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Abstract

Deep mutational scanning (DMS) enables multiplexed measurement of the effects of
thousands of variants of proteins, RNAs, and regulatory elements. Here, we present a
customizable pipeline, DiMSum, that represents an end-to-end solution for obtaining
variant fitness and error estimates from raw sequencing data. A key innovation of
DiMSum is the use of an interpretable error model that captures the main sources of
variability arising in DMS workflows, outperforming previous methods. DiMSum is
available as an R/Bioconda package and provides summary reports to help
researchers diagnose common DMS pathologies and take remedial steps in their
analyses.
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Background
Deep mutational scanning (DMS), also known as massively parallel reporter assays

(MPRAs) and multiplex assays of variant effect (MAVEs), enables parallel measure-

ment of the effects of thousands of mutations in the same experiment [1, 2]. In a basic

DMS experiment, a library of sequence variants is constructed and deep sequencing

before and after selection for an in vitro or in vivo activity is used to quantify the rela-

tive activity (“molecular fitness”) of each genotype. Beyond assaying point mutations,

the high-throughput nature of DMS facilitates the comprehensive study of combina-

tions of mutations and their genetic interactions (epistasis) where fitness effects of in-

dividual mutations depend on the presence of other (background) mutations [3]. The

resulting fitness landscapes are informative of protein [4–6], RNA [7–9], and regula-

tory element [10–18] function and have provided mechanistic insight into biological

processes including the regulation of gene expression [10, 19], protein-protein interac-

tions [20], alternative splicing [21, 22], and molecular evolution [7]. Deep mutational
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scans have the potential to improve human variant annotation [23, 24] and protein and

RNA structure determination [25–27]. In recognition of the growing number and im-

portance of DMS assays in biomedical research, a dedicated platform for sharing, acces-

sing, and visualizing these datasets has recently been launched [28].

A key feature of a DMS experiment is that it preserves the link between quantitative

phenotypic effects and their underlying causal genotypes measured for many variants

simultaneously (Fig. 1a). The three main steps can be summarized as follows: (1) con-

struction of a library of DNA variants corresponding to the assayed biomolecule (geno-

type), (2) selection (or separation) of variants according to a given molecular function

(phenotype), and (3) quantification of the variant abundances before and after selection

by DNA sequencing (measurement), which is either done by counting sequencing reads

of variants directly or unique barcodes previously linked to them [29–33]. A fitness

score for each variant is then calculated by comparing its relative abundance (with re-

spect to a reference sequence, e.g., wild-type) before and after selection. Moreover,

often multiple independent biological replicates of the experiment are performed to

help estimate the error of variant fitness scores, that is, a measure of fitness score

reliability.

Several software packages have been developed to simplify and standardize the calcu-

lation of fitness scores for each variant from deep sequencing data [34, 35], including

Fig. 1 Schematic overview of a minimal DMS experiment and the DiMSum pipeline. a Schematic of a basic,
plasmid-based microbial growth DMS experiment: (1) construction of a plasmid library of mutant variants
and independent transformation or integration of plasmid library into host cells, (2) exposure of cell
population to selective conditions, and (3) high-throughput sequencing of samples to obtain variant counts
before and after selection, which are used to derive fitness estimates for each variant. Indicated are steps at
which bottlenecks could arise, potentially restricting variant pool size or complexity (red roman numerals):
[i] inefficient library construction (“library bottleneck”), [ii] inefficient plasmid transformations (“replicate
bottleneck”), and [iii] inefficient DNA extraction (“DNA extraction bottleneck”). Unforeseen bottlenecks can
lead to over-sequencing [iv] of variant pools and thus underestimation of the errors associated with fitness
scores or even appearance of sequencing counts for variants not contained in the original variant pool. b
DMS experiments typically have a hierarchical abundance structure, where variants with more mutations are
orders of magnitude less abundant than the wild-type sequence or single mutants. c DiMSum flow chart.
The WRAP module performs low-level processing of raw DNA sequencing reads to produce sample-wise
variant counts. The STEAM module transforms the resulting counts to estimates of variant fitness and
associated error. See Additional file 1: Fig. S1-6 for example report plots
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the estimation of errors for these fitness scores [36]. Unbiased estimation of fitness

score reliability is crucial for the interpretation of DMS experiments, for example, when

assessing the effects of a variant in a disease gene, and more generally for all kinds of

hypothesis testing and when assessing genetic interactions.

The large-scale construction and high-throughput readout of thousands to hundreds of

thousands of variants at once can, however, complicate basic quality control and identification

of potential error sources and artifacts arising in DMS workflows. On the one hand, the many

experimental steps of a DMS workflow can contribute errors to the final fitness measure-

ments, especially when “bottlenecks” restrict the variant pool at certain steps in the workflow

(Fig. 1a). On the other hand, libraries with a hierarchical variant abundance structure, arising

from the combinatorial explosion of variants with multiple mutations (Fig. 1b), lead to distinct

sources of error differentially affecting specific subsets of variants (see below). Moreover, the

hierarchical variant abundance structure in combination with the typically low complexity of

the genotype pool can lead to artifacts introduced by sequencing errors [37, 38].

To tackle these issues, we developed DiMSum, a pipeline that allows the end-to-end

processing of DMS datasets using an interpretable model for the magnitude and

sources of errors in fitness score. The workflow is freely available as an R/Bioconda

package (DiMSum) that represents a complete solution for obtaining reliable variant

fitness scores and error estimates from raw sequencing files.

Results and discussion
Overview of the DiMSum pipeline

The DiMSum pipeline is implemented as an R/Bioconda package and a command-line tool

that can be easily configured to handle a variety of DMS experimental designs (see the

“Methods” section). The pipeline is organized in two separate modules (Fig. 1c): WRAP pro-

cesses raw read (FASTQ) files to produce sample-wise variant counts, and STEAM uses these

sample-wise variant counts to estimate variant fitness scores and their measurement errors.

DiMSum WRAP performs the following sequence processing steps: (1) assessment of

raw read quality using FastQC [39], (2) error-tolerant removal of constant regions (not

subjected to mutagenesis but required for primer binding and isolation/amplification of

variables regions) using cutadapt [40], and (3) alignment and filtering of paired-end reads

in a base quality-aware manner using VSEARCH [41] if required. DiMSum STEAM ac-

cepts a table of counts, (4) isolates substitution variants of interest, and then (5) performs

statistical analyses to obtain associated fitness scores and error estimates. Briefly, an error

model is fit to a high confidence subset of variants to determine count-based, additive,

and multiplicative errors of variant fitness scores for all replicates (see below).

