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Abstract: This work investigates a new design for a plasmonic SERS biosensor via computational
electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different
metallic widths per grating period. These types of plasmonic gratings have shown larger optical
enhancement than standard single-width gratings. The new structures have additional increased
enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work
integrates an oxide layer to improve the enhancement even further by carefully studying the
effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters.
The combined effects of varying the substrate and the grating geometry are studied to fully optimize
the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports
the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating
SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2

layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a
single-width grating and a non-optimal oxide thickness.

Keywords: Raman spectroscopy; SERS; plasmonics; nano-optics; computational electromagnetics;
plasmonic grating; nanogap

1. Introduction

The use of plasmonic nanostructures in sensing applications has been demonstrated via an
increasing number of methods over the past decades, as nanoscience and technology have continued
to improve. Better imaging resolution [1–3], device fabrication [4–6], and other improvements have
allowed for the development of single-molecule spectroscopy techniques [7–9], robust techniques
capable of potential commercialization or mass production [10–12], and novel biomedical methods
and technologies [8,13–15]. Different types of electromagnetic-radiation-based strategies are used to
image, sense, detect, diagnose, and characterize various biological entities and processes [16–18].

For chemical and specifically biological sensing, Raman spectroscopy holds the benefit of high
specificity over techniques like photoluminescence and fluorescence spectroscopy, which requires
known tags to be assigned to the analytes for detection [9,19,20]. Raman spectroscopy makes use of the
characteristic vibrational modes of analyte molecules upon exposure to an incident light to allow the
user to detect the presence of specific chemical elements in a sample. Raman can be used with solid,
liquid, and gas phase samples, a benefit that has allowed it to be applied to biological specimens [21,22].
Desirable applications of Raman spectroscopy include detection of harmful or beneficial elements
in a biomedical environment [23–25], biosecurity applications (such as in airports) [26–28], and
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environmental safety concerns such as in the home and workplace [29–33]. These require high
selectivity for accurate differentiation between molecular species and high sensitivity for the detection
of trace levels of various elements, especially for detectors of dangerous chemicals. The main
disadvantage of Raman spectroscopy is the low intensity of the signal, which leads to low sensitivity
of detection. This difficulty of detection is exaggerated for lower concentrations of the desired analyte
molecule. This has been a crucial issue to solve for the commercialization of handheld Raman
spectroscopy technology, for sensing a variety of chemicals, sample types, and environments where
concentrations may vary significantly [34–37]. Plasmonic devices can solve this issue.

Metallic and (in some cases) dielectric nanostructures, with features on the order of the wavelength
of an incident optical signal, exhibit plasmon resonances that couple strongly to the incoming
light [38–41]. Plasmonic resonances are collective oscillations of free electrons within a metal, and
when the metallic structure is of the order of hundreds of nanometers or smaller, these oscillations
can resonate strongly over the full geometry without rapidly decaying. Because plasmons are
waves of charged particles, they produce an oscillatory electric field that interacts with other nearby
fields. For certain nanostructure geometries and materials, and a given incoming light wavelength,
the resonance can be quite strong. The result is the production of local plasmonic hot spots, or
regions where the electric field strength is greatly increased over that of the incoming light [42–45].
Prior research has demonstrated that bringing two or more structures within separation distances of
10 nm can improve this effect nearly exponentially, resulting in significant increases in the local field
enhancement [46–51].

Increasing the sensitivity of detection of the Raman signal is where plasmonics provide benefit to
the technique, resulting in what is known as surface-enhanced Raman spectroscopy (SERS) [52–54].
SERS has been demonstrated as a highly selective technique for biosensing, capable of sensitivities
down to single molecule detection [55–57]. An ideal nanoplasmonic SERS biosensor device should be
tunable, via rational fabrication or post-fabrication tunability, to a specific wavelength (or multiple
wavelengths) of light in order to significantly increase the strength of the analyte molecule’s
Raman-scattered signal [53,54]. Improved fabrication capabilities in recent years have made possible
new types of nanostructure geometries, some of which have been designed as SERS substrates for
biological sensing applications [58–61].

Previous work has detailed the development of what has been referred to as the nanomasking
fabrication technique, which allows for the creation of sub-10 nm gaps between metallic nanostructures
with a large degree of control over the structure geometries [62]. The technique can produce a large
area of nanogap structures in two or less lithography steps, depending on the pattern desired, and is
thus appealing for the development of a SERS biosensor.

