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Toll-like receptor 4 (TLR4) is required for activation of innate immunity upon recognition of 
lipopolysaccharide (LPS) of Gram-negative bacteria. The ability of TLR4 to respond to a 
particular LPS species is important since insufficient activation may not prevent bacterial 
growth while excessive immune reaction may lead to immunopathology associated with 
sepsis. Here, we investigated the biological activity of LPS from Burkholderia mallei that 
causes glanders, and from the two well-known opportunistic pathogens Acinetobacter 
baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections). 
For each bacterial strain, R-form LPS preparations were purified by hydrophobic chro-
matography and the chemical structure of lipid A, an LPS structural component, was 
elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples 
was evaluated by their ability to induce production of proinflammatory cytokines, such 
as IL-6 and TNF, by bone marrow-derived macrophages. Our results demonstrate direct 
correlation between the biological activity of LPS from these pathogenic bacteria and the 
extent of their lipid A acylation.

Keywords: gram-negative bacteria, lipid a, acyl chains, innate immunity, macrophages, proinflammatory cytokines

Abbreviations: Ara4N, 4-amino-4-deoxyarabinose; BMDM, bone marrow-derived macrophages; IL, interleukin; LPS, lipopoly-
saccharide; MALDI-TOF MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; M-CSF, macrophage 
colony-stimulating factor; MD-2, myeloid differentiation factor 2; TLR, toll-like receptor; TNF, tumor necrosis factor.
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inTrODUcTiOn

Macrophages respond to pathogens by producing proinflamma-
tory cytokines and reactive oxygen species (1). These mediators 
are involved in inflammatory and acute phase responses and 
have been implicated in host defense against pathogenic bacteria 
and parasites (2). The ability of the immune system to recognize 
pathogens relies on the expression of innate immune receptors 
by macrophages and other cell types (3). Toll-like receptor 4 
(TLR4), the first specific receptor discovered for the mammalian 
innate immune response (4, 5), is capable of triggering a number 
of intracellular signaling pathways (6) leading to activation of a 
transcriptional program that leads to synthesis of proinflamma-
tory cytokines (7).

TLR4 activation by its most prominent physiological ligand, 
lipopolysaccharide (LPS) (5) involves the formation of a complex 
with MD-2 protein and lipid A, which is the core structural 
component of LPS (8). Although the crystal structure of the 
LPS-MD-2/TLR4 complex has been determined (9), it is not 
entirely clear how structural variations in lipid A affect the abil-
ity of LPS from different bacteria to activate innate immunity 
through TLR4 (10, 11). A hexaacylated lipid A characteristic of 
Escherichia coli-type LPS is an agonist in all mammalian species 
tested, whereas its tetraacylated precursor called lipid IVa acts as 
an agonist in murine cells but is inactive for human macrophages 
and may even antagonize the action of potent agonists (12, 13). 
These lipid A variants are the most studied ligands of TLR4; 
however, the natural repertoire of LPSs is definitely much more 
diverse, in particular, with respect to the number and the length 
of fatty acid residues.

Burkholderia mallei is a Gram-negative bacterium that 
causes glanders, an infectious disease of horses that can be 
transmitted to humans by direct contact with infected animal or 
via food and water contamination (14, 15). Symptoms of acute 
infection with B. mallei in humans are pustular skin lesions and 
necrosis of the tracheobronchial tree following inhalation of the 
pathogens, or multiple abscesses and sepsis, if the skin is the site 
of entry (16). Interestingly, B. mallei was used as a biological 
weapon in time of the American Civil War and World Wars I 
and II (17).

Pseudomonas aeruginosa is one of the most frequent causes of 
nosocomial infections (18). Nosocomial pneumonia with multi-
drug-resistant strains of P. aeruginosa is a serious healthcare issue 
(19), especially in the developing countries (20). Interestingly, LPS 
from many P. aeruginosa strains isolated from patients with cystic 
fibrosis lacked the O-antigen, which resulted in higher sensitivity 
of the microorganism to bactericidal effects of the complement 
in normal human serum, yet this change correlated with chronic 
lung infections in cystic fibrosis patients (21).

