing

the overall area of the computing system.
4.2. Complexity classes
The SSP specifications (ii) and (iii) mentioned above deter-

mine together the total sum of the set. The compactness of

the series also determines the type of complexity of the SSP

network. Figure 3 presents the two complexity classes of

the SSP, explained using three small example sets.

In Complexity Class I there is only one possible route to every

legal exit, and consequently, there are only split and pass junc-

tions active. The series in the set is strongly expanding with the

cardinality. For this case, the exponential series is shown,

displayed in two forms: (i) with descending numbers (binary

tree) and (ii) with ascending numbers and crossing traffic

lines at pass junctions, but still with the same number of

routes and exits (in compliance with the commutative property

of addition).

Conversely, in Complexity Class II there are exits that can

be reached through multiple routes and, hence, there are

also join junctions active. The series in the Complexity

Class II sets can be very compact. For instance, the most com-

pact series possible is Pascal’s triangle. Tellingly, the set for

Pascal’s triangle has cardinality 7, compared to cardinality

3 for the binary tree, but occupies the same area.

The fundamental difference between the two complexity

classes, i.e. single or multiple routes towards the legal exits,

reveals the combinatorial (NP-complete) nature of the SSP:

the solution to the problem goes beyond the discovery of

the set of legal exits, also discriminating all possible routes

towards these exits.

The advantage of the compactness of Complexity II class

comes, however, at yet another price; figure 4 presents the

relative average traffic density as a function of the cardinality

in series with various degrees of compactness, for the combi-

natorial and multiplication run modes. In the combinatorial

run mode, the traffic density is falling (orders of magnitude)

for all series, and the bottleneck (risk of traffic jam) is located

at the starting point of the network. Conversely, in the mul-

tiplication run mode, beyond a threshold cardinality value,

the traffic density is rising (again, orders of magnitude) for

most series, resulting in a traffic jam further down the net-

work. Only the exponential series would show (with

multiplication at the split junctions) a constant traffic density,

but at the price of an exponentially expanding network size
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(and consequently also an exponentially rising computation

time, as will be shown in §5).
4.3. Scaling the readout
Solving SSP by means of network computing requires that the

sequence of coordinates each and every agent passes through,

or, at the very least, the sequence of the junctions it passes by, is

fully recorded. This means that, until there is a reliable

implementation that enables each agent to report this

sequence, either ‘on the fly’, or at the end of the computation

(to be addressed in §7), the overall movement of all agents

needs to be tested and optically recorded, at a precision in

space and time, which will not permit errors regarding the his-

tory of the positions of each agent. Consequently, the tracks of

all the agents should be captured, preferably, in one optical

field-of-view (FoV), and at a resolution allowing the identifi-

cation of individual agents. Alternatively, if the overall

computing area is too large to be visualized in one FoV, the

optical recording needs to visit several sectors covering the

overall movement, but at a frequency high enough to avoid

confusion regarding the positioning or identity of the agents.

Three traffic scenarios should be considered, discussed in

order of decreasing tracking complexity:
(i) agents can crawl over and cover each other in the

channels (out-of-plane; z-direction);

(ii) agents can overtake each other only laterally in the

channels (in the x–y plane); and

(iii) all agents move through the network channels in

singular queues (no overtaking at all).

Note that channel widths and heights of less than two

times the agent widths would prevent overtaking, but the

risk of clogging is too large, therefore larger channel widths

and heights (e.g. four times the agent widths) should be

allowed in practice.

