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Abstract 

The onset of neurodegenerative disease has not only been a major cause of scientific worry, but of economic burden 
to the health system. This condition has been further attributed to mis-stability, deletion or mutation of tau protein, 
causing the onset of Corticobasal degeneration, Pick’s diseases, Progressive supranuclear palsy, Argyrophilic grains 
disease, Alzheimer’s diseases etc. as scientifically renowned. This is mainly related to dysregulation of translational 
machinery, upregulation of proinflammatory cytokines and inhibition of several essential cascades such as ERK 
signaling cascade, GSK3β, CREB, and PKA/PKB (Akt) signaling cascades that enhances protein processing, normal 
protein folding, cognitive function, and microtubule associated tau stability. Administration of some nutrients and/
or bioactive compounds has a high tendency to impede tau mediated inflammation at neuronal level. Furthermore, 
prevention and neutralization of protein misfolding through modulation of microtubule tau stability and prevention 
of protein misfolding is by virtue few of the numerous beneficial effects of physical activity. Of utmost important in 
this study is the exploration of promising bioactivities of nutraceuticals found in china and the ameliorating potential 
of physical activity on tauopathies, while highlighting animal and in vitro studies that have been investigated for com-
prehensive understanding of its potential and an insight into the effects on human highly probable to tau mediated 
neurodegeneration.

Keywords:  Tau, Neurodegenerative diseases, Nutraceutical, Physical activity, Bioactive compounds

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
At present, neurodegenerative diseases remain a great 
source of concern to public health, health practition-
ers and scientists at large, poising itself as a major eco-
nomical headache to health care systems. Critical to the 
stability of microtubule it is a contaminant identified in 
1975 by Weingarten and colleagues called TAU whose 
aggregates is a pathological indicator of tauopathies [1]. 
More so, tau has an overall incidence rate of 1.1 cases per 
100,000 persons-year and a presumed onset of symptoms 
at 60 years and above. Psp recorded the highest incidence 
of tauopathy at a rate of [1.1 in men vs 0–6 in women], 

an inverse proportion to incidence recorded in CBS (0.1 
in men and 0.3 women) [2].Conventional tauopathies, 
includes Alzheimer’s disease (AD), corticobasal degen-
eration (CBD), progressive supranuclear palsy (PSP), 
Pick’s disease (PiD), argyrophilic grain disease (AGD), 
Huntington’s disease (HD), and frontotemporal dementia 
with Parkinsonism-17 (FTDP-17), all of which are neuro-
deteriorating diseases marked by the abnormal deposi-
tion of microtubule stability protein tau[3]. In 1975, the 
tau protein that has a prominent role in the assembly 
and stabilization of microtubules was first expressed in 
neurons within the central nervous system [4]. The indis-
pensable role of tau in the transport of axons and neur-
ite eruption cannot be overlooked [5]. Tauopathies such 
as Neurofibrillary tangles and formation of paired heli-
cal tangles (NFTs) can be traced to the withdrawal of tau 
from microtubules [6, 7], with tau mutations, mis splicing 
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and abnormal post translational modifications being the 
risk factors [8, 9]. Although, tau induced neurodegenera-
tion and mechanisms that leads to the upregulation of tau 
aggregation are yet to be clarified. AD is characterized by 
amyloid plaques made up of β-amyloid peptide and neu-
rofibrillary tangles, comprising of hyperphosphorylated 
Microtubule Associated Protein Tau (MAPT or Tau), 
leading to loss of neurons and synapses as seen in other 
tauopathies. [10, 11]. Understanding the roles of these Aβ 
and tau pathologies is yet to be achieved after decades 
of research. Howbeit, difficulties in restating neurode-
generation via in vitro and in vivo animal models has led 
to a steady progress. Modulation of oxidative stress and 
inhibition of neuroinflammation to impede tau induced 
inflammation at the neuronal level and curb cognitive 
impairment should be considered towards the mitiga-
tion of in vivo oxidative process and aversion of neuronal 
damage. Thus, administration of nutrients and/or bioac-
tive in combination with persistent exercise might aid the 
regulation of microtubule tau activity. Furthermore, neu-
robiological mechanisms (hormones, neurotropic factor 
levels, neurotransmitter secretion) can be triggered by 
exercise [12, 13], upregulating growth factors required 
for brain tissue development [14–16], regulating apop-
tosis and instigating neurogenesis in specific parts of the 
brain [17]. This study outlays the role of tau in brain dis-
eases, the reassuring capacity of nutraceuticals found in 
china and exercise on tau mediated neurodegeneration, 
with the aim of creating the framework to further eluci-
date the interaction between these three facets and their 
effect on neurodegenerative diseases.