To increase flexibility, WRAP or STEAM can each be run in stand-alone mode if de-

sired, e.g., to obtain fitness scores from a user-generated table of variant counts (Fig. 1c,

“option B” or to obtain sample-wise variant counts for a custom downstream analysis

(Fig. 1c, “option A”). A detailed R markdown report—viewable with any web browser—

including summary statistics, diagnostic plots, and analysis tips is also generated.

Estimates of variant fitness scores and associated errors

DiMSum calculates variant fitness scores as the natural logarithm of the ratio between

sequencing counts in a replicate’s output and input samples relative to the wild-type
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variant. It then uses replicate-specific error estimates to produce a weighted average of

fitness scores across replicates for each variant.

DMS experiments are typically replicated to judge the reliability of fitness score esti-

mates due to random variability in the workflow. However, the number of replicates

performed is usually low (e.g., 3 to 6), and estimates of measurement errors on a

variant-by-variant basis can thus lack statistical power. DiMSum instead estimates

measurement errors of fitness scores by sharing information across all assayed variants

to increase statistical power (Fig. 2, see the “Methods” section for full detail).

We assume that the error in fitness scores is, to a first approximation, primarily aris-

ing due to the finite sequencing counts, and thus, variants with similar counts in input

and output samples should have similar measurement errors [42, 43]. If the error was

purely arising due to sampling of variant frequencies by sequencing, the error could be

well approximated by a Poisson distribution, with variance equal to the mean [44].

However, count data have been found to often be over-dispersed compared to this

baseline Poisson expectation [45, 46]. To account for such over-dispersion, we intro-

duce additive and multiplicative modifier terms of the baseline error, which has been

shown to accurately describe variability in transcriptomic count data [47–49].

Multiplicative error terms modify the overall error proportional to the error resulting

from a variant’s sequencing counts and likely describe error sources in workflow steps

linked to sequencing (see below for a discussion of potential sources and experimental

remedies). Across different DMS datasets, we find such multiplicative error terms to

range from one all the way to more than 100, suggesting that over-dispersion can be a

grave issue in DMS experiments (Fig. 2, Table 2).

Additive error terms are independent of a variant’s sequencing read counts, thus af-

fecting all variants to the same extent, which we attribute to variability arising from dif-

ferential handling of replicate selection experiments (see below). Additive error terms

are typically small (s. d. < 10%) and therefore only become apparent in variants that

have small errors from sequencing counts (those with many counts), constituting a

lower error limit (Fig. 2, Table 2).

We assume that both multiplicative and additive error terms can differ between repli-

cates but are the same for all variants in each replicate; our error model therefore has

3n parameters (where n is the number of replicates), which are estimated by minimiz-

ing the squared difference between the empirical and model-predicted variance of fit-

ness scores across replicates for all variants simultaneously (see the “Methods” section).

Manipulating a DMS dataset to artificially increase either multiplicative error terms or

additive error terms in one replicate suggests that the DiMSum error model is capable of

accurately estimating the magnitude of the error model terms (Additional file 1: Fig. S7).

Error model benchmarking

To benchmark the error model, we performed leave-one-out cross-validation on pub-

lished DMS datasets. Here, error model parameters were trained on all but one experi-

mental replicate of a dataset. The resulting error estimates were used to judge whether

the fitness scores of variants differ between the training replicates and the held-out test

replicate. We find fitness score differences between training and test replicates are nor-

mally distributed with the magnitude predicted by the error model (Fig. 3a).
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Consequently, when testing for significant differences between the training and test repli-

cates (using a z test), P values are uniformly distributed (Fig. 3b), as would be expected for

replicates from the same experiment and indicating that the model correctly controls the

type I error rate (rate of false positives).

We find that the DiMSum error model accurately estimates errors in fitness scores

across twelve published DMS datasets that display various degrees of over-dispersion

Fig. 2 DiMSum error model estimates multiplicative and additive error sources in fitness scores. a Empirical
variance of replicate fitness scores as a function of error estimates based on sequencing counts under
Poisson assumptions in a deep mutational scan of TDP-43 (positions 290-331) [6]. Empirical variance (blue
dots show average variance in equally spaced bins, error bars indicate avg. variance × (1 ± 2/ #
variants per bin)) is over-dispersed compared to baseline expectation of variance being described by a
Poisson distribution (black dashed line). The bimodality of the count-based error distribution results from
the relatively low number of single nucleotide mutants which have high counts (thus low count-based
error) and the many double nucleotide mutants which have low counts (thus higher count-based error).
The DiMSum error model (red line) accurately captures the deviations of the empirical variance from
Poisson expectation. Inset: bold cyan and magenta lines indicate multiplicative error term contributions to
variance corresponding to input and output samples, respectively (dashed thin lines give input or output
sample contributions to variance if multiplicative error terms were 1). The horizontal green line indicates
the additive error term contribution. The red line indicates the full DiMSum error model. b The same as a
but for a deep mutational scan of FOS [20] that shows more over-dispersion. c–f Multiplicative (c, e) and
additive (in s.d. units, d, f) error terms estimated by the error model on the two datasets. Dots give mean
parameters, error bars 90% confidence intervals
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Fig. 3 DiMSum error model performance. Leave-one-out cross-validation to test error model performance.
In turn, error models are trained on all but one replicate of a dataset, and z-scores of the differences in

fitness scores between the training set �f
train

and the remaining test replicate f test are calculated (i.e., fitness
score differences normalized by the estimated error in the training set σtrain and test replicate σtest;
importantly, σtest is estimated from error model parameters fit only on the training set replicates). Because
fitness scores from replicate experiments should only differ by random chance, if the error models estimate
the error magnitude correctly, z-scores should be normally distributed, and corresponding P values from a z
test should be uniformly distributed. The tested error models are described in the “Results and discussion”
and “Methods” sections. a, c Quantile-quantile plots of z-scores in TDP-43 290-331 library (a) and FOS library
(c) compared to the expected normal distribution. b, d Quantile-quantile plots of P values from two-sided z
test in TDP-43 290-331 library (a) and FOS library (c) compared to the expected uniform distribution. e
Estimated error magnitude relative to the differences observed between replicate fitness scores in twelve
DMS datasets in leave-one-out cross-validation (see the “Methods” section). Relative error magnitude = 1
means the estimated magnitude of errors fits the data. Relative error magnitude < 1 means the estimated
errors are too small. Boxplots indicate median and 1st and 3rd quartiles (box), and whiskers extend to 1.5×
interquartile range
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(Fig. 3, Table 2). Moreover, errors are accurately estimated no matter whether they are

driven by low sequencing counts (variant with low counts, often higher-order mutants)

or whether they appear to be independent of sequencing counts (variants with high

counts, such as single mutants), suggesting that both multiplicative and additive error

terms help to accurately model error sources in DMS experiments (Additional file 1:

Fig. S8).

