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Abstract
Background: Lung cancer images require large memory storage and transmission bandwidth for 
sending the data. Compressive sensing (CS), as a method with a statistical approach in signal 
sampling, provides different output patterns based on information sources. Thus, it can be considered 
that CS can be used for feature extraction of compressed information. Methods: In this study, we 
proposed a novel texture extraction‑based CS for lung cancer classification. We classify three types 
of lung cancer, including adenocarcinoma (ACA), squamous cell carcinoma (SCC), and benign lung 
cancer (N). The classification is carried out based on texture extraction, which is processed in 2 
stages, the first stage to detect N and the second to detect ACA and SCC. Results: The simulation 
results show that two‑stage texture extraction can improve accuracy by an average of 84%. The 
proposed system is expected to be decision support in assisting clinical diagnosis. In terms of 
technical storage, this system can save memory resources. Conclusions: The proposed two‑step 
texture extraction system combined with CS and K‑ Nearest Neighbor has succeeded in classifying 
lung cancer with high accuracy; the system can also save memory storage. It is necessary to examine 
the complexity of the proposed method so that it can be analyzed further.
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Introduction
The advancement of medical devices, 
especially medical imaging, has been 
accompanied by an increase in sensing 
quality with greater detail and large data 
sizes.[1] It requires large memory resources 
in storage and data transfer. Another critical 
issue in terms of large memory requirements 
is the application of telemedicine with a 
variety of medical instruments connected to 
the internet in exchange for information.[2] 
Paying attention to the large image file size 
can be a new problem in the provision of 
storage media.[3]

To deal with this problem is to apply 
compression to reduce data storage 
capacity while ensuring the quality of 
the data.[4] Recently, the compressive 
sensing (CS) technique has received 
attention to be developed massively 
to compress information with a high 
compression ratio compared to other 
well‑established methods. CS will extract 

significant information in the form of 
a measurement matrix.[5] Donoho first 
published CS in 2006.[6] This technique is 
used for signal sampling at a rate below 
the Nyquist theorem; the compression rate 
is higher than the convenience sampling 
method.[7] Another advantage of CS is 
that it can simultaneously carry out the 
acquisition and reconstruction processes.[8]

Instead of compressing and obtaining 
meaningful information from the source, 
CS techniques are being developed for 
feature extraction in classification on 
signals or image applications.[9‑11] This 
will be very beneficial because CS has 
generated valuable information that can be 
used as a feature vector. Some researchers 
have proposed CS to simulate disease 
classification or medical diagnosis on 
signals or images as a feature extraction 
method. Studies related to the application of 
CS in the electrocardiogram (ECG) signal 
compression provide a reconstruction result 
similar to the original signal.[12,13] This can 
be the basis that CS does not omit signal 
information. CS combined with machine 
learning on ECG signal classification 
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was simulated in the study.[14,15] The results of their study 
showed high accuracy in the compressed signal. The use 
of CS in other medical signal classifications such as EEG 
epileptic detection has been reported in studies.[16‑18] These 
studies also show that CS delivers high performance in 
classification applications. The CS approach in image 
classification has also received attention; instead of 
compressing the image size, the CS approach is used for 
feature extraction of the observed images. Recently, a CS 
simulation in image classification or detection is reported 
in Jokić and Vuković, Islam et al., and Obermeier and 
Martinez‑Lorenzo.[9,19,20] Their study proved that CS is 
a potential approach for both compression and feature 
extraction.

The previous study by Irawati et al.[21] proposed a lung 
cancer image classification algorithm using the CS approach 
for feature extraction combined with the K‑ Nearest 
Neighbor (KNN) for classification. The performance of 
the proposed method was tested on the Lung and Colon 
cancer LC25000 dataset. This dataset contains Lung and 
Colon Histopathological images with a total of 25,000 
images consisting of adenocarcinoma (ACA), squamous 
cell carcinoma (SCC), benign lung cancer (N), and the 
other two classes are colon cancer cases, with each class 
being 5000 images. In simulations with three data classes, 
including ACA, SCC, and N, the proposed method can 
generate up to 100% accuracy for N classification and 70% 
for ACA and SCC classification. From this study, there is 
still a gap in improving accuracy, particularly in the case of 
the ACA and SCC classifications. Therefore, in this study, 
a new method for the classification of lung cancer images 
was developed. The goal of this study is to get a high 
accuracy system. The novelty of the proposed method is 
that there is texture extraction at the CS acquisition and CS 
reconstruction stages. The two resulting feature vectors are 
then combined to become predictors at the classification 
stage.