Role of tau in brain diseases
Microtubule associated protein tau encoded by tau gene 
(MAPT) is an intricate highly domain proteinous macro-
molecule associated with the axons of neurons enhanc-
ing stability of living species [4]. It is a multi-terminal 
protein, consisting of a highly acidic N-terminal and the 
neutral C-terminal connected by a central binding basic 
proline region [18]. Under pathogenic conditions, the 
multi domain tau builds up in the soma and dendrites 
of neurons. Strictly regulated by alternative splicing, 
tau exhibits six isoforms, distinguished by 2 N-terminal 
repeats (0  N, 1  N, or 2  N) and 3–4 microtubules bind-
ing repeats at the C-terminus (3R or 4R) [19]. Although 
tau plays important roles in the nervous system, uncou-
pling of microtubule from tau can be severe most signifi-
cantly a leading cause of tauopathies [6, 7]. To maintain 
this relationship, tau protein is modulated by post-
translational modifications and its isoforms by splicing 
is thus ensured. The action is thus possible by the down-
regulation of 3′ untranslated region of target mRNAs by 
microRNA (miRNA) [20]. Thus, inhibits the formation 

of truncated proteins and enhances microtubule-tau sta-
bility. With tau having a basic region which is responsi-
ble for its non-covalent interactions with the phosphate 
backbone of RNA [21]. Recent study further described 
the association of tau with RNA binding proteins U1 [22]. 
U1 are minute spliceosome nucleoproteins that binds to 
RNA highly essential in the regulation of RNA metabo-
lism. However, the onset of tauopathies indicates mani-
festations such as dysregulation and aggregation of U1 
ribonucleoprotein [23, 24], aggregation and improper 
hyper phosphorylation of insoluble tau [25], thereby 
leading to the detachment of tau from microtubules. 
Recent in vivo models further affirm that neurodegenera-
tion and splicing defects occurs in U1-ribonucleoprotein 
tauopathies linked disease [26, 27]. Additionally, at the 
indication of translational stress, the cytoplasm assem-
bles RNA and proteins to counteract these effects, thus 
leading to the formation of stress granules [27]. The acti-
vation of stress granules impairs proper translational 
machinery and cleaves RNA binding proteins which in 
response prevents the synthesis of truncated proteins. 
This action is possible due to the interaction of tau with 
proteins responsible for the formation of stress-granules. 
However, manifestation of brain diseases is characterized 
by the inactivation of this cascade [28, 29]. Furthermore, 
several studies have established the association of tau 
with ribosomes in regulating the translation machinery. 
This action is essential in maintaining the dendrites and 
synaptic plasticity of neurons [30–33]. Translational dys-
regulation has been associated with neurodegenerative 
diseases involving several complex molecular cascades 
that converges on the ribosome [34, 35]. Neurotic mani-
festation of tau-mediated neurodegeneration includes 
the onset of neurofibrillary tangles (NFT’s) as a result of 
aggregation of insoluble tau, although soluble oligomeric 
forms of tau have also been developed in neuronal dys-
function and physiological decay [36, 37]. However, the 
identification of human brain suffering from PSP, AD 
shows the assembly of oligomeric protein tau and simi-
lar brain function decline was observed in P301L mutant 
mice (rTg4510) [38–40] etc. Mice of familial FLTD-tau, 
results in the expression of frontotemporal dementia as 
observed in the articulation of human tau [37, 41]. The 
reduction in spine density, deterioration of permanent 
memory and changes in spine morphology was observed 
at the onset of AD during a mice study [42]. Similarly, 
the initiation of action potential by the specialized action 
initial segment and the regulation of neuronal excit-
ability creating a barrier for the axonal compartment 
was inhibited in acetyl-mimic tau mice, resulting in the 
destabilization of AIS proteins [43]. Finally, post trans-
lational modifications of tau ensures proper stability 
of tau and microtubules, preventing the inactivation of 
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stress granules. This extensive modification occurs via 
the action of several enzymes including kinase, acetylase, 
ubiquitin-degrading enzyme, methylase, glycosylase and 
protease enzyme [44]. However, aberrant post-transla-
tional modifications are critical in triggering synapse dys-
function and deterioration (Fig. 1).