We compared the DiMSum error model performance to several popular alternative

approaches that have previously been used to model error in DMS data (see Table 1).

We note that this is not an exhaustive comparison against all statistical models previ-

ously used before to estimate measurement errors in DMS datasets. The chosen alter-

native approaches differ in whether they estimate errors for each variant from the

observed variability of fitness scores or the sequencing counts, or a combination

thereof, and how much information sharing across variants they allow.

On the one hand, several studies have used the empirical variance of fitness scores

across replicates to calculate errors for each variant individually [8, 9, 20, 22, 31, 50].

Such error estimates are under-powered due to the typically low number of replicates

in DMS studies, resulting in errors that are too large for some variants but too small

for others. The latter results in an inflation of type I errors (Fig. 3b, d, “s.d.-based”).

Error estimates improve with an increasing number of replicates, but type I error infla-

tion persists even for a DMS dataset with 6 replicates (Fig. 3e, Domingo et al. [7]).

Building on this empirical variance approach, Weile et al. [51] used a Bayesian

regularization of the empirical variance proposed by Baldi and Long [52], which uses a

linear regression estimate of empirical variance across all variants as a prior. We find

that this approach improves over only using the empirical variance to calculate errors,

but still leads to inflation of type I errors (Fig. 3, “Bayes-reg s.d.”).

On the other hand, several studies have assumed that errors can be modeled by a

Poisson process based on a variant’s sequencing counts [5–7, 53]. Not unexpectedly,

the performance of the “Poisson-based” approach depends on the over-dispersion of

the data. It works well for datasets with little systematic over-dispersion but fails dra-

matically in those cases where the DiMSum error model estimates high multiplicative

or additive errors (Fig. 3 and Additional file 1: Fig. S8, “Count-based”).

Table 1 Benchmarked statistical models to estimate measurement error in fitness scores

Error model type Based on Additional input? Information sharing across
variants?

Model
parameters

Variance-based Empirical variance of
replicate fitness

No No 0

Bayesian
regularization of
variance [51]

Empirical variance of
replicate fitness

Yes: Bayesian prior to
regression on seq.
counts

Yes: prior estimated across all
variants

3

Count-based Sequencing counts
follow Poisson
distribution

No No 0

Enrich2 [36] Sequencing counts
follow Poisson
distribution

Yes: mixed-effects
from empirical
variance

No # variants

DiMSum Sequencing counts
follow Poisson
distribution

Yes: modifier terms
from empirical
variance

Yes: replicate-specific modifier
terms estimated across all
variants

3 × #
replicates
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Enrich2 [36] uses a random-effects model to account for over-dispersion over and

above the count-based Poisson expectation on a variant-by-variant basis. In short,

variant-specific random-effects terms increase the modeled error towards the empirical

variance if it is larger than the count-based Poisson expectation. While this leads to ac-

curate error estimates in datasets with little systematic over-dispersion (small multi-

plicative error terms, Fig. 3a, b, “Enrich2”), the under-powered estimation of the

variant-specific random-effects terms leads to an inflation of type I errors in those data-

sets with systematic over-dispersion, similar to the other approaches based on variant-

specific empirical variances (Fig. 3c, d, e, “Enrich2”).

In summary, the DiMSum error model captures the major error sources arising in

DMS workflows and improves in accuracy over previous approaches, while needing

fewer replicate experiments and having fewer, but interpretable model parameters.

DiMSum provides diagnostic plots similar to Fig. 3a, c to help judge whether errors

have been accurately modeled. Failure of the model to accurately estimate the errors

suggests shortcomings, potentially due to systematic error sources in the DMS work-

flow which cannot be accounted for by the error model, urging further action by the

user (see below).

Potential sources of increased error in fitness score estimates

In what follows, we provide suggestions for error sources that might be captured by DiM-

Sum’s additive and multiplicative error model terms as well as error sources that cannot be

captured by the error model and how their impact on DMS experiments can be minimized.

Additive error terms are independent of variant read counts and therefore likely result

from differential handling of replicate selection experiments. Because these error terms

are typically small compared to errors resulting from low sequencing counts, they most often

only affect fitness score estimates of very abundant variants, such as single mutants of the

wild-type sequence in question. However, if such highly abundant variants are of interest, in-

creasing sequencing coverage will not lead to reductions in the measurement errors of their

fitness scores. DiMSum performs a simple scale and shift procedure to minimize inter-

replicate differences in fitness score distributions prior to estimating error model parameters,

therefore minimizing additive error terms that arise from linear differences between replicate

selection experiments (see the “Methods” section and Additional file 1: Fig. S4b,c). Additional

mitigation strategies to reduce additive error contributions should focus on streamlining the

handling of replicate samples through the workflow (e.g., using master mixes, increasing pip-

etting volumes, reducing time lags in time-sensitive steps) as well as increasing the number of

replicate experiments [53], even at similar overall sequencing coverage, as this will lead to a re-

duction of errors for variants that are dominated by sequencing-independent errors due to

the weighted averaging of fitness scores across replicates.

Multiplicative error terms increase variants’ errors by a multiple of their sequencing

count-based error estimate. Potential error sources are thus likely linked to the sequen-

cing steps in the DMS workflow, in particular, related to the start of the selection step,

DNA extraction from input, and output samples as well as the subsequent PCR amplifi-

cation for sequencing library construction.

First, consider a bottleneck at the DNA extraction step, which arises if the number of

unique DNA molecules extracted from the input/output samples does not exceed the
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number of molecules that are subsequently sequenced, i.e., the extracted variant pool is

“over-sequenced.” This restriction in the numbers of variant molecules along the work-

flow will introduce additional random variability in variant frequencies that significantly

contribute to—or even dominate—the overall count-based error, and errors calculated

solely from the number of downstream sequenced molecules will thus be an underesti-

mate of the true error.

In addition, Kowalsky et al. [54] found that PCR amplification protocols for sequen-

cing library construction can introduce additional random variability to variant fre-

quencies. Using our DiMSum error model, we find that multiplicative errors differ

fivefold between the three PCR protocols tested (see the “Methods” section), thus

showing that multiplicative errors can arise during the PCR amplification steps of the

DMS workflow.