Plasmonic gratings provide the added benefit of covering a large area of the substrate, so as to
improve the signal in many places, simultaneously, and also increase the enhancement with plasmonic
grating effects [63–65]. For a biosensor substrate, the presence of many plasmonic hot spots increases
the likelihood of locating an analyte molecule within one of these field-enhancing regions, thus
improving the probability of detecting the presence of the desired species [66]. As with other types of
plasmonic enhancement devices, the ability to control the geometric and material parameters during
fabrication is crucial to the ability to tune devices to specific light wavelengths. Different types of
gratings and grating-like structures have been demonstrated experimentally for this purpose [67–70].
Prior work has studied what have been called dual-width or double-width plasmonic gratings for
use in GaAs photodetector applications [71]. This theoretical work demonstrated how the dual-width
geometry can provide additional control over the optimization of the device. These dual-width
gratings contain two different nanostructure widths in each period, along the direction of periodicity.
This differs from a standard (or single-width) grating, which contains a single Au width that repeats
for each period. The theoretical benefit of this type of device, integrated with an optimal oxide layer
thickness, has yet to be studied for use in SERS biosensor applications. The oxide layer can also be
optimized to provide constructive interference with the light scattered by the plasmonic structure.
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The nanomasking fabrication technique, as outlined by Bauman et al. [62], is capable of producing
dual-width nanogap gratings. This method provides control over the sizes of the plasmonic structures,
making it tunable to the desired wavelength for conducting SERS. The high degree of geometric
control allows the user to separately design the two widths of the grating, greatly increasing this
tunability. The ability to simultaneously fabricate many sub-10 nm gaps between the structures is
also beneficial to the development of a biosensing substrate with many hot spots. The work described
herein details the computational study of dual-width plasmonic gratings for use as SERS substrates for
biosensing applications.

Also controllable during the fabrication process, the thickness of the substrate oxide layer is found
to play a significant role in producing the greatest signal enhancement, and is therefore worth studying
to optimize the biosensing device. The geometric parameters of the grating are analyzed along with
the oxide thickness on a SiO2/Si substrate, to optimize the device for maximum light enhancement
within the gap region. Therefore, the proposed dual-width grating device is desirable for SERS due to
its high tunability, the presence of many plasmonic hot spots, and the degree of enhancement capable
of being produced by a fully optimized structure. Previous works report comparisons of plasmonic
structures for different surrounding dielectric media [72–74]. The present work additionally shows
that for a given substrate with a top oxide, it can be valuable to optimize this layer in addition to
tailoring the plasmonic structures themselves, to maximize the enhancement factor. While some have
shown improvement using Au substrates [75], we demonstrate improvement via the cheaper, more
commonly used oxide layer that is easily grown on various substrates. The current work describes the
combined optimization of the newly developed dual-width plasmonic grating geometry with oxide
thickness on a Si/SiO2 substrate.

2. Materials and Methods

This work utilized a two-dimensional finite element model to calculate the electric field at each
mesh point by simulating light with a 785 nm wavelength incident on the top surface of a plasmonic
grating structure and underlying substrate [76]. Figure 1 displays sketches of the simulated entities.
Figure 1a is a three-dimensional sketch of a few periods of the dual-width Au grating structure on a
SiO2/Si substrate with a rendering of the generation of plasmonic hot spots in the nanogaps within the
area of a diffraction-limited laser beam spot. Figure 1b is the computational model geometry which is
a cross-sectional of a single period of the structure, shown in Figure 1a. The model was created, as
shown in Figure 1b, with material properties for air, Au, Ti, SiO2, and Si assigned to the applicable
regions. The Ti adhesion layer is visible in Figure 1b, along with geometric and other variables (used
in the model listed for clarity).

In this work, the incident field strength and polarization direction (E0) were held constant,
along with the propagation direction (k) and incident light wavelength (λ0 = 785 nm). The width of
the spacing between structures and the thickness of the Au and Ti layers, having been studied
for optimization in previous work and having limits due to fabrication parameters, were held
constant [77–79]. The spacing (or gap) width, g, was held constant at 5 nm, the Au thickness at
15 nm, and the Ti thickness at 1 nm. The variables for this study include the two grating structure
widths, w1 and w2, and the thickness of the SiO2 layer, tSiO2. Varying the structure widths also changes
the period of the grating (P), and thus the width of the simulation space. In all cases, P = w1 + w2 + 2g.
The simulation space contains only one period of the grating, so the horizontal boundaries were made
periodic to simulate an infinitely repeating dual-structure grating.