Obviously, the first scenario cannot be tracked error free,

as optical tracking is performed in the x–y plane only; if one

agent crawls over others, temporarily obscuring them, the

tracking information becomes unreliable afterwards. Here,

agents reporting their own travel history (as briefly men-

tioned above, and as will be elaborated in §7) would be the

only way to obtain reliable traffic information; this is

how—in the end—a debugged large computing system

should run. The second scenario would need a pixel size

smaller than the agent width (and the agent length) in

order to preserve reliable traffic information when agents

pass each other (e.g. on the bottom of the channel).
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In figure 5, the expected chip size is shown as a function of

the agent width for the prime numbers SSP devices for various

cardinalities. The horizontal black dashed lines delimit the

sizes of 4-, 6- and 8-inch silicon wafers—the standards in semi-

conductor industry. The vertical blue bars indicate the agent

width for molecular motor-driven cytoskeletal filaments, i.e.

actin filaments and microtubules, as well as for small (E. coli)
and large (E. viridis) microorganisms.

Because of the competition between resolution and the

FoV [64], the whole imaging of the computing area requires

the employment of the maximum useable pixel size

(MUPS) that can still resolve individual agents, i.e. the

MUPS value should be smaller than the agent width (and

the agent length). The black crossed arrows indicate the inter-

section of the largest attainable FoV (as a square root) with

the minimum attainable pixel size for various optical imaging

technologies, i.e. their resolution limits. The useable optical

range is obtained by the intersection of sqrt(FoV)–MUPS

range with the diagonal black line indicated as ‘unity’. At

the point where the top horizontal border meets the ‘unity’

line, the MUPS value is equal to the total FoV, meaning

that only one pixel fits in the frame, obviously far from any

reasonable application. To fully exploit the frame size avail-

able, the MUPS value should be as close as possible to the

resolution limit. If the spot where the blue bars meet a

specific diagonal cardinality line is inside a ‘technologically

achievable’ sqrt(FoV)–MUPS triangular area, then the corre-

sponding optical technique is, in principle, useable for

monitoring the computation process using a single FoV.

It follows from figure 5 that actin and microtubule fila-

ments are out of reach for optical monitoring, if the agent

width should be resolved. The E. coli cell width can be resolved

by a high resolution optical microscope, but the field of view
would not allow more than one unit cell in one FoV. For

E. viridis, the FoV and resolution of a flatbed scanner would

allow the capture of 3 � 3 unit cells in one frame.

The third scenario is described in detail in the electronic

supplementary material, SI-2, and the nomogram in electronic

supplementary material, figure S1. It follows that a network

with cardinality 5 for E. viridis can be monitored by a macro-

lens equipped camera, and that the cardinality 5 network for

E. coli and the cardinality 15 network for microtubules can be

monitored by a lens-less microscope, all in one FoV, but

under the naive assumption that no agents are overtaking

each other in the channels.

When the area to be imaged (and monitored in time)

exceeds the FoV of the imaging system, a powerful option

to enlarge the effective FoV is image stitching of cyclic

sampled frames. The loss of information can be minimized

through faster switching speeds, which in turn are limited

by the mechanical capabilities of the microscope stage. In

the electronic supplementary material SI-3, the possibilities

and limits of image stitching for our SSP calculation networks

are modelled. In the case of high density traffic, agent speed

and body length determine the sample frequency, and in the

case of low density traffic, agent speed and junction distance

are decisive. In electronic supplementary material, table S1, it

is shown that in a typical setting used to monitor E. coli in the

SSP prime numbers network, stitching could indeed be

employed to image and monitor larger SSP networks. For

traffic scenario (iii), at a resolution of 2 mm with a 10� objec-

tive, instead of a cardinality 4 network in one FoV, a

cardinality 15 network can be monitored in time by (cyclic)

stitching of 14 � 11 frames (shown by a red cross in electronic

supplementary material, figure S1). For traffic scenario (ii), at

a resolution of 0.5 mm with a 100� objective, a cardinality
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5 network can be monitored in time by (cyclic) stitching of

39 � 30 frames (shown by a red cross in figure 5).