Lastly, another source of multiplicative errors that can potentially arise in input samples

is a bottleneck at the start of the selection experiment. Here, if the number of variant mol-

ecules used to start the selection is similar to or smaller than the number of variant mole-

cules extracted and sequenced from the input sample, this will randomly alter true variant

frequencies at the start of the selection with error magnitudes on the order of or even lar-

ger than the error due to sequencing a finite subset of variant molecules.

For example, we recently performed a deep mutational scan of part of the protein

GRB2 (Domingo et al., manuscript in preparation), for which the error model indicated

a sixfold multiplicative error in the input replicates. A similar error was not observed in

a second, related deep mutational scan for the same protein, suggesting a technical

bottleneck specific to the input library preparation in the first experiment.

To minimize multiplicative error sources, thus reducing measurement errors and ul-

timately save sequencing costs, DMS workflows should ensure an excess of variant

molecules (~ 5–10×) is used in all experimental steps upstream of the sequencing step

[55] and PCR amplification protocols are optimized [54]. Additionally, sources of multi-

plicative errors due to bottlenecks at the DNA extraction step and other downstream

steps, but not during the selection experiment, should be detectable (and correctable) if

using unique molecular identifiers (UMIs) ligated to variant molecules during PCR-

based sequencing library preparation [31, 56, 57].

Systematic error sources. Apart from sources of increased measurement error due to

random error in DMS workflows, there are potentially also sources of systematic error

that the DiMSum error model cannot account for and which might therefore inflate

error or bias fitness scores in undetectable ways.

One potential source of systematic errors is (non-linear) differences in the replicate se-

lection experiments. For example, we recently used DMS to quantify the toxicity of vari-

ants of TDP-43 when expressed in yeast in which we mutagenized two sections of the C-

terminal prion-like domain [6]. Variants displayed a range of fitness values relative to the

wild-type sequence, both detrimental and beneficial. Importantly, one replicate experi-

ment showed a marginal fitness distribution whose shape differed from those of three

other replicate experiments. In particular, non-toxic mutant variants were limited in how

much faster they could grow compared to wild-type TDP-43, which perhaps resulted

from nutrient limitation during the selection experiment (Additional file 1: Fig. S4c). Such

non-linear effects that only affect a subset of variants (e.g., beneficial variants) cannot be

corrected with simple linear normalization schemes (e.g., DiMSum’s shift and scale

Faure et al. Genome Biology          (2020) 21:207 Page 9 of 23



normalization procedure) and will introduce systematic errors that the error model can-

not adequately describe, thus potentially leading to biased fitness estimates as well as in-

correct estimates of errors (Additional file 1: Fig. S6e,f). Thus, systematic differences in

replicate selection experiments identify the need for better normalization strategies or ex-

clusion of affected replicates, as we decided for the TDP-43 replicate [6].

In summary, the DiMSum error model and diagnostic plots can also serve to judge and

improve the experimental workflow and downstream analyses of DMS experiments.

Diagnosing sources of systematic errors in DMS workflows

The particular combination of low genotype complexity and hierarchical abundance

structure in DMS experiments (Fig. 1b) can lead to issues arising from sequencing errors.

On the one hand, sequencing errors in reads of highly abundant variants can contribute

counts to closely related, but low abundant, variants [37, 38]. That is, sequencing errors in

wild-type reads will contribute counts to single mutant variants, and sequencing errors in

single mutant variants will contribute counts to double mutant variants and so on. DiM-

Sum displays estimates of this sequencing error-induced “variant flow” in diagnostic plots

of marginal count distributions to give the user an estimate of what fraction of reads of a

set of mutants might be caused by sequencing errors (Fig. 4a, left column). Mitigation

strategies to lower the fraction of reads per variant from sequencing errors include using

higher minimum base quality (Phred score) thresholds, using paired-end sequencing to

decrease the number of base call errors, or circumventing these issues altogether by using

highly complex barcode libraries that are linked to variants [38].

On the other hand, a potential pitfall linked to the combination of low genotype com-

plexity, hierarchical abundance structure, and sequencing errors in DMS experiments

is to mistake sequencing reads purely arising from sequencing errors for the presence

of a variant in the assayed genotype pool. That is, at deep enough sequencing coverage,

reads for any low-order nucleotide mutant variant will appear in the sequencing record,

even if the variant was not actually present in the experiment.

Consider two examples from published DMS experiments. The first example of a DMS ex-

periment in which NNS (N=A, T, C, or G; S=C or G) saturation mutagenesis was used to

introduce individually mutated codons into the wild-type sequences of FOS and JUN [20].

Variants that have one mutated codon show a bimodal count distribution in the input sam-

ples (Fig. 4a, middle column). Variants in the higher peak have similar read counts no matter

whether one, two, or three nucleotides were mutated, consistent with NNS mutagenesis oper-

ating on the codon level and the number of mismatched base-pairs having little impact on

mutation efficacy. In contrast, read counts for variants in the lower peaks show a dependency

on the number of nucleotides mutated and coincide with DiMSum’s estimate for sequencing

error-induced variant flow. The second example is from a DMS experiment in which doped

oligonucleotide synthesis was used to introduce nucleotide mutations into a tRNA [50]. Vari-

ants with one or two mutated nucleotides show a bimodal count distribution in the input

samples (Fig. 4a, right column). The read counts for variants in the upper peaks depend on

the number of nucleotides mutated, consistent with read counts per variant being strongly af-

fected by the combinatorics of mutational space (Fig. 1b). The read counts for variants in the

lower peaks also depend on the number of nucleotides mutated and coincide with DiMSum’s

estimate for sequencing error-induced variant flow.
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Fig. 4 (See legend on next page.)
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Are variants in the lower read count peaks of these experiments really not present in

the variant libraries before sequencing? And at which steps in the DMS workflow were

the variants lost?

Potential bottlenecks (or inefficacies) might arise during library construction, transfer

of the library into the assay cell population or at subsequent DNA extraction and se-

quencing library preparation steps (Fig. 1a).

We find that comparisons of count distributions between sequencing samples can

provide additional support to determine whether subsets of variants purely arose from

sequencing errors and help to diagnose at which workflow step variants might have

been lost, in order to improve future DMS experiments and serve to inform the strat-

egy to avoid systematic errors in fitness calculations for a present dataset. We exemplify

this in Fig. 4b on simulated bottlenecks in a deep mutational scan of TDP-43.