The hospital environment is a reservoir for Acinetobacter bau-
mannii (22). This agent can remain alive in the environment for 
prolonged periods of time due to innate resistance of its cells to 
desiccation (23). The proportion of pneumonia cases associated 
with Acinetobacter genus had increased from 4 to 7% through 
1986–2003 (18). Moreover, A. baumannii can develop resistance 
to most frequently used antimicrobial agents, and the mortality 

associated with such highly resistant strains has been reported to 
reach as high as 40% (24, 25).

In this study, we investigated the biological activity of LPS 
variants isolated from B. mallei, A. baumannii, and P. aeruginosa, 
with a focus on their lipid A acylation status.

MaTerials anD MeThODs

Bacterial cultures and isolation of lPs
The bacterial strains used in these studies, E. coli O130 (26), 
Francisella tularensis 15 (27), A. baumannii 1053 (28), P. aerugi-
nosa 2192 (a clinical isolate from a cystic fibrosis patient) (29), 
and B. mallei C-5 (30), were grown as previously described.

The bacterial biomass was dried using acetone according to 
the standard protocol (31) or centrifuged, then frozen at −70°C 
and lyophilized.

Lipopolysaccharide samples from E. coli O130, F. tularensis 
15, B. mallei C-5, and A. baumannii 1053 were isolated by the 
phenol–water extraction, as described (32). An LPS sample from 
P. aeruginosa 2192 was isolated by extraction with a mixture 
of aqueous 90% phenol/chloroform/light petroleum ether, as 
described (29). Highly purified preparations of LPS with a short-
chain polysaccharide (R-form LPS) were obtained by gel chro-
matography on a column (35 cm × 2.5 cm) of AcA 44 Ultrogel 
in Tris-buffer (0.1M NaCl, 10  mM Tris, 1  mM EDTA, 0.25% 
Na-DOC) using UV detection at 206  nm the LPS-containing 
fractions were pooled and dialyzed first against 0.2% NaHCO3, 
then against distilled water and lyophilized. The purified LPS 
preparations were free from proteins and nucleic acids.

Mass spectrometry of lPs
MALDI-TOF mass spectrometry of purified LPS samples was 
performed on a Voyager STR system (PerSeptive, Framingham, 
MA, USA) and a 4800 Proteomic Analyzer (ABSciex, USA), 
as described (33). Negative ion mass spectra were acquired 
in both linear and reflector modes with mass accuracy ca. 
50  ppm. 2′,4′,6′-Trihydroxyacetophenone monohydrate was 
used for matrix preparation. Mass spectra were analyzed as 
described (33).

laboratory animals
C57Bl/6 mice and Tlr4-deficient mice were used at the age 
of 8–10  weeks (weight of 20–25  g). Mice were housed in the 
Pushchino Animal Breeding Facility (branch of the Shemyakin 
and Ovchinnikov Institute of Bioorganic Chemistry, Russian 
Academy of Sciences), under specific pathogen free conditions 
on 12-h light/dark cycle at room temperature. All manipulations 
with animals were carried out in accordance with recommenda-
tions in the Guide for the Care and Use of Laboratory Animals 
(NRC 2011), the European Convention for the Protection of 
Vertebrate Animals Used for Experimental and Other Scientific 
Purposes, Council of Europe (ETS 123), and “The Guidelines 
for Manipulations with Experimental Animals” (the decree of 
the Presidium of the Russian Academy of Sciences of April 02, 
1980, no. 12000-496). All animal procedures were approved by 
Scientific Council of the Engelhard Institute of Molecular Biology.
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cultivation and In Vitro activation of Bone 
Marrow-Derived Macrophages
Murine bone marrow-derived macrophages (BMDM) were 
isolated from femurs and cultivated for 10  days according 
to the standard protocol (34) in DMEM (Gibco, USA) sup-
plemented with 30% conditioned medium from L929 cells (a 
source of M-CSF) and 20% horse serum (HyClone, USA). To 
determine the mRNA levels of the cytokines, BMDM were 
plated on 12-well plates (106 cells/ml) and stimulated with LPS 
for 2 h in a CO2-incubator at 37°C. To assess cytokines levels 
in the supernatants, BMDM were stimulated in 96-well plates 
(106 cells/ml) for 4 h in a CO2-incubator at 37°C. After stimula-
tion, the supernatant was transferred to fresh 96-well plate and 
stored at −80°C. LPS concentrations from 100 pg/ml to 100 ng/
ml were tested in a series of preliminary experiments (Figure S1 
in Supplementary Material). BMDM stimulation with 10 ng/ml 
of LPS consistently discriminated between different LPS spe-
cies; therefore, that concentration was used in all subsequent 
experiments.