One corollary of the above analysis is that, for E. coli, or an

agent with similar motility and size parameters, the area of a

device solving a prime numbers SSP with a cardinality of 30

is slightly larger than a 6 inch wafer. As this area cannot be

captured in one FoV by any known optical monitoring

system with the proper resolution needed, the readout

would need an array of 60 � 60 frames of a lens-less micro-

scope being continuously switched in order to keep track of

all agents simultaneously. Even if that were technically feas-

ible, the data storage needed would be very large. Moreover,

from a fabrication point of view, such large chips are very

vulnerable to fatal errors by dust particles in the lithographic

steps. Indeed, one dust particle on a wafer with 100 chips

lowers the yield from 100 to 99%, but on a one-chip wafer

it leads to 0% yield (i.e. 100% failure). Alternatively, a purpo-

sefully designed and fabricated optical chip, built in the

‘floor’ of the computing chip, with pixels smaller than

half the channel width (or even better, half the agent

width), and covering only the actual computing area, is a

technologically achievable, albeit non-trivial solution.

Sum-up. It appears that the scaling of networks, in particu-

lar for solving SSP, is the most problematic, albeit technological

and not fundamental, aspect of network computing with bio-

logical agents. Indeed, the chip area, which grows with the

size of the problem, requires FoVs which are not presently

available. Alternatively, to limit the explosion of the chip area

with the size of the problem would require smaller agents,

which in turn would require a higher resolution, but this

would further raise problems for the achievable FoV. Ulti-

mately, a technology that allows the agents to report their
own travel history (at the exits) would not need optical

recording of the total network.
5. Computing time
5.1. Computing time versus run modes
In the first instance, the time to solve an SSP depends on the

mode of operation of the computing agents, the extent of the

series, i.e. its cardinality, and the structure of the series of

numbers. More compact series will result in a smaller com-

puting area and consequently a shorter computing time.

Figure 6 presents the relationship between the estimated com-

puting times for E. coli (table 1) in the three run modes

(detailed in §2.2) versus the longest track in the SSP chips

for four number series (four compactness types: Pascal

series, prime numbers, Fibonacci series and exponential num-

bers) and cardinality (shown as a label in steps of 5 next to

the calculated points). For a given series and given cardinality,

the track length is the same for all run modes.

As expected, the highest computing times are observed

for the sequential run mode, and the lowest are observed

for the multiplication run mode. The difference in run time

between the sequential and the combinatorial run modes is

small for compact series, but quite large for expanding

series. Importantly, in the combinatorial run mode, the esti-

mated run times at higher cardinality become independent

of the compactness of the series, due to the fact that the

total booting time needed to accommodate large numbers

of agents in the network is orders of magnitude larger than

the time needed to run a single track (compare also the boot-

ing frequency data in table 1, explained in figure 2, §2.2).
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The multiplication run modes for the various series are all

following the same straight line because, effectively, only

one agent starts and the off-spring that takes the longest

track is monitored, but all are assumed to run with the

same average speed.

In figure 6 the sizes of 4, 6 and 8 inch wafers are indicated

(by blue arrows) for the possible fabrication limits. A network

with cardinality 30 would only fit on a standard wafer for

the prime number (and the Pascal) series. Also indicated,

by blue arrows, are time frames. Only the multiplication

run mode would allow a cardinality 30 network to be run

in a reasonable time.

5.2. Benchmarking biological agents based network
computing with electronic computing

While electronic computers perform computations in a serial

manner, they are many orders of magnitude faster per oper-

ation than it is reasonable to expect from network computing

with biological agents. Consequently, the immediate scaling

question is to what extent an ideal set of agent parameters,

i.e. size, speed, multiplication rate, which inform the design

of the computing network, would make network computing

using biological agents possibly competitive with the elec-

tronic computers. In order to have a comparison between

the ideal performance of network computing with biological

agents, and electronic computers, two sets of simulations

have been performed.