If variants have not been constructed or have been lost at initial library preparation

steps and therefore are not present in any replicate experiment, count distributions be-

tween replicate input samples should be highly correlated and the same variants should

fall into the same peaks of bimodal read count distributions (Fig. 4b, “library bottleneck”),

as is also apparent in the FOS-JUN dataset (Additional file 1: Fig. S9). Variants in the

lower peak of the distribution should be discarded from all replicates, e.g., using DiM-

Sum’s “hard” read count thresholds for variant filtering (Fig. 4c), and downstream analysis

should proceed as normal, as in the published analysis of the FOS-JUN dataset [20].

In contrast, if the variant loss was replicate-specific, e.g., if transformations into replicate cell

populations were incomplete, read count distributions should display “flaps”—subsets of vari-

ants that appear at high counts in one replicate (variant was assayed) but at low counts in an-

other (variant counts arise solely from sequencing errors) (Fig. 4b, “replicate bottleneck”). A

conservative approach to avoid systematic errors in fitness score calculations is to use “hard”

read count thresholds to discard all variants appearing in lower read count peaks in any repli-

cate. Additionally, DiMSum allows the user to choose a “soft” threshold to discard variants

only in the replicates where they appear in the low count peaks, therefore allowing their

(See figure on previous page.)
Fig. 4 Effects of bottlenecks on variant count distributions and fitness scores. a Input sample count
distributions of previously published DMS experiments [20, 50]. For FOS and FOS-JUN datasets, counts of
single AA variants with one, two, or three nucleotide substitutions in the same codon are shown. For the
tRNA dataset, all variants with one, two, or three nucleotide substitutions are shown. Wild-type counts are
indicated by the black dashed line. Expected count frequencies purely due to sequencing errors are
indicated by red and green dashed lines for single and double nucleotide substitution variants, respectively.
Black arrows indicate sets of variants that have likely not been assayed but whose sequencing reads are
arising due to sequencing errors. b Simulation of bottlenecks at various steps of the DMS workflow based
on a previously published DMS dataset [6]. Scatterplots show input and output sample counts for variants
with one or two nucleotide substitutions in the original data or after simulating 3% library, replicate, or
DNA extraction bottlenecks (from left to right). Hexagon color indicates the number of nucleotide
substitutions and fill number of variants per 2d bin (see legend). Black arrows indicate sets of double
nucleotide variants whose sequencing reads solely originate from sequencing errors. Dotted (or dashed)
horizontal/vertical lines indicate soft (or hard) variant count thresholds used in downstream DiMSum
analyses (see c). c Comparison of fitness scores from simulated datasets with (y-axis) or without (x-axis) the
indicated bottlenecks. Variants are categorized by their robustness to filtering with hard (variants have to
appear above the threshold in all replicates) or soft thresholds (variants have to appear above the threshold
in at least one replicate) of 10 read counts. For the DNA extraction bottleneck, read count thresholds were
also applied to output samples. Pearson correlation coefficients are indicated. The dashed line indicates the
relationship y = x. Note that correlation coefficients are lower for soft than hard thresholds, because a subset
of variants has fewer replicate measurements
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fitness to still be estimated from replicates in which they are actually present, resulting in an

increased number of variants that can be used for downstream analyses (Fig. 4c).

Finally, if variants were lost at the DNA extraction steps, this should not only show

up as flaps in count distributions between replicate input samples, but also between in-

put and output samples of the same replicate (Fig. 4b, “DNA extraction bottleneck”), as

it is observed for the tRNA dataset (Additional file 1: Fig. S9). Here, in order to avoid

biased fitness estimates, all variants that do not appear in the high read count peak of

both input and output samples from the same replicate experiment need to be dis-

carded to avoid systematic errors in downstream analyses. Often, fitness differences be-

tween variants also result in bimodal output count distribution, meaning that

practically, it can be hard or impossible to assign whether variants with low counts in

output samples are due to low fitness or because they were not assayed. As for the rep-

licate bottlenecks, “soft” thresholds can be used to obtain fitness estimates for all vari-

ants that appear in the input and output samples of at least one replicate, therefore

increasing the number of variants that can be used for downstream analyses (Fig. 4c).

To further illustrate how experimental bottlenecks can adversely affect the conclu-

sions of a study, we evaluated their impact on the central conclusion of a previous

publication. We previously showed that the fitness effects of amino acid substitutions in the

prion-like domain of TDP-43 are correlated with the increase in a principal component of

amino acid properties (PC1) strongly related to the hydrophobicity of the protein [6]. Repeating

this same analysis after simulating library, replicate, or DNA extraction bottlenecks in the ori-

ginal data results in lower correlations in all cases (Additional file 1: Fig. S10, left column). Im-

posing both hard and soft minimum read count filtering as described above, the result is an

increase in the correlation between measured fitness of amino acid substitutions and their corre-

sponding predicted effects on PC1/hydrophobicity (Additional file 1: Fig. S10, middle column).

Together, this demonstrates that it is crucial to discard variants purely arising from sequen-

cing errors to avoid systematic errors and shows how DiMSum can be used successfully to

prioritize variants, minimize biases in downstream analyses, and improve biological conclusions.

Conclusions
We have developed a customizable pipeline—DiMSum—that provides a complete solution for

the analysis of DMS data. DiMSum is easy to run, can handle a wide variety of different library

designs, provides detailed reporting, and produces fitness and error estimates from raw DNA se-

quencing data in a matter of hours. Importantly, DiMSum’s interpretable error model is able to

identify and account for measurement errors in fitness scores resulting from random variability

in DMS workflows and additionally provides the user with diagnostics to identify and deal with

common causes of systematic errors. We have also shown that the DiMSum error model pro-

vides accurate error estimates across many published DMS datasets, outperforming previously

used methods, and that diagnostic plots enable simple remedial steps to be taken that have the

potential to dramatically improve the reliability of results from downstream analyses.

Methods
DiMSum software implementation

DiMSum is implemented as an R/Bioconda package and a command-line tool compat-

ible with Unix-like operating systems (see installation instructions: https://github.com/
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lehner-lab/DiMSum). The pipeline consists of five stages grouped into two modules that can

be run independently: WRAP (DiMSum stages 1–3) processes raw FASTQ files generating a

table of variant counts and STEAM (DiMSum stages 4–5) analyses variant counts generating

variant fitness and error estimates. WRAP requires common software tools for biological se-

quence analysis (FastQC [39], cutadapt [40], VSEARCH [41], and starcode [58]) whereas

STEAM has no external binary dependencies other than Pandoc. A detailed R markdown re-

port including summary statistics, diagnostic plots, and analysis tips is automatically gener-

ated. DiMSum takes advantage of multi-core computing if available. Further details and

installation instructions are available on GitHub (https://github.com/lehner-lab/DiMSum).