real-Time Quantitative rT-Pcr analysis
Total RNA from macrophages was isolated using the TRIzol 
Reagent (Invitrogen, Carlsbad, CA, USA) according to the 
manufacturer’s protocol. Reverse transcription was performed 
using 1.5 μg total RNA and random non-amers as primers with 
RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, 
USA) according to manufacturer’s protocol. Real-time quantita-
tive PCR was performed using qPCRmix-HS SYBR + LowROX 
Kit (Evrogen, Moscow, Russia) on the ABI 7500 Real-Time PCR 
System (Applied Biosystems, Foster City, CA, USA). Amplifications 
were performed using the following program: preheating stage at 
95°C for 10 min, 40 cycles at 95°C for 15  s, annealing at 61°C 
for 30  s, and extension at 72°C for 20  s. The following prim-
ers were used: IL-6, F: 5′-CTCTGCAAGAGACTTCCATCC, 
R: 5′-TTCTGCAAGTGCATCATCGT; TNF, F: 
5′-TCTGTCTACTGAACTTCGGG, R: 5′-TTGGTGGTT 
TGCTACGAC; IL-1β, F: 5′-TCAACCAACAAGTGATAT 
TCTCCAT, R: 5′-ACTCCACTTTGCTCTTGACTTCT; 
and β-actin, F: 5′-GACCTCTATGCCAACACAGT, R: 
5′-AGAAAGGGTGTAAAACGCAG. Relative expression of 
target genes was determined using the ΔΔCt method and nor-
malized to β-actin expression.

elisa analysis
Murine IL-6 and TNF levels in cell-culture supernatants were 
measured using a Mouse IL-6 ELISA Ready-SET-Go! and Mouse 
TNFalpha ELISA Ready-SET-Go! kits (eBioscience, San Diego, 
CA, USA) according to the manufacturer’s protocol.

statistical analysis
Statistical analysis was performed using GraphPad Prism soft-
ware (version 6, San Diego, CA, USA). Two-tailed unpaired 
Student’s t tests were used for comparison of two independent 
data samples and determination of the degree of reliability. The 
data were obtained in at least three independent experiments and 
presented as the mean ± SEM. P-values <0.05 were considered to 
indicate statistical significance.

resUlTs

isolation and Mass spectrometric 
characterization of lPs
Burkholderia mallei possesses an S-form LPS consisting of lipid 
A, core oligosaccharide, and an O-specific polysaccharide chain 
(O-antigen) (35), whereas A. baumannii is characterized by a 
short-chain R-form LPS devoid of O-antigen (36). Wild-type 
strains of P. aeruginosa produce S-form LPS (37), but due to a 
mutation (38), cystic fibrosis isolates, including strain studied in 
this work (29, 38), are deficient in the O-antigen synthesis.

Lipopolysaccharides from B. mallei [a mixture of S- and 
R-forms (39)] and A. baumannii [a mixture of R-form and cap-
sular polysaccharide (28)] were isolated by the phenol–water pro-
cedure (32). An attempt to extract R-form LPS from P. aeruginosa 
by this method failed, and therefore extraction with aqueous 90% 
phenol/chloroform/light petroleum ether was applied, which had 
been specially elaborated for this purpose (40). R-form LPS from 
each strain was purified by AcA 44 Ultrogel gel chromatography.