At this junction an important distinction must be made

when comparing the performance of electronic computers

with any other alternative computing devices, including the

one recently proposed for solving SSP [20]. It was argued [65]

that SSP has a known solution that runs in O(NT) time, and
that there are algorithms, e.g. Pisinger’s [66], which can solve

SSP very quickly if run by electronic computers. However, the

alternative computation approaches, including DNA, quan-

tum, and networks-based computing, to name a few, propose

in the first instance computing devices with associated oper-
ational procedures, rather new algorithms, which indeed might

be required to be developed to capitalize on the potential

benefits offered by the new computing hardware. Conse-

quently, and taking into consideration the tentative or early

stage of development of the new computing devices, any

meaningful comparison of the computing power of electronic

computers and any new paradigmatic computing device

must use comparative algorithmic procedures, rather than the

most advanced ones, which by virtue of decades long history

of microelectronics have been solely and specifically created

and optimized for sequential electronic computers.

On this background, a computer program was designed

to solve the SSP by brute force (i.e. no efficient ’heuristic’

algorithms have been used) for electronic computers, using

emulators of various generations of computer chips. To ensure

a more conservative approach, the program has been coded in

Cþþ to allow the maximum use of computer chip RAM, low-

level memory access, efficient mapping to machine instructions

and flexibility. The program is described in detail in the elec-

tronic supplementary material, SI-4. Separately, the operation

of a network computer using biological agents, both used

before and hypothetical, has been simulated for selected

agents from table 1, for cardinalities considerably larger than

presently possible in experiments. The program is described

in detail in the electronic supplementary material, SI-5.

Figure 7 presents the estimated run times for solving

an SSP by means of network computing [20], with various

cardinalities, using (i) biological agents, either cytoskeletal
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filaments, i.e. actin filaments propelled by myosin and micro-

tubules propelled by kinesin, or hypothetically, several

bacterial agents (exhibiting superior parameters): M. jan-
naschii, which has a high speed, M. villosus, which, due to

its small size, calculates faster, V. natriegens, which multiplies

frequently and—as a reference—E. coli (table 1), and (ii) var-

ious generations of computer chips i.e. Intel’s 286, 386, 486

and single core Pentium and a present-day MacBook chip.

As opposed to all electronic chips, which perform compu-

tation in a sequential run mode, the simulated computation

by biological agents is performed in the combinatorial run

mode, for cytoskeletal filaments and the chosen bacterial

agents, and in the multiplication run mode for the latter,

assuming multiplication rates reported in the literature; the fol-

lowing doubling times have been used: M. jannaschii: 74 min,

M. villosus: 45 min, E. coli: 30 min and V. natriegens: 15 min.

Even a cursory inspection of the computing performance

comparison of the electronic and network-based computers

reveals several evident trends.

— As a group, the electronic chips, operating in the sequen-

tial run mode, outperform—by a few orders of

magnitude—the biological ones operating in a combina-

torial run mode. Moreover, this performance gap

remains constant, or increases slightly, throughout the

range of cardinalities tested. Indeed, even if electronic

computers operate in the sequential run mode

(figure 2), they also operate at clock frequencies of the

order of GHz, whereas the bio-computers will operate at

typically 0.1–10 Hz (table 1).

— The difference in performance of electronic computers

computing SSP, i.e. in [20] which used RAM-intensive

software (MATLAB), versus the present study, which

inheres from a more efficient use of RAM, also reveals

the importance of the allocation of chip memory, a peren-

nial problem for electronic devices. It is important to

observe that eventually any electronic chip solving SSP

(or any NP-complete problem) will hit an intrinsic

‘memory wall’ [67] when all chip memory is used for

ever larger problems. Note that for the cardinality at

which this happens, it will result in a truncation of the

black lines in figure 7 at the right-hand side. In contrast,

and aside from other physical limitations (assessed in

the previous sections, e.g. chip area, readout), network

computing using biological agents should not experience

any similar ‘memory wall’.