DiMSum data preprocessing

FastQ files from paired-end sequencing of the TDP-43 290-331 library [6] were processed

with DiMSum v1.1.3 using default parameters with minor adjustments. First, 5′ constant re-

gions were trimmed in an error-tolerant manner (“cutadaptErrorRate”= 0.2). Read pairs were

aligned, and those that contained base calls with posterior Phred scores (posterior score takes

both Phred scores of aligned bases into account) below 30 were discarded (“vsearchMinQ-

ual”= 30, “vsearchMaxee”= 0.5). Finally, variants with greater than two amino acid mutations

were removed (“maxSubstitutions”= 2). One out of four input replicates (and all associated

output samples) was discarded (“retainedReplicates”= 1,3,4) from all results shown in main

text figures because the shape of its fitness distribution significantly differed from those of

three other replicate experiments (see Additional file 1: Fig. S4b,c). Note that Additional file 1:

Fig. S1-6 show DiMSum summary report plots when using all four replicates.

Simulated bottlenecked datasets were similarly processed with DiMSum v1.1.3 using

hard, soft, and no filtering. For datasets with library and replicate bottlenecks, filtering

was performed on the input samples only (“fitnessMinInputCountAll” = 10 for hard

threshold or “fitnessMinInputCountAny” = 10 for soft threshold), whereas for datasets

with DNA extraction bottlenecks, output samples were additionally filtered (“fitnessMi-

nOutputCountAll” = 10 for hard or “fitnessMinOutputCountAny” = 10 for soft threshold).

DMS datasets for leave-one-out cross-validation were processed with DiMSum v1.1.3

except the data for Protein G B1 domain (GB1 [5]) whose variant counts were obtained

from Otwinoski [59]. tRNA datasets [50] obtained from SRA (SRP134087) were analyzed

using DiMSum with default parameters except fitnessMinInputCountAll = 2000 and fit-

nessMinOutputCountAll = 200 to remove flaps likely due to DNA extraction bottlenecks,

resulting in an average number of 2400 variants that could be analyzed per selection ex-

periment. The use of soft thresholds would result in an average increase in variant counts

of 200% across the four selection experiments. For datasets with only one input sample

(GB1 and tRNA), we replicated the input sample to create as many matched input-output

samples as necessary for the error model analysis. All experimental design files and bash

scripts with command-line options required for running DiMSum on the above datasets

are available on GitHub (https://github.com/lehner-lab/dimsumms).

DiMSum fitness estimation and error modeling

DiMSum calculates fitness scores of each variant i in each replicate r as the natural

logarithm of the ratio between output read counts Ni
output and input read counts Ni

input

relative to the wild-type variant wt:
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f r;i ¼ log
Noutput

r;i

N input
r;i

� N input
r;wt

Noutput
r;wt

 !

Optionally, DiMSum applies a scale and shift procedure to minimize linear differ-

ences in fitness scores between replicates. This is done by fitting a slope and an offset

parameter to each replicate’s fitness scores in order to minimize the sum of squared de-

viations between variants’ replicate fitness scores and their respective averages. More-

over, it is ensured that wild-type variants have an average fitness score of 0 across

replicates.

The measurement error of fitness scores is modeled based on Poissonian statistics

from sequencing counts of the variant ðσ2ð logðNÞÞ ¼ σ2ðNÞ
E½N �2 ¼ 1

NÞ , with multiplicative (

minput
r for input sample and moutput

r for output sample) and additive (ar) modifier terms

that are common to all variants, but specific to each replicate experiment performed,

as:

σ2 f r;i
� �

¼ minput
r

N input
r;i

þmoutput
r

Noutput
r;i

þ ar

Note that we omit the inclusion of error terms arising from the wild-type

normalization, as these error terms are typically small due to high wild-type counts.

The error model is fit to a high confidence set of variants (variants that have enough

sequencing reads in the input samples to display the full range of fitness scores and for

which at least one sequencing read has been observed in all output samples, see Add-

itional file 1: Fig. S4a).

The error model parameters are estimated by sharing information across all variants,

that is by minimizing the sum over all variants’ squared deviation between the average

error model prediction across replicates and the observed variance of fitness scores

across replicates:

arg minmr∈ 1;∞½ Þ;ar∈ 0;∞½ Þ
X
R

X
i

ωR;i var f R;i
� �

−
1
nR

�
X
r∈R

σ2 f r;i
� � ! !2

In order to reliably estimate the replicate-specific additive error terms ar, the error

model fit is performed not only with variances/error model predictions across all repli-

cates of the DMS experiment, but across all possible subsets of replicates R of size at

least two simultaneously (e.g., for three replicates, R ∈ ({1, 2, 3}, {1, 2}, {1, 3}, {2, 3}) and

nR = {3, 2, 2, 2}). This is done because estimation of additive error terms depends mostly

on high count variants (which have little to no error contribution from sequencing

counts) and the error model cannot distinguish how much additive variability was con-

tributed by any one replicate unless further constrained (by subsets of lower-order

combinations). However, this means that if only two replicates of the DMS experiment

have been performed, the error model tends to split additive error contributions equally

between replicates for lack of more information, i.e., additive error terms cannot be

used as diagnostic.

Moreover, squared deviations between variance and average error model predictions

per variant and replicate subset are weighted (ωR, i) according to three factors: first, the

number of replicates in the replicate subset R, to account for the differential
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uncertainty in empirical variance estimates; second, the inverse of the average count-

based error according to Poissonian statistics, to minimize relative, not absolute, devia-

tions between the variance of fitness scores and respective error model estimates; and

third, a term re-weighting all variants with the same number of mutations according toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðnm; ffiffiffiffi

ni
p Þp

, where nm is the number of variants with that number of mutations

and ni is the overall number of variants in the high-confidence variant pool. This is

done to place more weight on the typically fewer lower-order mutant variants (e.g., sin-

gle mutants) and therefore to improve estimates of additive error terms.

The error model is fit 100 times on bootstrapped data. For each bootstrap, at max-

imum 10,000 variants are drawn with replacement from the high-confidence variant

pool. The average parameters across bootstraps are used to calculate measurement

error estimates.