This study optimizes the substrate oxide thickness with the dual-width geometry, to produce the
maximum increase in electric field strength within the nanogap (the hot spot region of the sensor).
Thus, the calculations were comprised of combinations of different ranges of sweeps for w1, w2, and
tSiO2. The optical enhancement is defined as the square of the ratio between the local electric field
and the incident field strength, (E/E0)2. Reported optical enhancement values were taken from an
integration area surrounding the gap and the hot spot. The average enhancement was calculated
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within this area for each geometric situation reported, and reported as an average of (E/E0)2 in the plots
within the following figures. The size of this area remained constant as a function of all the variables.
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First, a standard single-width plasmonic grating was analyzed as a baseline and reference 
structure. Setting w = w1 = w2, the width was swept from 20 nm to 250 nm by 10 nm increments. In 
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2a, and Figure 2b plots the average of (E/E0)2 vs. w and tSiO2. 

  
Figure 2. Calculated results when varying tSiO2 and w simultaneously: (a) representative 
enhancement distribution of three geometry combinations: (i) maximum value at w = 40 nm and  
tSiO2 = 330 nm, (ii) median value at w = 30 nm and tSiO2 = 30 nm, and (iii) minimum value at w = 100 nm 
and tSiO2 = 0 nm; (b) color plot showing average enhancement versus gold width w and oxide 
thickness tSiO2. The gray vertical dotted line traces the optimal w and the blue line tracks along one 
instance of optimal oxide thickness; and (c) plot of tSiO2 versus average optical enhancement at  
w = 40 nm, the optimal value for a single-width grating. 

Figure 1. Sketch of the dual-width plasmonic grating structure, on a Si substrate containing a layer
of SiO2, with finite thickness: (a) shows a 3D representation of the structure and the generation of
plasmonic hot spots within the area of a diffraction-limited Gaussian beam; (b) shows a 2D cross-section
of the structure in (a) as designed in the computational models. The structure widths (w1 and w2),
spacing width (g), period (P), and SiO2 thickness (tSiO2) are labeled, along with the incident wavelength
(λ0), propagation direction (k), and electric field polarization (E0).

3. Results

The solution to the computation is the electric field distribution (EFD) of the grating cross-section.
In the following subsections, the substrate oxide thickness and structure widths were optimized to
produce the greatest local electric field within the gap region, which is where analyte signals will be
most greatly enhanced in a sensing application.

3.1. Substrate Thickness Optimization

First, a standard single-width plasmonic grating was analyzed as a baseline and reference
structure. Setting w = w1 = w2, the width was swept from 20 nm to 250 nm by 10 nm increments.
In addition, tSiO2 was swept from 0 nm to 800 nm by 10 nm increments on each successive expansion of
w, so that all possible combinations were analyzed. Enhancement distributions are shown in Figure 2a,
and Figure 2b plots the average of (E/E0)2 vs. w and tSiO2.
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Figure 2. Calculated results when varying tSiO2 and w simultaneously: (a) representative enhancement
distribution of three geometry combinations: (i) maximum value at w = 40 nm and tSiO2 = 330 nm,
(ii) median value at w = 30 nm and tSiO2 = 30 nm, and (iii) minimum value at w = 100 nm and
tSiO2 = 0 nm; (b) color plot showing average enhancement versus gold width w and oxide thickness
tSiO2. The gray vertical dotted line traces the optimal w and the blue line tracks along one instance of
optimal oxide thickness; and (c) plot of tSiO2 versus average optical enhancement at w = 40 nm, the
optimal value for a single-width grating.
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It was found that the average enhancement value is periodic in nature, as tSiO2 increases for a
constant grating width. The vertical gray line in Figure 2b shows that the optimized structure width
occurs at w = 40 nm, and the horizontal blue line shows the optimal SiO2 thickness, tSiO2 = 330 nm,
which is the same data as is plotted along the blue diagonal line in Figure 3b. As w increases beyond
the peak value, the average (E/E0)2 decreases. Figure 2c tracks along the gray vertical dashed line of
Figure 2b, and shows the periodicity of the enhancement response as tSiO2 increases. This is due to the
thin film interference effects of the oxide layer, as discussed further in Section 4. While the optimal
oxide thickness was determined to be at tSiO2 = 330 nm, the enhancement here was only slightly larger
than the enhancement at the other peaks. Therefore, for this particular single width structure with a
15 nm Au thickness and a 5 nm gap, and when holding the width to the optimal width of w = 40 nm,
an optimal oxide thickness can be tm = m (270 nm) + 60 nm, where m = {1, 2, 3 . . . }.
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Figure 3. Calculated results when simultaneously varying w1 and w2 constant oxide thickness,
tSiO2 = 330 nm: (a) representative enhancement distributions of four geometry combinations:
(i) Minimum value at w1 = 20 nm and w2 = 390 nm, (ii) single-width secondary peak value at
w = w1 = w2 = 470 nm, (iii) single-width primary peak value at w = 40 nm, and (iv) maximum value at
w1 = 410 nm and w2 = 70 nm; (b) color plot showing average enhancement values for combinations of
w2 and w1. Blue, gray, and green dashed lines correspond to single-width values, constant period, and
constant w2 at peak enhancement, respectively; and (c) plot of (E/E0)2 versus w1 along the blue and
green dashed lines in (b).