— The motility speed of the biological agents appears to

have only a secondary, albeit positive, effect on the per-

formance of network computing, but by itself it will not

be able to make the bio-computer outperform the elec-

tronic one. Indeed, the speed of the faster biological

agent, i.e. M. villosus, would need to be raised from its

already high value of 287 mm s21 three orders of magni-

tude, i.e. approximately 30 cm s21, only to catch up with

the slowest electronic chip tested, i.e. Intel’s 286. On

the other hand—and crucially—it is estimated that bio-

computers operating in the multiplication mode quickly

outperform electronic chips, almost independent of the

clock speed of the latter, as shown in figure 7.

Sum-up. While some improvement can be achieved,

in principle, using faster biological agents operating in the

pure combinatorial run mode, the computing performance of
electronic computers will remain unmatched for the foreseeable

future. While more analysis would be required to explore the

possible collapse of performance of (single core) electronic

computers for larger SSPs (‘memory wall’), a more advan-

tageous avenue will likely be based on the use of biological

agents running in a multiplication run mode.
6. Scaling the energy required for computation
With alternatives to ‘classical’ electronic computers not being

fully demonstrated, or most likely being in early stages of devel-

opment, presently only high performance computation (HPC)

is the closest to tackling large scale combinatorial problems.

However, in itself, the scale of combinatorial or complex pro-

blems of practical importance translates into large amounts of

energy used, if the computation is performed by sequential

electronic computers. For instance, solving large complex

problems, even if not necessarily combinatorial in nature,

would require scaling up HPC to exascale computing, i.e. 1018

floating-point operations per second (Flops) [68]. However, as

the most powerful supercomputer, Sunway TaihuLight,

requires 42 MW of power (an average hydroelectric facility gen-

erates 57 MW), scaling it to exascale regime would require

450 MW, with running costs of US$270 million per year [69].

Arguably, a similar result regarding energy consumption

would be obtained for a technical solution involving myriads

of smaller scale PCs interconnected in a very large computer

network, such as a very large ‘computer farm’. Consequently,

and aside from the difficulty of solving large combinatorial

problems, it appears that electronic computers are also

unsustainable energy-wise.

The computational systems able to solve, in principle, com-

binatorial problems can be aggregated into three classes

(table 2). The most energy-efficient systems are, expectedly,

molecular computers, of which the most well-known is DNA

computing [9], followed by numerous variations [74]. Indeed,

since in molecular computers the mathematical operations

are, actually, chemical reactions, the energy/operation required

by DNA computing is the closest to the thermodynamic limit

calculated elsewhere [72]. At the opposite end of the spectrum

considered, silicon-based computers, including ‘classical’ HPC

and quantum computing, are seven to eleven orders of magni-

tude more energy consuming, per operation, compared to

molecular computing (and there are two orders of magnitude

between the most performant HPC system and an advanced

quantum computing system).

Importantly, the energy consumption for silicon-based

computers reported in table 2 includes only the energy

required for ‘core phase’, that is, for the section of the work-

load that undergoes parallel execution. It typically does not

include the parallel job launch and teardown, which is

required to run for at least one minute. Consequently, no

energy consumption is reported for environmental, e.g. cool-

ing, and auxiliary, e.g. lighting, needs. Finally, systems

performing computing with agents exploring networks present

an estimated energy consumption/operation in between mol-

ecular and Si-based computing, but over a very large range,

i.e. between thirteen and six orders of magnitude higher

than molecular computers. As with silicon-based computers

no energy consumption is estimated other than that for com-

putation proper. Within this class is microfluidics-based

computation, which relies on beads being pushed, with



Table 2. Energy efficiency of various computing systems. Notes. (1) Top computing speed for top 500 supercomputers in 2017. (2) Top energy efficiency for top
500 supercomputers in 2017. (3) Pumping energy for a chip with d ¼ 200 nm � L ¼ 1000 nm (cf. [20]) using capillarity principles will result in considerably
lower energy consumption. (4) Energy consumption estimated using the general formula for energy consumption in motility of prokaryotes [70,71].