The error estimates are then used to merge fitness scores across replicates by

weighted averaging:

�f i ¼
Pn

r¼1 f r;i=σ
2
r;iPn

r¼1 σ
− 2
r;i

The corresponding error of these merged fitness scores is calculated as:

�σ2i ¼
1Pn

r¼1 σ
− 2
r;i

DiMSum reports merged fitness scores and associated errors for all variants that have

been observed in at least one experimental replicate (actual merging is performed for

variants observed in two or more replicates; for variants only observed in one experi-

mental replicate, merged fitness scores and error are simply those computed for this

one replicate).

DiMSum diagnoses consistency of the error model with the data by estimating how

well it describes fitness score differences between replicates. If all error sources have

been accounted for and model parameters accurately attribute error contributions to

the different replicates, the predicted error magnitude should match the randomly aris-

ing differences in fitness scores between replicates of the same experiment, which we

find to be normally distributed across all DMS datasets investigated, i.e.:

�f r≠ j;i − f j;i∼N

�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2
r≠ j;i þ σ2j;i

q �
with j ∀ 1, …, n and i ∀ 1, …N.

We thus calculate a z-score of the fitness score differences replicates as:

z j;i ¼
�f r≠ j;i − f j;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2
r≠ j;i þ σ2j;i

q

that should follow a normal distribution centered on zero and with unit standard devi-

ation. DiMSum outputs quantile-quantile plots of zj, i as well as its corresponding mean

and standard deviations and the P value distribution from a two-sided z test (Add-

itional file 1: Fig. S6e,f). Mean values of zj, i different from zero suggest that fitness

score estimates are biased, which suggests the presence of systematic errors not

accounted for by the “scale and shift” normalization procedure and the error model. A
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standard deviation different from one suggests that the error has been over-estimated

(s.d. < 1) or underestimated (s.d. > 1).

Error model validation and benchmarking

Artificial increases in multiplicative and additive error terms in Additional file 1: Fig. S7

In order to show that the error model can accurately capture multiplicative and addi-

tive error sources, we performed a manipulation of the TDP-43 290-331 library (using

only replicates 1, 3, and 4) in which we artificially increased multiplicative input terms

(by multiplying input count reads by factor 3 or 10) or additive error terms (by adding

values of 0.3 or 1 to normalized fitness scores immediately before error model fitting)

for replicate 1.

Leave-one-out cross-validation

To benchmark the error model and compare it against alternative approaches to quan-

tify measurement error, we performed leave-one-out cross-validation on published

DMS datasets. In contrast to the error model benchmarking performed as a diagnostic

output from the DiMSum pipeline (see above), we trained the error models on all but

one replicate of a dataset in turn. These error models were then used to calculate a z-

score of the fitness score differences between the unseen replicate and the average over

the training replicates (r ≠ j) as:

zleave − one − out
j;i ¼

�f r≠ j;i − f j;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2r≠ j;i þ σ2r≠ j;i

D Er

where hσ2r≠ j;ii is the prediction of error in the test replicate j using the error model

parameters of the training replicates.

For the DiMSum error model, this is hσ2r≠ j;ii ¼
�minput

r≠ j

N input
j;i

þ �moutput
r≠ j

Noutput
j;i

þ �ar≠ j , with �minput
r≠ j ,

�moutput
r≠ j and �ar≠ j as the averages of replicate-specific error model terms over the training

replicates.

In Fig. 3a,c zleave − one − out
j;i is compared against a normal distribution, with the expect-

ation that they should match if the error magnitude is correctly predicted. Figure 3b, d

displays the P values from a two-sided z test using zleave − one − out
j;i , with the expectation

that P values should be uniformly distributed, because there should not be significant

differences in fitness scores between replicate experiments. Finally, to analyze

zleave − one − out
j;i systematically across many datasets, we calculated the inverse of its

standard deviation for each dataset (Table 2, Fig. 3e, Additional file 1: Fig. S8), i.e., σ

ðzleave − one − out
j;i Þ − 1 ¼ 1 if the error model has correctly predicted the magnitude of

measurement errors, σðzleave − one − out
j;i Þ − 1

> 1 if errors have been over-estimated, or σ

ðzleave − one − out
j;i Þ − 1

< 1 if errors have been underestimated.

Alternative error models

We compared the DiMSum error model to four alternative error models.
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First, a “variance-based” error model, where the error of fitness scores for each variant

is calculated from the empirical variance of fitness scores between replicates, i.e., with the

measurement error of fitness scores merged across replicates as �σ2i ¼ varð f iÞ=n.
Second, an error model using a Bayesian regularization of the empirical variance, as

introduced by Weile et al. [51]. Here, the empirical variance of each variant’s fitness

scores between replicates is regularized with a prior, which is a regression of the empir-

ical variance on input sequencing counts and fitness scores. Here, the measurement

error of fitness scores merged across replicates is �σ2i ¼
d�σ2i;priorþðn − 1Þ�varð f iÞ

ðdþn − 2Þ�n , with d as

the degrees of freedom of the regression, σ2
i;prior as the prior estimate of the variance for

variant i, and n as the number of replicate experiments. For the variance-based error

models, the measurement error for the unseen test replicate was estimated as the aver-

age of individual training replicates. The z-scores for the variance-based error model in

the leave-one-out cross-validation were thus calculated as: zvariance − based
j;i ¼

�f r≠ j;i − f j;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ 2

r≠ j;i� n
n − 1

p .

Third, a minimal “count-based” error model, where the error of fitness scores is esti-

mated from sequencing read counts in input and output samples under the assumption

Table 2 DiMSum error model parameters and error model performance in leave-one-out cross-
validation across twelve DMS datasets

DMS dataset No. of
replicates

Error model parameters
(avg ± s.d. across replicates)

Estimated error magnitude relative to data‡

minput moutput ffiffiffi
a

p ^ Variance-
based

Bayesian
reg. of
variance
[51]

Count-
based

Enrich2
[36]

DiMSum

FOS-JUN [20] 3 1.1 ± 0.0 1.6 ± 0.7 0.02 ± 0.01 0.02 0.65 0.88 0.98 1.04

FOS [20] 3 6.3 ± 0.4 5.0 ± 0.3 0.02 ± 0.01 0.01 0.65 0.41 0.58 0.97

GB1 [5] 3 1.1 ± 0.1 1 ± 0 0.04 ± 0.02 0.001 0.6 0.83 0.99 0.98

GRB2
unpublished
dataset 1

3 6.2 ± 1.2 1.1 ± 0.1 0.05 ± 0.02 0.024 0.63 0.37 0.59 0.84

GRB2
unpublished
dataset 2

3 1 ± 0 1 ± 0 0.03 ± 0.02 0.017 0.62 0.79 0.93 0.98

TDP-43
(290-331) [6]