The optimized geometry is found where the blue and gray lines in Figure 2b intersect. Figure 2a
shows the enhancement distributions cross-section at the gap of three specific geometric combinations:
(i) maximum (E/E0)2 and optimized geometry, (ii) median (E/E0)2, and (iii) minimum (E/E0)2 of the
model. While these parameters have been optimized for single-width gratings, dual-width gratings
can achieve even higher (E/E0)2 values.

3.2. Dual-Width Grating Optimization

Having determined the substrate thickness and Au width for maximizing optical enhancement
in the single-width grating case, the dual-width geometry was then analyzed. At a constant tSiO2

of 330 nm, each wire width was swept from 20 to 500 nm by 10 nm increments. Figure 3 shows
results from this calculation. Optical enhancement distributions in the gap are shown in Figure 3a
(i)–(iv) for different structure width combinations. Depicted are the following cases: (i) w1 = 20 nm
and w2 = 390 nm, (ii) w1 = w2 = 470 nm, (iii) w1 = w2 = 40 nm, and (iv) w1 = 410 nm and w2 = 70 nm.
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The gap region clearly shows changes to the local (E/E0)2 values for different dual-width situations.
The average enhancement in the hot spot for a particular geometry is given by each data point of
Figure 3b,c.

The color map in Figure 3b shows the average enhancement value at each width combination, with
the dashed blue diagonal line corresponding to the single-width case (where w1 = w2). This blue line is
the same as the horizontal blue line in Figure 2b. Along the gray negatively-sloped dashed line, all
width combinations result in a constant period of P = 490 nm. In fact, any line drawn on this plot with
a slope of −1 has a specific constant period, calculated (as defined) in Section 2. It is interesting to note
that the geometries displaying peaks in enhancement tend to lie along specific lines of constant period
on the color plot. From previous work, the locations of these peak enhancement periods depend on
the incident wavelength [71]. They shift towards shorter periods for shorter wavelengths and towards
larger width combinations for longer wavelengths, since the period is coupling with the incident light
to create strong plasmonic grating effects. Points (i)–(iv) in Figure 3b correspond to the images in
Figure 3a with the same labels. What is also interesting is that the greatest enhancement occurs not
for this more traditional standard single-width grating geometry, but for a grating containing two
different structure widths within each period. Over this range, the peak enhancement occurs when
w1 = 410 nm and w2 = 70 nm, the case shown in Figure 3a (iv), indicating that a dual width geometry
is superior to the traditional single-width plasmonic grating structures for increasing optical signals in
sensing devices.

The plot in Figure 3c shows the enhancement versus w1 from 20 to 500 nm along the blue and
green dashed lines in Figure 3b, where blue is single width design (w2 = w1) and green is the dual
width geometry, with one width held constant (w2 = 70 nm). While for small w2 values the optimal
width is larger for the singe-width case, for larger widths w2 near 400 nm, the dual-width design
demonstrates more than double the peak enhancement value compared to that of the single-width
geometry, with the dual-width having the greatest overall enhancement value. Optimizing the oxide
thickness for the dual-width design can improve this SERS sensor even further.

3.3. Coupled Optimization

Lastly, tSiO2, w1, and w2 were optimized together. The width combination for maximum
enhancement was determined for tSiO2 from 250 to 500 nm. The dual width thickness optimization
peak is compared to the single-width peak, as a function of oxide thickness in Figure 4. The plot
in blue shows the average gap field enhancement versus tSiO2 at the optimal width combinations,
determined in Figure 3: w1 = 410 nm and w2 = 70 nm. The red plot in Figure 4 takes values from
Figure 2 for the optimal single-width grating, where w = 40 nm, over the same oxide thickness range.
This demonstrates the greater than 200% increase in enhancement that can theoretically be obtained by
using a dual-width grating versus a single-width, both at optimal geometries.