system implementation measurement
energy
J/operation

explanations, [sources],
(notes)

molecular computers thermodynamic limit theory 2.90 � 10222 thermodynamics [72]

DNA estimated 5.00 � 10220 thermodynamics [9]

Si-based computing electronic actual 1.65 � 10210 Sunway TaihuLight [73], (1)

actual 5.88 � 10211 Shoubu system B [73], (2)

quantum estimated 2.00 � 10213 DWave system [69]

computing with

networks

microfluidics estimated 1.29 � 10212 beads in microfluidics [18], (3)

cytoskeletal filaments/molecular

motors

estimated 4.95 � 10214 kinesin/microtubules [20]

estimated 2.00 � 10214 myosin/actin filaments [20]

microorganisms estimated 1.43 � 10213 Escherichia coli (4)

estimated 2.76 � 10213 Vibrio natriegens (4)

estimated 8.67 � 10214 Methanocaldococcus jannaschii

(4)

estimated 1.16 � 10213 Methanocaldococcus villosus (4)

estimated 2.01 � 1029 Euglena viridis (4)
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some level of randomness, through networks encoding an

NP-complete problem [18] (although it is possible that the

energy required by microfluidics-based computation could

be decreased substantially by using capillary-driven flows).

The exploration of a network by larger microorganisms, e.g.

Euglena, has an energy consumption/operation similar to

the Si-based computers. However, the use of nano- or small

micrometre-sized biological agents, i.e. cytoskeletal filaments

[20], or bacteria [70,71], respectively, is estimated to bring the

energy consumption/operation one order of magnitude

down, or similar to that of an advanced, and energy

consumption-competitive quantum computing system.

Sum-up. The estimated energy consumption per operation

for network-based computing using micro- or nanometre

sized biological agents is in the range of 10214–10213 J/oper-

ation (and much larger for tens of micrometre-sized agents),

which is similar to the reported energy performance of quan-

tum computation, and three to four orders of magnitude

better than present supercomputers. Additionally, biological

computers would have the advantage of distributed energy

consumption, in contrast with Si-based computers, including

quantum computers.
7. Perspectives and future work
The scaling analysis presented above identifies several

challenges ahead for the further development of network

computing using biological agents, taking the solving of

SSP as a benchmark case. These challenges are either funda-

mental or related to the underdevelopment of the presently

available service technologies required. To this end, further

areas of research and development, as well as under-used

opportunities, are as follows.

Recording the traffic history on each individual agent
Unlike SSPs of Complexity Class I (figure 3), Complexity

Class II problems constitute ‘true’ combinatorial problems.
The consequence is that agents that have taken different

routes towards the same exit have to be clearly discriminated

in order to be able to solve the combinatorial problem. To

demonstrate, by counter-example, the SSP presented in

figure 2 can be replaced by a very fast electronic device, consist-

ing of parallel arrays of switching transistors (electronic

supplementary material, SI-6). This device, which has all the

architectural characteristics of a network-based computer,

but which lacks the capability to differentiate between comput-

ing agents, shows the correct exits essentially instantaneously,

but as the ‘agents’, i.e. the electrons, are ‘anonymous’, the

routes of the individual agents cannot be discriminated. Conse-

quently, this very fast device is not truly able to solve

combinatorial problems. The area and the energy needs of

this device scale quadratically with the total sum in unary

coded form, which in turn scales exponentially with the regular

binary coded representation of numbers used in sequential

electronic computers.

Individual bacterial agents in a network can be monitored

by video tracking techniques, but for higher cardinality

problems, the amount of (image) data to be stored and inter-

preted will rise exponentially. For instance, for a cardinality

30 problem, more than 1 billion agents will have to be tracked

simultaneously.