As a reminder, this paper is organized as follows. The 
proposed methods are presented in section 2. Details 
of the algorithm are also described in this section. 
Meanwhile, section 3 explains the dataset used in the study 
and simulation results, followed by an explanation and 
discussion. The conclusions of this study are presented in 
section 4. Section 4 also presents the limitations of this 
study and the opportunities for future studies.

Proposed Texture Extraction
In this section, we enhance the research method in Irawati 
et al.[21] We proposed CS for reducing the number of 
samples required for medical image diagnosis. The main 
part of CS is the sparse matrix and the measurement 
matrix as shown in Figure 1. The sparse matrix can be 
obtained by Discrete Cosine Transform (DCT), Wavelet 
transform, or Fourier transform. The sparsity process and 
the measurement matrix will result in data compression. 

Since the data is a color image, CS reduces the dimensions 
of lung cancer images consisting of red (R), green (G), and 
blue (B) intensities. We proposed two‑dimensional (2‑D) 
DCT to sparse the image, convert 2‑D images to 1‑D 
images and sample the images using a uniform distributed 
measurement matrix. Dimensional reduction is carried out 
since the image can be reconstructed using the Orthogonal 
Matching Pursuit (OMP) reconstruction algorithm.[22] We 
use DCT as sparsity transform. The original lung image 
is not sparse. To make the image sparse, we transform 
the image in block based by two‑dimensionality DCT. We 
convert the sparse image to a one‑dimensionality signal 
and multiply the signal with the measurement rate (MR) to 
have a compressed signal in the CS domain. In the decoder, 
we use OMP as the simplest reconstruction method of CS, 
but it obtains a good performance if the input of the CS 
signal is sparse.

These images are processed through two stages of texture 
extraction, respectively. The extraction is carried out at 
two stages because the characteristics of the image have 
different characters from one class to another. The first 
texture extraction aims to detect all types of N cancer. To 
get class N only, it takes the CS acquisition output on the 
color intensity feature on the R layer and the skewness 
on the G layer to detect it. The color feature extraction 
becomes stage‑1 extraction, which is then detected to 
retrieve images of type N. The first texture extraction 
process is carried out after the measurement matrix’s 
acquisition process, which is generated randomly using a 
uniform distribution. Uniform distribution is simple and 
effective compared to nonuniform distribution. In the 
nonuniform distribution, there needs to be a normalization 
step for the value because the minimum and maximum 
values or the nonuniform distribution range are not fixed, 
so it requires another process that adds to the calculation.

The OMP algorithm solves the problem of recovering 1‑D 
images. These 1‑D images are reconstructed to be 2‑D 
images. The 2‑D inverse DCT block calculates the 2‑D 
inverse discrete cosine transformation of the input signal. 
The next process is texture extraction Stage‑2. After the 
extraction process and the first stage has detected N, the 
assumption of the next test data is that it only consists of 
ACA and SCC. Meanwhile, the second texture extraction 
was carried out to distinguish between ACA and SCC types 
and the results were stored in Database 2. The second 
extraction was carried out after the reconstruction because 
the feature to distinguish the two classes was not obtained 
in the CS domain, then the entropy statistical feature at 
layer G was needed to distinguish these two classes. This 
feature extraction is based on parameters of intensity,[23] 
skewness,[24] and entropy.[25] Texture extraction is carried 
out in the training and testing phase. The classification 
process of the extracted results is carried out using KNN. 
The methods developed can be seen in the block diagram 
as shown in Figure 1.
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The performance of the proposed method is measured 
by several parameters, including peak signal to noise 
ratio (PSNR), compression ratio (CR), and accuracy. PSNR is 
used to compare the quality of the original image with the CS 
image.[26] CR is a dimensional comparison between the original 
image and the compressed image.[27] Accuracy is a comparison 
between the original image and the classified image.

The training algorithms are briefly described using the 
following steps:
1. Read a colored training image X with size P × Q
2. Generate random and uniform distributed matrix A with 

size M × B2

3. Take the first layer of the image as the red layer of the 
image Xr

4. Apply block processing to the image producing Xr{i} 
with block size B × B and i is the ith block of the image

5. Change the image block into 1‑D signal by reshaping 
the block, this step produces Xr1D with size B2 × 1

6. Apply CS acquisition Yr{i}=AXr1D{i} producing Yr{i} 
with size M × 1

7. Repeat step 4–6, from i = 1 to e as the end of the block 
from Xr{i}. Thus, all parts of the image are already 
compressed producing Yr.