Neurodegenrative diseases associated to tau
Neurodegenerative disorder can be defined as the assem-
bly of neurological issues which has impact on a subsec-
tion of neurons from a specific part of the focal sensory 
system and consistently induce their disintegration 
[45]. The positioning of harmful protein totals, indi-
cate neurodegenerative disorder due to the misfolding 
and statement in the intra or extra neuronal locale [46]. 
Neurodegenerative Tauopathies integrate the compul-
sive state at which the microtubule stability protein tau, 
undergoes misfolding and gets reserved to shape the neu-
rofibrillary tangles and tau fibers [7, 46]. Dysregulation of 
translational machinery could lead to a concomitant dis-
association of tau protein and microtubules [34, 35]. Neu-
rodegenerative diseases associated with tau (tauopathies) 
are classified into two, based on the pathological disper-
sal and the difference in biochemistry [47]. These basics 
classification namely primary and secondary tauopathies 
shares similar disease-relevant processes. Indicated by 
atrophy of the frontal cortex and temporal lobes, primary 
tauopathies are regularly in mix with decline subcorti-
cal mind zones, a member of the frontotemporal lobar 

degeneration (FTLD) diseases [48]. Existing isoforms of 
primary tauopathies includes 4R (AGD, PSP, CD, globu-
lar glial tauopathy), 3R (Picks disease) or 3R & 4R (Neu-
rofibrillary tangle diseases) [49–51]. Additionally, the 
neurodegenerative AD is classified as a secondary 3R/4R 
isoform tauopathies [52].

Progressive supranuclear palsy
PSP is a 4R isoform affiliated by tufted astrocytes, glo-
bose neurofibrillary tangles in grey matter and coiled 
bodies in oligodendrocytes in white matter [53]. It is an 
intricate clinicopathologic disease mostly affirmed by 
post mortem activities [54], with the mean age of onset 
is the mid-sixties and prevalence is estimated at 6 per 
100,000 persons [1, 55, 56]. Affirmatively, the onset of 
ventrical supranuclear palsy and postural instability an 
indicator of PSP, while the onset of either signifies a clini-
cally possible PSP [57]. Most commonly, PSP occurs with 
Richardson syndrome (PSP-RS), a nervous targeting dis-
ease with high probability of occurrence during autopsy 
[57–59]. Several existing occurrences of PSP includes, 
(PSP-PLS) [60, 61], (PSP-CBD) [62], PSP with progressive 
gait freezing [63, 64] and (PSP-C) [65, 66]. Environmental 
studies in France revealed that high rate of PSP emerges 
during the chronic exposure to heavy metals [67, 68]. 
Studies further revealed that extreme intake of electron 
transport chain complex inhibitor found in pawpaw [69, 
70]. The occurrence of PSP is about 5–6 times increased 
in aberration or deletion of MAPT gene which is the 