Instead of the troublesome high resolution tracking (in

time) of identical agents simultaneously, as described in

§4.3, one could discriminate each individual agent by

adding a unique static label (i.e. a label that is not changed

during the run time of the experiment) and lower down the

image capturing frequency. However, still full (video) track-

ing of all the agents would be necessary to retrieve all the

routes taken by individual agents. For instance, for a cardin-

ality 30 problem more than 1 billion agents with unique

labels would be needed—a clear technological impossibility.

As there are most probably not enough unique labels avail-

able, one could try to employ a limited selection of labels to

compose binary coded ‘words’ (230 words by using 30
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labels). For very large networks, however, the process of

coding and decoding of the labels may constitute in itself

an operation rising exponentially in time.

A dynamic labelling system ‘Tag & Trace’, however, could

store the necessary information about the route followed by the

individual agent, on the agent itself, as shown in figure 8. At

every split junction the agent proceeding in the direction

associated with the addition of that particular number will

get a label (a ‘stamp’, or a tag). At the exits, the agents will

be interrogated as to which labels have been collected on the

route towards that particular exit. In this way, the routes of

individual agents arriving at joined exits can be discriminated,

and combinatorial problems can be solved. Although for a car-

dinality 30 problem still more than 1 billion agents with 1

billion label ‘words’ composed of 30 unique labels collected

‘on the fly’ would be needed, the video tracking (with the

image data explosion and image stitching, described in §4.2)

would no longer be necessary.

Importantly, when multiplication of agents in the net-

work can be employed to address all possible combinations

(in linear time), as e.g. in the proposed multiplication run

mode, it is essential that all labels collected ‘on the fly’ are

precisely copied at every multiplication event, or otherwise

the information about the route—taken so far—is lost.

If the traffic density rises in compact networks, as shown

in figure 4, and therefore clogging may occur, other methods

for obtaining massively parallel operations need to be con-

sidered. When the multiplication of the agents cannot be

employed to address all possible combinations, the total

calculation time can be lowered by parallel processing.

In the combinatorial run mode, the choice of the combi-

nations explored by the agents is a stochastic process.

Therefore, the total calculation can be performed in a shorter

time using distribution over multiple identical networks

(parallel processing). This can be done on separate chips, or

by applying parallel traffic in one network. In figure 9a a par-

allel subset sum computation device is shown, where the

agents are applied to various shifted starting points. At

every starting point, a unique static label is attached to the

agents. After running through the network, at every exit

the labels are checked, and in this way the starting point
can be retrieved, and the effective exit number obtained.

Apart from the static labelling method for enabling parallel

processing, dynamic labelling is needed simultaneously for

solving combinatorial problems. After running through the

network, at every exit the static and dynamic labels present

on each and every agent have to be checked ‘on the fly’.

Additionally, when multiplication of the agents cannot be

employed to address all possible combinations, another

option to speed up solving combinatorial problems consists

of employing the best of two worlds [63]: in figure 9b a

subset sum network is displayed with descending numbers.

A hybrid device could be created by replacing the first part

of the network by an electronic computer (serial, but high

speed) while leaving the rest of the device for the bio-compu-

ter (low speed, but parallel). The agents are applied with

shifted entry points calculated from the intermediate compu-

tation results of the electronic computer, and static labels are

applied to the agents, in which labels code for the virtual

‘route’ taken so far, as calculated by the electronic computer.

Apart from this static labelling, the dynamic labelling is

again needed in the bio-computer part of the network for sol-

ving combinatorial problems. Likewise, after running the

biological part of the network, at every exit the static and

dynamic labels present on each and every agent must be

checked ‘on the fly’.