8. Calculate the intensity average of Yr producing Ir.
9. Calculate the skewness of Yr producing Sg.
10. Repeat step 3–6 for green layer of the image Xg, 

producing Yg.
11. Using block processing Yg{i} is reconstructed by OMP 

producing block‑based image Xtg{i}
12. Combine all block of Xtg{i} from 1 to e producing Xtg
13. Calculate the entropy of Xtg producing Eg
14. Repeat 1–13 for other training image file. If there are 

M training image files, there will be Ir(j),Sg(j) and Eg(j), 
with j= 1 to M.

15. Apply averaging of Ir(j),Sg(j) and Eg(j) for each lung 
cancer type producing Ir1, Ir2, Ir3, Sg1, Sg2, Sg3, Eg1, Eg2 

and Eg3. Index 1 means ACA type, 2 means N type, and 
3 means SCC type. Save all the result to the database. Ir 
and Sg to the DB1, and Eg to the DB2.

While the procedure for the testing phase follows the steps 
below:
1. Read a colored testing image X with size P × Q
2. Load the random and uniform distributed matrix A with 

size M × B2 (same as training)
3. Take the first layer of the testing image as the red layer 

of the image Xsr
4. Apply block processing to the image producing Xsr{i} 

with block size B × B and i is the ith block of the image
5. Change the image block into 1‑D signal by reshaping 

the block, this step produces Xsr1D with size B2 × 1
6. Apply CS acquisition Ysr{i}=AXsr1D{i} producing Ysr{i} 

with size M × 1
7. Repeat step 4–6, from i = 1 to e as the end of the 

block from Xsr{i}. Thus, all part of the image is already 
compressed producing Ysr

8. Calculate the intensity average of Ysr producing Isr
9. Calculate the skewness of Ysr producing Isg
10. Calculate the minimum distance from Isr and Sgr to 

Ir1, Ir2, Ir3, Sg1, Sg2 and Sg3, as the following equation: 
dr=arg min(| Isr‑Irk|) and dg=arg min(| Ssg‑Igk|), where 
k= 1(ACA),2(N),3(SCC)

11. If dr and dg are 2, apply the decision that the testing 
image file is N

12. If dr and dg are not 2, using block processing Ysr{i} is 
reconstructed by OMP producing block‑based image 
Xstg{i}

13. Combine all blocks of Xstg{i} from 1 to e producing Xstg
14. Calculate the entropy of Xstg producing Esg
15. Calculate the minimum distance from Esg to Eg1 and Eg3 

as the following equation: dg= arg min(| Esgr‑Egk|), where  
k = 1(ACA) and 3 (SCC)

16. If, dg=1 apply the decision that the testing file is ACA 

Figure 1: Training and testing phase
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type, and if dg=3, apply the decision that the testing file 
is SCC type

17. Repeat steps 1–16 for the next testing file
18. Calculate the accuracy of the detection result.

Simulation Results and Analysis
Datasets used in the study

We use the LC25000 dataset to evaluate the performance of 
the proposed method. The dataset consists of lung and colon 
histopathological images with 15,000 color images for lung 
cancer in 3 classes, ACA, SCC, and N.[28] Each class contains 
5000 images. All images are saved in a jpeg file format 
with a size of 768 × 768 pixels. Sample histopathological 
images of each type are presented in Figure 2. We simulate a 
sample for training and testing to verify the accuracy of the 
classification method with the proposed texture extraction 
and sparse representation based on the perspective of training 
and testing samples, block dimensions, MR, and CR.

Comparison accuracy of training data number

In this experiment, we set 300 images as testing data, block 
size, and MR 64. We tested training images 1, 10, 20, 

30, 40, and 50. In this simulation, three types of cancer, 
N, ACA, and SCC, are shown as well as the total which 
determined the average of accuracy from the three types 
of cancer. Figure 3 shows that the increase of the training 
sample resulted in a gradual increase in the classification 
accuracy of N and total type. The accuracy of each type 
is stable after the number of training samples is above 30, 
with the accuracy for N>92%, ACA >86%, SCC >75% 
so that the total >84% These results indicate a higher 
classification accuracy than previous studies[21] in the 

Figure 3: Accuracy result of training data number for three types of lung cancer 
when testing sample is 300, block size 32 × 32 , and measurement rate 64

Figure 4: Accuracy result of measurement rate for three types of lung cancer 
when training sample is 30, testing sample is 300, block size is 32 × 32 