Fig. 1  Schematic illustration of the role of tau in brain diseases
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major cause of PSP [71–73]. Several other indicators of 
PSP include increased oxidative stress, superior frontal 
cortex activation of lipid peroxidation markers, midbrain 
and subthalamic activation of lipid peroxidation markers, 
resulting in the activation of the inflammatory cytokines 
IL1β is observed in PSP [74]. To contain the damaging 
effects of PSP, the body defense system upregulates the 
synthesis and action of essential antioxidants majorly 
the superoxide dismutase, glutathione [75, 76]. Hyper-
phosphorylation remains a significant typical element of 
protein tau in PSP. This is due to the significant rise in 
reactive oxygen species synthesis, modification of kinase-
based signaling cascades via enactment or outflow of the 
cascade components. In several tauopathies including 
PSP, increased activity of extracellular-regulated kinase 
1 & 2 (ERK-1 /ERK-2), increased expression of stress 
activated protein kinase (SAPK/ JNK) and calcium/ 
calmodulin-dependent kinase II (CaM Kinase II) overex-
pression occurs [77], affirming the role of tau phospho-
rylation. Traditionally, protein kinase p38SAPK activated 
on the onset of stress is linked with reactive oxygen spe-
cies induced oxidative stress. Several clinical trial drugs 
examined for PSP includes valproic acid (NCT00385710, 
NCT00703677), tideglusib underwent a double-blinded 
placebo trial which also failed in PSP treatment. Others 
include salsalate (NCT02422485), CDK5 (NCT04253132) 
[78] etc.

Corticobasal degeneration
Corticobasal degeneration (CBD), is a member of the 4R 
tauopathies basically associated with behavioral, cogni-
tive and motor disorder [79]. It was formerly referred to 
as a corticodentatonigral degeneration, closely associated 
with neuronal achromasia [80]. While a clear and definite 
figure on the prevalence of CBD is currently unavailable, 
an average of 4.9–7.3 cases in every hundred thousand 
persons was accounted by eastern European and Asian 
population study [81]. More so, despite the naming of 
this condition CBD since 1989, few researchers preferably 
name it as corticobasal ganglionic degeneration [82–84]. 
Notably, is the clear differentiation of CBD from cortico-
basal syndrome (CBS). CBS is clearly a CBD phenotype 
manifested by the emergence of two or more crooked 
cortical ignitions such as myoclonus, limb apraxia and 
parkinsonism [85]. Over expression of the kinase enzyme 
(responsible for phosphorylation), causes an improper 
hyperphosphorylation of insoluble tau and a concomitant 
release of tau protein from microtubule in the brainstems, 
somatosensory region, basal ganglia, and supplementary 
motor cortices as the major manifestation of CBD [86]. 
Thus, causing a loss of microtubule function. Dementia 
ranging from FTD-AD prototype, CBS, PSP, RD are the 
frequently occurring CBD phenotype [87]. Pathologically, 

the trademark injury of CBD in most cases is astrocytic 
plaque, caused by the deposition of abnormal tau, abnor-
mal proteins in AD, Parkinson disease and Multiple scle-
rosis (MS) [88], cohabiting normally with dystrophic 
neurites and irregularities in discharge of tau muddles by 
the oligodendroglia cytoplasm [89, 90]. Furthermore, it 
is characterized by the invasion of neurotransmitters by 
prion like proteins [91], thus sharing an overlapping clini-
cal and pathological feature with PSP. This effect leads 
in the expression of proinflammatory interleukin 1beta 
(1L1β), interleukin 6 (IL6), and increasing level of tumor 
necrosis factor alpha (TNFα), causing plaque and micro-
glia degeneration, a hallmark of neuroinflammation [92]. 
However, despite the relation of CBD with PSP, biochem-
ical features of both 4R tauopathies differs. Most notably, 
is a double 37kda band tau fragment as compared to the 
single 33kda band fragment of PSP [88, 93]. While it is 
clear that mutation of the encoding MAPT gene, situ-
ated on 17q21.31 chromosome is the hallmark of CBD 
emergence, postmortem examination of CBD patients 
observed a connection between single nucleotide poly-
morphisms (SNPs) in MAPT H1 haplotype and the 
hydrolyzing enzyme Rab GTpase, acting on myelin asso-
ciated oligodendrocyte basic proteins (MOBP), essential 
in the effective functioning of myelin sheath [94]. Cur-
rently, there still remains no globally accepted therapy for 
the treatment of CBD, suspected patients may progress 
from acute to chronic, requiring intensive care, express-
ing behavioral and cognitive disorders [95]. However, 
several drugs have been tried in the management of CBD 
which includes levodopa, benzodiazepines [96], leveti-
racetam [97], intramuscular administration of botulinum 
toxin [98]. As science grows each day, the concept of 
CBD becomes clearer, although autopsy is still the major 
diagnosis of the 4R tauopathy CBD at present.