3 1.3 ± 0.4 1.5 ± 0.1 0.07 ± 0.05 0.003 0.64 0.76 0.91 0.98

TDP-43
(332-373) [6]

4 1.5 ± 0.6 1.2 ± 0.4 0.1 ± 0.06 0.27 0.85 0.71 0.9 0.92

tRNA NaCl +
37C [7]

6 1 ± 0 1.1 ± 0.1 0.03 ± 0.02 0.72 0.94 0.92 1.09 0.96

tRNA 23C
[50]

5 85 ± 55 96 ± 78 0.15 ± 0.04 0.54 0.87 0.064 0.57 0.81

tRNA 30C
[50]

5 201 ± 187 121 ± 99 0.14 ± 0.07 0.58 0.90 0.059 0.59 0.88

tRNA 37C
[50]

3 38 ± 19 39 ± 11 0.04 ± 0.01 0.01 0.63 0.15 0.32 0.96

tRNA DMSO
[50]

3 101 ± 48 192 ± 124 0.04 ± 0.01 0.066 0.63 0.08 0.24 0.97

‡The inverse standard deviation of the z-score distribution from leave-one-out cross-validation (see the
“Methods” section)
^Square root of additive error term a gives a standard deviation-based estimate of lower variability bound
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that sequencing counts follow a Poisson distribution, i.e., as for the DiMSum error

model but without multiplicative or additive terms.

Fourth, the Enrich2 error model by Rubin et al. [36], which is based on sequencing

counts but modified with variant-specific correction terms (“random-effects model”).

Here, error estimates are calculated from input and output sequencing read counts

under Poisson assumptions, but with an additional variant-specific random-effects

term. This term corrects error estimates if the observed variability of fitness scores

across replicates is larger than the estimated count-based error alone. That is, if σ2i
< varð f iÞ , the random-effects term s2i is estimated greater than 0 such that σ2i

¼ 1Pn

r¼1
ðσ2r;iþs2i Þ

− 1

r;i

≅ varð f iÞ , i.e., the error estimate becomes equivalent to that of the

variance-based error model described above. To calculate z-scores in the leave-one-out

cross-validation for the Enrich2 error model, we estimated random-effects terms across

the training replicates and then also used them to modify the count-based error esti-

mate of the test replicate, i.e., zEnrich2j;i ¼
�f r≠ j;i − f j;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�σ2
r≠ j;iþ

�
1

N
output
j;i

þ 1

N
input
j;i

þs2r≠ j;i

�s .

Multiplicative errors from PCR amplification

Kowalsky et al. [54] previously reported increased variability in sequencing read counts

due to PCR amplification protocols (see Table S3 of Kowalsky et al. [54]). The raw se-

quencing data for the three PCR amplification protocols tested was obtained from the

authors. Paired-end reads were merged with USEARCH [60] using the usearch -fastq_

mergepairs command with a minimum per base posterior Qscore of 20, and reads for

unique variants were counted using the usearch -fastx_uniques command. To allow es-

timation of multiplicative and additive error terms, we treated the sequencing data

from each PCR amplification protocol as replicate experiments. Variant fitness scores

were calculated as the natural logarithm of read count frequency (read counts divided

by the total number of reads in each replicate). Error of fitness scores was calculated as

the inverse of variant read counts. DiMSum error model was adjusted to only fit one

multiplicative error term and the additive error term per replicate. Additive errors were

small compared to the variability observed. Multiplicative error terms were 1.9 ± 0.4 for

method A (using one amplification cycle with all primers at once), 1.4 ± 0.1 for method

B (two amplification cycles interspersed with a ExoI degradation step) and 6.4 ± 0.6 for

method C (two amplification cycles).

Simulated bottlenecks in a previously published DMS dataset

We used a DiMSum processed DMS dataset from Bolognesi and Faure et al. [6] (290-

331 library) to simulate the effects of various experimental bottlenecks.

Simulating a library bottleneck

A library bottleneck of size α = 0.03 (meaning that only 3% of molecules pass through

the bottleneck) was simulated based on the observed average frequencies of variants in

the input samples. A bottleneck factor bi ¼ PoisðN input
i � αÞ=N input

i was calculated to

capture the subsequent changes in read count frequencies that would occur during

Faure et al. Genome Biology          (2020) 21:207 Page 19 of 23



such a bottleneck. For variants with high counts in input samples, the bottleneck factor

will be close to α. However, for low count variants, the bottleneck factor will vary con-

siderably. Some variants, especially variants with N input
1;i < α , will not pass through the

bottleneck, i.e., bi = 0, while others may pass through the bottleneck even though there

was only one molecule of that variant present in the pool, i.e., bi = 1.

To simulate how read counts in sequencing samples (both input and output sequen-

cing samples) change due to this bottleneck, we sampled N times from a multinomial

distribution Mult(1, πr) where N is the total number of sequencing reads in the “ori-

ginal” sample s, and πs is a vector of probabilities given by:

πs ¼ πs;1;πs;2;…;πs;k
� �

where k is the total number of different variant sequences, and πr, i is the frequency of

variant i in sample s after the library bottleneck (e.g., for replicate 1 output sample):

πs;i ¼
Noutput

1;i � biPk
1N

output
1;i � bi

To simulate sequencing errors in the new modified data, we assumed that the probabil-

ity that a given sequencing read is misidentified to be 0.02, based on a length of the mu-

tated sequence of 126 nt and a per base misread frequency of 0.0001 [6], and that all

errors involve WT molecules being misclassified as single mutants, or single mutant mol-

ecules being misidentified as double mutants, or double mutant molecules being misiden-

tified as triple mutants, and triple mutant molecules being misidentified as quadruple

mutants. The total number of triple mutant molecules that will be misidentified as quad-

ruple mutants is 0.02N, where N is the total number of triple mutant reads. Those counts

were randomly subtracted from the triple mutant counts and added to the counts of all

the quadruple mutants. The total number of double mutant molecules misidentified as

triple mutants is 0.02N′, where N′ is the total number of double mutant reads. Those

counts were subtracted from the double mutant counts and randomly distributed among

all the triple mutants. This process was repeated to simulate single mutants being mis-

identified as double mutants and WT molecules being misidentified as single mutants.

Simulating a replicate bottleneck

The procedure was similar to the library bottleneck procedure described above, but a

bottleneck factor was calculated on each replicate input sample independently, allowing

for different variants to be present in each replicate.

Simulating a DNA extraction bottleneck

The procedure was similar to the library/replicate bottleneck simulations, but a bottle-

neck factor was calculated for each sequencing sample independently.
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