Figure 5: Trade-off between PSNR and compression ratio on measurement 
rate

Figure 2: Lung cancer histopathological images used in the study (a) ACA 
(b) SCC (c) N

cba
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ACC and SCC classification cases. The detection accuracy 
obtained in this study is higher than that of several previous 
studies as reported in Shen et al., Sun et al., and Masood 
et al.,[29‑31] generating 87.14%, 89.9%, and 89.52% accuracy, 
respectively, in the classification of lung cancer. However, 
this study cannot be concluded that is superior to previous 
studies because the datasets used are different. At least, 
this proposed method can provide a new perspective that 
CS can perform both compression and feature extraction 
purposes

Comparison accuracy of measurement rate

Figure 4 shows the comparison of the accuracy from the 
MRs for three types of lung cancer. Simulation is set on 
training image 30, testing image 300, and block size 
32 × 32. The simulation results show that MR does not 
affect accuracy results. For a MR >32, the accuracy for 
N cancer type is above 92%, ACA and total types are 
above 84%, and SCC is above 75%. In this case, the use 
of MR 32 is highly recommended, which will affect the 
compression results.

Trade‑off between peak signal to noise ratio and 
compression ratio on measurement rate

We show in Figure 5 the trade‑off between PSNR and 
CR on different MR. The simulation parameters used are 
5 training samples and 300 testing samples. The results 
determine that the increase of MR, the PSNR, and CR 
is also increased. The increasing MR then CR also 

increased according to the equation. 2

MRCR =
block size

 

There was a significant increase in the PSNR value for 
measurement rate 16–32.

Trade‑off between accuracy, peak signal to noise ratio 
on block size

Figure 6 shows the trade‑off between accuracy and PSNR 
on block size. In this experiment, we take five training 
samples, 300 testing samples, and 6.25% CR. To determine 
the effect of the block size, we test them a couple of sizes 8, 
16, 32, and 64. The block size that makes the classification 
results stable is the size 16 and above. The stability shows 
that the accuracy value tends to be constant, not changing 
significantly. At block size 8, the accuracy value is low 
and changes significantly. In addition, at the 8 × 8 block 
size, the reconstructed PSNR value is also much lower than 
the PSNR for the 64 × 64 and above block sizes; thus, the 
block size is not recommended.

Table 1 shows the comparison of accuracy in previous 
studies[21] and the proposed method. In research,[21] the 
sparsity technique used were FFT, IFFT, DWT, and without 
sparsity scheme, and feature extraction was carried out in one 
step. Meanwhile, the proposed study uses the DCT sparsity 
technique and two‑stage feature extraction. The average 
accuracy of the proposed method has a higher value than 
previous studies because the one‑stage extraction feature 
works to generate features for three types of cancer at once, 
while the two‑stage feature extraction details the features, 
with the first stage only getting features of type N and at the 
second stage to obtain characteristics of other types of cancer.

Table 2 shows the Precision, Recall, and F1‑score of 
the proposed system. The value of precision, recall, and 
F1‑score for the N class is highest than the other classes. 
The ACA class has the lowest value for precision. At the 
same time, the SCC class has the lowest score on the 
parameter recall and F1‑score.

Conclusions
This paper proposed CS for dimension reduction, two‑stage 
texture extraction, and KNN for classification. The 
CS‑based texture extraction developed for lung cancer 

Table 1: Comparison of accuracy in previous study[21] 
with the proposed method

Training 
data number

Sparsity 
scheme

Accuracy (%)
ACA N SCC Average

1 FFT[21] 56 92 26 58
IFFT[21] 40 76 24 47
DWT[21] 28 72 20 40
None[21] 42 94 28 55
Proposed 97 82 46 75

10 FFT[21] 68 98 58 75
IFFT[21] 56 94 52 67
DWT[21] 54 90 44 63
None[21] 72 96 52 73
Proposed 92 98 64 84

ACA – Adenocarcinoma; N – Benign lung cancer;  
SCC – Squamous cell carcinoma

Figure 6: Trade-off between accuracy and peak signal  to noise ratio on 
block size
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data classification has improved the accuracy for each 
cancer class. The proposed system is a combination of 
sparsity methods with 2‑D DCT, uniformly distributed 
measurement matrix, OMP reconstruction algorithm, 
and two‑stage texture extraction and KNN classification. 
Texture extraction is based on parameters of intensity, 
skewness, and entropy. The simulation results show that 
at the number of training samples 300, the accuracy for 
type N cancer is above 92%, ACC type is above 86%, 
and SCC is above 76%. This proposed method has good 
accuracy and generates higher accuracy for classification 
than the previous study as well as save storage memory. 
It is necessary to examine the complexity of the proposed 
method so that it can be analyzed further.
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