The peak in enhancement is seen at tSiO2 = 425 nm for the dual-width grating design. At each
oxide thickness, each dual width was swept to make sure that changing the oxide thickness did not
alter the optimized dual width. The optimized widths did change slightly, but not by much. The peak
values consistently occur for wire widths within ~10 nm of the average values, regardless of the
substrate thickness. Across this range of thicknesses, the enhancement maxima occur at average
widths w1 = 72 ± 3.8 nm and w2 = 409 ± 11 nm. Overall, coupling these structure widths with a
SiO2 thickness of 425 nm will produce the greatest enhancement across this range of geometry values.
For the same w1 and w2 combination with no oxide layer atop the substrate, the average value for
(E/E0)2 within the gap region was near 1.
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4. Discussion

The periodic nature of the average enhancement as a function of oxide thickness is due to thin-film
interference within the dielectric. Therefore, when designing plasmonic SERS sensors to have the
highest sensitivity of detection, choosing a substrate with optimal oxide thickness can improve the
optical enhancement in the device by 200–300%.

In the case of the plasmonic grating on a varying tSiO2, the thin film interference effect for an
incident light of constant wavelength and angle causes a constructive and destructive combination of
the enhanced light. The interference at the gap region is between the incident light and that scattered
from the plasmonic structures. Therefore, one must not simply choose a traditional quarter-wave
thickness, as this may not always be the optimal oxide thickness for a particular device. This work
demonstrates the need for careful modeling to engineer this ideal oxide thickness.

As has been previously demonstrated for plasmonic grating-on-GaAs photodetector applications,
the dual-width grating geometry is theoretically capable of producing greater enhancement than a
single-width alternative [71]. This is due to the dual-width geometry supporting hybrid plasmonic
modes, which resonate with both an ideal grating period and an ideal metal structure width,
simultaneously. For single-width gratings, the period may not be kept constant if the w value is varied.
Due to these differences in tunability, a dual-width grating, optimized for a given substrate oxide
thickness, can produce over 200% the enhancement given by a similarly optimized single-width grating.
This additional enhancement can be more than 800% greater when comparing an ideal dual-width
combination to a standard grating that has not been optimized for the substrate thickness. Therefore, it
is necessary to simultaneously design the plasmonic structures and the underlying dielectric substrate
thickness to produce the overall greatest enhancement factor for a given wavelength of incident light.
The nanomasking fabrication process for creating nanogap gratings allows for this tunability and,
therefore, holds promise for the highly tunable production of biosensor devices.

Other groups have demonstrated devices with high hot spot densities [80,81]. The optimal
design in the present work still contains multiple hot spots per diffraction-limited laser beam spot.
This eliminates the need to precisely align the probe beam to an individual nanostructure, unlike for a
previously reported self-aligned nanogap SERS sensor design [82]. Instead, at least two hot spot regions
are excited on the sensor substrate within a 1 micron excitation laser spot, regardless of the beam
position. Thus, scanning the beam across the sample will cause enhanced scattering for any analyte
molecules located in hot spot regions. Though other works may contain higher hot spot densities than
the currently reported dual-width grating design [83–85], a dual-width grid design—which also makes
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use of the nanomasking fabrication technique [62]—can be implemented to greatly increase the number
of gaps per area. The optimization of this more complex geometry will require further modeling.

5. Conclusions

This study optimized geometries in plasmonic nanostructures to improve optical enhancement
(E/E0)2 for SERS biosensing. Computational models were built to simulate Au structures, adhered
to a SiO2/Si substrate by a 1 nm thick Ti layer. Holding constant the structure spacing at 5 nm,
Ti thickness at 1 nm, and Au thickness at 15 nm, the metal structure width (w) and SiO2 thickness
(tSiO2) were optimized for both single and dual-width gratings. The single-width grating displays an
enhancement response that is periodic as tSiO2 increases, due to thin-film interference. A dual-width
gratings design can generate more than double the (E/E0)2 value in the nanogap than that observed for
single-width gratings at their greatest peaks in enhancement. This supports previous work on the use
of such dual-width plasmonic gratings to enhance GaAs photodetectors [71]. For single-width gratings,
the optimized geometry includes w = 40 nm and tSiO2 = 330 nm, while for dual-width gratings, the
combination of w1 = 72 nm, w2 = 409 nm, and tSiO2 = 425 nm produces the greatest enhancement.
The final optimized dual-width structure and SiO2 thickness combination gives enhancement values
that are up to 800% greater than those exhibited by structures with non-ideal single-width gratings
and oxide thicknesses. This 800% enhancement factor increase compares the best dual-width geometry
combination to the worst single-width value, while a 200% increase is measured when comparing the
best of the dual- and single-width cases.

This computational work will assist future research by guiding the fabrication of SERS biosensing
devices prior to experimental characterization. Future work is necessary to investigate a wider range
of values for the variables tested herein, and to test these results experimentally. Every new insight
into these types of dual-width grating sensors moves them closer to a feasible device for fabrication
and potential use in the biosensing industry.
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