Argyrophilic grain disease
Argyrophilic grain (ArG) is a 25  nm smooth tubules 
and straight filament, spindle like in shape or a spheri-
cal lesion in appearance, identified majorly at the onset 
of Argyrophilic grain disease (AgD). It is responsive to 
silver iodide staining techniques, and visible in abnor-
mally phosphorylated tau proteins, for diagnosis purpose 
[99]. ArG is distributed across trans entorhinal, entorhi-
nal cortices, sub nuclei of amygdala, amygdaloid com-
plex, and in minute cases the basal portions of claustrum 
[100, 101]. In variant to NFT, ArG are absent in neuronal 
cell perikaryal [102]. A notable hallmark of AgD is the 
appearance of coiled bodies, mostly branched oligoden-
droglia inclusions around the nucleus [103, 104]. They 
are located around the cortices and subcortices of ArG 
at the manifestation of AgD, distinguished by hyperphos-
phorylation, similar to pentangle neurons. More so, the 
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prevalence of AgD increases in degenerative dementia 
cases, and also directly proportional to age [105]. Fron-
totemporal cortical atrophy is also observed upon gross 
examination [106]. Normal phosphorylation of microtu-
bule tau transpires at Serine (202,214,235,396,404,422) 
and Threonine (181,205, 231) although excessive kinase 
activity of tau protein occurs at Ser 262 [107]. These resi-
dues are catalyzed by mitogen-activated protein kinase, 
SAPK/JNK, glycogen synthase kinase 3β (GSK-3β) & p38 
kinases [108]. AgD remains a member of the 4R tauopa-
thies, however immunohistochemistry remains the major 
diagnosis tool, in detailing the pathologic conditions of 
an AgD patient.

Alzheimers diseases
AD is one of the leading causes of medical challenges, 
affecting mankind and derailing healthy living. The chal-
lenge to contain and improve the management of AD has 
been on over years since it was coined in 1970. A major 
pathophysiological protein, relevant to the progression 
of AD is the microtubule associated tau protein. Present 
evidences point at the aggregation of abnormal tau at 
the synapse and nucleus, elucidating a loss of tau func-
tion as the pathological mechanism of AD emergence 
[109–111]. Distinctive features at the hippocampal and 
temporal cortical regions, identified by the deposition of 
insoluble hyperphosphorylation tau, NFT, and deposition 
of β-amyloid (Neurotic plaques) are indicative features of 
AD. This proceeds to several worrisome conditions such 
as memory loss, impaired behavioral activities, visuospa-
tial function impairment and loss of cognitive functions 
[112, 113]. Similarly, lessening in Aβ 42, low proportion 
of Aβ 42 to amyloid β 1–40 proportions, expansion of 
t-tau and p-tau, incorporation of amyloid markers (Aβx-
38, Aβx-40, Aβx-42 and solvent antecedent protein), 
complex fiber axonal degeneration, and neuroinflam-
mation indicating protein (chitinase-3-like protein1/ 
YKL-40) are all molecular signatures of AD [114, 115]. 
Pathologically, four in every five AD patients expresses 
the deposition of alpha-synuclein in lewy body demen-
tia [116], and about three in every five patients with AD 
displays lewy-body type syncleinopathy [117]. While 4R 
tauopathies are histologically indicated in the pathol-
ogy of AD [11], deposition of TDP-43 deposits, linked to 
β-amyloid dependent and independent cascades are also 
recognized in AD brains [118, 119]. Finally, there are sev-
eral G-protein coupled receptors (GPCR), mediating the 
phosphorylation of tau protein via kinases majorly via the 
ERKs, GSK-3β, protein kinases and CDK-5 [120, 121]. 
Activation of GPCR by either of its activation cascade 
notably intracellular activation, transactivation, classical 
activation, diphasic activation, or biased activation cas-
cade, allows for the protection against cell degeneration, 

oxidative and cytosolic stress protection [122–124]. 
However, the progression of AD is characterized by 
imbalances between GPCR-mediated kinases, thus lead-
ing to improper hyperphosphorylation of tau-microtu-
bules [128, 129] (Table 1).