Structures of the lipid moiety of the LPS (lipid A) were deter-
mined by MALDI-TOF mass spectrometry in the negative ion 
mode taking into account reported basal structures of lipid A of 
B. mallei (39), A. baumannii (41), and P. aeruginosa (42, 43). Lipid 
A of all bacteria studied were found to have a bisphosphorylated 
glucosamine disaccharide backbone, which is most typical of 
Gram-negative bacteria (44). Distribution of fatty acids between 
the glucosamine residues was established by MS/MS analysis.

structure Determination of lipid a 
of A. baumannii
Lipid A of A. baumannii 1053 strain predominantly bears six 
residues of fatty acids along with some species containing seven, 
five, and even four fatty acid residues (Figure 1). In addition to 
the lipid A moiety, complete LPS molecule contains two 3-deoxy-
d-manno-oct-2-ulosonic acid residues attached to the lipid A 
backbone (the most abundant species is LPShexa, Mexp = 2168.16, 
Mcalc  =  2168.23). The peaks in the lower mass regions corre-
sponded to lipid A species (LAtetra to LAhepta) that originated from 
the in-source fragmentation of the LPS (33).

The distribution of the fatty acids in the lipid A from A. bau-
mannii was established based on the MS/MS fragmentation of 
the LAhepta ion at m/z 1910.24. Conceptually, it is a MS3 spectrum 
obtained with a MS/MS instrument since the parent ion is already 
a Y-type fragment originating from the in-source decay of the 
LPS quasi-molecular ion. The spectrum (not shown) contained 
a Y-fragment peak at m/z 864.7, which allowed identification 
of the fatty acids attached to glucosamine I and glucosamine II 
of the lipid A backbone. The spectrum also contained peaks at 
m/z 1710 and 1694, which corresponded to a loss of C12 and 
3HOC12 residues, respectively. Overall, the predominant hex-
aacylated form of the lipid A contained four primary fatty acids 
(two N-linked 3HOC14 fatty acids and two O-linked 3HOC12 
residues) and two secondary fatty acids (one 3HOC12 and 
one C12). The heptaacylated form of the lipid A contained an 
additional C12 residue and has the structure shown in Figure 1, 
whereas penta- and tetraacyl lipids A lacked one or two C12 or 
C12 and 3HOC12 residues. In addition to the presence of sodium 
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adduct ions, the main sources of heterogeneity in the spectra were 
associated with replacement of one or two residues of 3HOC12 or 
C12 with 3HOC14 or C14.

structure Determination of lipid a of  
B. mallei
The MALDI-TOF mass spectrum of the LPS from B. mallei 
C-5 strain (Figure  2), acquired in linear mode, contained two 
clusters of ions between m/z ~1300 and 2000, corresponding to 
lipid A fragments and the core oligosaccharide at m/z 1710.9, as 
well as intact LPS molecules in the mass range at m/z 2900–4000 
(Figure  2). Lipid A of B. mallei was characterized by longer 
chain fatty acids. Pentaacylated lipid A (m/z 1671.6) includes 
two N-linked residues of 3HOC16 and two O-linked residues of 
3HOC14 as primary acyl groups and one secondary residue of 
C14 fatty acid. The tetraacylated form (m/z 1444.9) was present 
in smaller amounts and comprised one residue of 3HOC14. A 
characteristic feature of these LPS is the presence of significant 
amount of tetra- and pentaacylated lipid A (m/z 1575.9 and 
1802.7, respectively), bearing one residue of cationic monosac-
charide 4-amino-4-deoxyarabinose (Ara4N) attached to one of 

FigUre 1 | high resolution MalDi-TOF mass spectrum of Acinetobacter baumannii 1053 lPs recorded in the negative ionization reflectron mode. 
Structure of the heptaacyl lipid A in LPS from A. baumannii. Kdo, 3-deoxy-d-manno-oct-2-ulosonic acid; GlcN, glucosamine. Numbers indicate the number of 
carbon atoms in the acyl chain.

the phosphate groups giving the dominant quasi-molecular ions 
at m/z 3287.2 and 3513.6.