Development of new designs of computing networks:

— While the proposed network computing approach for sol-

ving SSP [20] uses a brute force method implemented

through a physical device, it has been argued [65] that SSP

can be efficiently solved by efficient software algorithms
without the need for alternative elaborate hardware. Conse-

quently, SSP is likely to remain a benchmark method

testing the prowess of various combinatorial computation

methods [63], rather than finding other, more tangible

applications. This limitation demonstrates the need for

further approaches for encoding of other NP-complete pro-

blems in graphs, and subsequently into networks and

computation devices, with immediate, but not exclusive,

examples being the TSP and 3-SAT.
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— The fundamentally new designs will also benefit from

further, second order improvements, e.g. better area com-

pactness using a three-dimensional architecture of the

chip, as proposed for cytoskeletal filaments [75], dynamic

logical gates, as opposed to the present static pass and

split junctions [20], and hybrid electronic/network-

based devices [20].

Biological agents and operation modes:

— The immediate realization when contemplating the par-

ameters of biological agents and their possible run

modes is that, at least for solving SSP via the proposed

approach [20], the only pathway to achieve a better

computing speed than electronic computers is to

enable biological agents run in the multiplication

mode. Indeed, as the chips encoding NP-complete pro-

blems grow exponentially in some parameter, e.g. area

or number of agents, the only option to counterbalance

this trend is to use another exponential, i.e. multipli-

cation. The multiplication of biological agents occurs

naturally for microorganisms, but could be achieved, in

principle, with cytoskeletal filaments too, by hijacking

the biomolecular treadmilling.
— Separately, it should be noted that solving SSP by net-

work computing using biological agents in the

combinatorial run mode does not suffer from the scal-

ing limitations regarding the mass of agents, which is

the major bottleneck in DNA computing [13], where

all the DNA mass needed for the calculation must be

simultaneously present in the reaction step (§4.1). In

networks-based computation of SSP, the exploration

of the computations paths is distributed in time and

space by recycling of agents. Consequently, network-

based SSP calculation will use considerably less mass

of agents, but at the expense of a much larger

computation time.

— The strategy of hard-wiring of computing tasks into a

physical device should be extended to the computing

agents. Indeed, presently the agents are passively explor-

ing the allowable paths, translating into difficult to

achieve tasks for the readout system, but in principle

biological agents, if appropriately tagged, e.g. using

fluorophores responsive to the local environment, can

perform computing tasks ‘on the fly’, e.g. by recording

autonomously the history of the visited gates

(figure 8), or by ‘beaming up’ events, as previously

proposed for cytoskeletal filaments [76,77].
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Tug of war between area and readout:

— The only option for solving large SSPs is to design

and fabricate wafer-large optical chips, which is in

principle achievable with present technology, but

at a high cost and with high fabrication failure risk.

A possible improvement would be to provide the

readout, at the appropriate resolution, in the network

paths only.

— An alternative would be to switch from an area-based, to

an agent-based readout, if as suggested above, the bio-

logical agents might record their travelling history. This

readout option is indeed used by DNA computing,

with the difference that in the network computing case

only a smaller number of agents would be interrogated

at a time. Also, it is very likely that the optical readout,

which is fast, would remain the technology of choice.

Energy:

— The estimated energy consumption per operation is

already competitive with electronic computers, but

there are various opportunities to increase this energetic

efficiency. For instance, actual measurements of energy

consumption, instead of the estimations (table 2) can

reveal better energetic efficiency, in particular for bio-

logical agents belonging to the Archaea.

— Another energy-related area is the sustainability of com-

putation, rather than its energetic efficiency. Indeed,

while E. viridis appears to use orders of magnitude

more energy than other biological agents (table 2), it

can use light as a source of energy [78].
8. Conclusion
In brute force computing, for a problem of input size C, 2C sol-

utions have to be addressed, and this workload needs to be

distributed in space and time: something has to give. The tech-

nological challenges related to scaling up the size of the

problems have been identified in terms of chip fabrication,

readout reliability and energy efficiency. The necessary com-

puting time of parallel operating biological agents has been

compared to the electronic single CPU computers. Labelling

of biological agents ‘on the fly’ with accompanying readout

of their travel history at the exit seems a promising new

development avenue for tackling combinatorial problems.
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