structure Determination of lipid a of P. 
aeruginosa
The MALDI-TOF mass spectrum of the P. aeruginosa 2192 LPS 
(Figure 3) obtained in the linear negative mode contained three 
distinct clusters of ions, corresponding to lipid A fragments, core 
fragments and intact LPS, respectively (listed in the order of 
increasing molecular mass). The MS/MS analysis of the oligosac-
charide (spectrum not shown) revealed a molecular structure in 
agreement with the published P. aeruginosa core oligosaccharide 
(29). The lipid A portion of the LPS is the least acylated of all 
LPS studied in this work, with almost equal amounts of tri- and 
tetraacylated forms. The tetraacylated form included two pri-
mary and two secondary residues 3HOC12 (Figure 3), whereas 
the triacylated form contained only one secondary residue 
3HOC12. The heterogeneity was associated with the absence 
in some of the molecules of one of two phosphate groups and 
partial replacement of one secondary fatty acid with its non-
hydroxylated form (C12).
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The length and the number of lipid a 
acyl chains Directly correlates with the 
Biological activity of lPs
The biological activity of LPS samples was assessed by their ability 
to induce production of proinflammatory cytokines by BMDM 
isolated from WT mice. For mRNA levels, cells were incubated 
with 10 ng/ml LPS for 2 h, and protein concentration in the culture 
medium was measured 4 h post LPS treatment. Highly active LPS 
from E. coli with hexaacyl biphosphoryl lipid A (45) and inactive 
LPS from F. tularensis with tetraacyl monophosphoryl lipid A (46) 
were used as positive and negative controls, respectively. Another 
negative control that was utilized and allowed us to assess the 
specificity of TLR4 signaling was the use of BMDM cultures 
prepared from Tlr4-deficient mice (Figure S2 in Supplementary 
Material). Both negative controls demonstrated the lack of meas-
urable expression of proinflammatory cytokines.

Similar results were observed in the experiments measur-
ing the mRNA expression and cytokine production, indicating 

that all effects were primarily transcriptional, consistent with 
direct effects of the lipid A structure on the strength of TLR4 
activation (Figures 4 and 5). In addition, all proinflammatory 
cytokines measured demonstrated virtually identical expres-
sion profiles with regard to LPS source, at both mRNA (IL-6, 
TNF, and IL-1β, Figures  4A–C) and protein (IL-6 and TNF, 
Figures 5A,B) levels.

Lipopolysaccharide isolated from A. baumannii demonstrated 
the biological activity similar to that of LPS isolated from E. coli 
(Figures 4 and 5), consistent with the presence of highly acylated 
lipid A in both strains. Interestingly, the former was a slightly 
weaker activator than the latter, even though the difference did 
not reach the level of statistical significance. This trend can be 
explained by the difference between the average length of acyl 
groups in the most abundant hexa- and heptaacylated forms of 
A. baumannii lipid A compared to E. coli lipid A. In A. baumannii 
lipid A, most of the acyl groups have 12 carbon atoms and only 
one or two have 14 carbon atoms, whereas in E. coli lipid A most 
of the acyl chains are C14 derivatives.
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Lipid A of B. mallei had, on the average, longer acyl chains 
(C14–16) as compared to the lipid A of E. coli and displayed 
significantly lower biological activity (Figures 4 and 5), in agree-
ment with the lower degree of acylation: the major forms of B. 
mallei lipid A were penta- and tetraacylated, whereas lipid A from 
E. coli was hexaacylated.

Lipopolysaccharide isolated from P. aeruginosa induced 
virtually no expression of cytokines by BMDM (Figures 4 and 
5). The apparent lack of biological activity of this LPS correlated 
well with the low acylation of its lipid A, which consisted mainly 
of tri- and tetraacylated forms. In addition, ~30% of the P. aer-
uginosa lipid A molecules lacked one of the phosphate groups 
and the length of the acyl chains was on the average shorter 
(C12) than that in lipid A of A. baumannii (C12–14) and B. 
mallei (C14–16).

DiscUssiOn

In the present study, we assessed the biological activity of LPS 
from the pathogenic bacteria B. mallei, A. baumannii, and P. aer-
uginosa in order to establish the structure–function correlations 

for LPS species from various Gram-negative bacteria, namely, 
the length and the number of the acyl chains in lipid A, and its 
biological activity as a TLR4 agonist. Previously, we compared 
the LPSs from ancient psychrotrophic bacteria of the genus 
Psychrobacter to those from wild-type and mutant strains of 
Yersinia pestis (47). The decrease in the chain length to C10–12 
in the LPS of Psychrobacter spp. (as compared to C14 in the highly 
active LPS of E. coli) resulted in a significant drop of its biological 
activity. A similar trend was observed for LPS from A. baumannii 
(Figures 4 and 5), indicating that lipid A with longer carbon atom 
acyl chains in fatty acid residues is a stronger cytokine inducer. 
At the same time, lipid A acyl chains in B. mallei were on the 
average longer (C14–16) than those in E. coli (C14), yet LPS 
from B. mallei appeared to be a weaker activator. However, lipid 
A from B. mallei is also less acylated and contains cationic mono-
saccharides, similar to the lipid A of Burkholderia cenocepacia 
(48). Indeed, lipid A from B. mallei contains Ara4N residue in 
almost half of the molecules, which would partially neutralize 
the negative charge of the phosphate groups necessary for the 
interaction with the positively charged amino acids of TLR4 (11). 
Consistent with our data, it has been recently demonstrated that 
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FigUre 4 | induction of mrna of proinflammatory cytokines in BMDM activated by lPs isolated from various bacteria. Quantification of IL-6 (a), TNF 
(B), and IL-1β (c) mRNA levels in BMDM isolated from WT mice. Relative mRNA expression levels were normalized to β-actin. All data are representative of three or 
more independent experiments. Data represent mean values ± SEM. *P < 0.05, as calculated by Student’s t test.

FigUre 5 | expression of proinflammatory cytokines by BMDM upon sactivation by lPs from various bacteria. ELISA quantification of IL-6 (a) and TNF 
(B) level in the supernatants of LPS-stimulated BMDM of WT mice. All data are representative of three or more independent experiments. Data represent mean 
values ± SEM. *P < 0.05, as calculated by Student’s t test.
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in the case of low-acylated lipid A of B. cenocepacia, the length of 
the acyl chains and the presence of Ara4N significantly affected 
the biological activity of LPS (10).

Lipopolysaccharide species from P. aeruginosa was inactive 
in our assays, inducing no measurable cytokine production 
by BMDM (Figures  4 and 5). Interestingly, lipid A from P. 
aeruginosa strain studied in this work contains a maximum of 
four acyl chains and therefore appears underacylated as com-
pared to published data on the degree of P. aeruginosa lipid A 
acylation, which varies from strain to strain and depends on 
the environmental conditions (42, 43). Nevertheless, lipid IVa 
from E. coli (49) and LPS from Y. pestis ΔlpxM/ΔlpxP mutant 
(47) which contain tetraacylated lipid A can induce the pro-
duction of cytokines by murine macrophages, albeit at lower 
levels. This observation suggests that tetraacylated lipid A is 

minimally required yet not sufficient to fully engage TLR4 in 
signal transduction. The difference between active and inactive 
tetraacylated lipid A may be attributable to the total charge of 
this molecule defined by the presence or absence of negatively 
charged phosphate groups and positively charged Ara4N resi-
dues (50) as well as to a different fatty acid chain length (C12 in 
the inactive P. aeruginosa tetraacylated lipid A versus C14 in the 
active E. coli lipid IVa).

Structure–function relationships for distinct LPS species 
are clinically important for a number of reasons. Pathogenic 
bacteria may employ LPS with low biological activity to evade 
proper recognition by the TLR4/MD-2 system, dampening 
the host immune response and increasing the risk of bacterial 
dissemination. On the other hand, such LPS would not be able 
to induce septic shock in susceptible patients (51), rendering 
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