Role of chinese nutraceuticals in tau neurodegen- 
rative diseases
Emerging from the credible combination of nutrient and 
pharmaceuticals background is the word termed called 
nutraceuticals [135]. Also referred to as bioceuticals, they 
are classified as dietary supplements and food additives 
by FDA, highly efficient in protecting health and main-
taining diseases and as such increase’s life expectancy 
[136, 137]. Statistical evaluation of dietary supplements 
consumption revealed that 68% [138], 83–86% [139] and 
about 63–70% consumption rate across United states, 
Germany, Italy and Australia respectively [139–141]. 
General to tau neurodegenerative disease is the synthe-
sis of truncated proteins as observed in Aβ in AD, mis-
folded tau & TDP-43 in TBI, and misfolded Aβ & tau in 
other tauopathies [142, 143]. These concomitantly leads 
to the upregulation of detrimental molecular cascades 
that enhances degeneration. Neurodegeneration occurs 
when the misfolded proteins activates destructive mol-
ecules, most notably free radicals, mitochondrial DNA 
damage, oxidative stress, iNOS and COX-2 by the over-
expression of inflammatory cytokines via the NF-Kβ 
cascade induction [144, 145]. On the other hand, CREB, 
ERK signaling cascade, GSK3β [146], and PKA/PKB 
(Akt) signaling cascades known to promote protein pro-
cessing, normal protein folding, cognitive function, and 
microtubule associated tau stability becomes inhibited 
[145, 147, 148]. However, nutraceuticals are effective in 
the management of tauopathies. They act by upregulat-
ing ERK, Akt, GSK3β and CREB cascades, along with the 
exertion of anti-inflammatory, and reactive oxygen spe-
cies ameliorating capabilities. Thus, preventing oxidative 
stress and aid cognitive functioning. This study further 
explores some nutraceuticals found or produced in China 
and their role in management of tauopathies.

Garlic (Allium sativum)
Belonging to the family of Alliaceae, it is a highly culti-
vated vegetable believed to originate from central Asia 
in the past 6000  years ago and used in Chinese medi-
cines in the past 3000 years ago [149]. It is an abundant 
organo-sulfurous compound, efficient in management 
of several cardiovascular diseases. Their sulfur com-
pound exists as diallyl sulfide, s-allyl-l-cysteine sul-
foxides (Allin), S-allyl-l-cysteine and allicin (diallyl 
thiosulphate), all generally referred to as Allium com-
pounds [150, 151]. Although containing substantial 
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number of macromolecules, (28% CHO, 3.2% protein, 
1.5% fibers and 6.5% water), diallylsulphate; an organo-
sulfur compound was studied to be responsible for its 
pharmacological activity [152, 153] (Scheme 1).

More acknowledgeable, is the unique flavor attributed 
to freshly prepared garlic, which is notably due to the 
presence of alkyl thiosulfinates, thiosulfinates, s-alkyl-
substituted cysteine sulfoxide derivatives, pyruvate, and 
NH3 [154]. Several studies have highlighted the thera-
peutic potential attributed to garlic; thus, the medici-
nal efficacy of garlic is well renowned. These include 
immunodialatory, antitumor, anti-inflammatory, anti-
oxidant, antimicrobial, cardioprotective, anticancer 
and neuroprotective potential [155–158]. As earlier 
explained, neurodegenerative tauopathies occurs when 
misfolded proteins upregulate the inflammatory 
cytokines, activating the NF-Kβ signaling cascade and 
further downregulate ERK, CREB and Akt pathways. 
However, research has affirmed the efficacy of garlic via 
its bioactive compound s-allyl cysteine (SAC). SAC was 
found to inhibit TNFα and IL1β [159], downregulates 
NF-Kβ signaling cascades [160, 161] and further limits 
the activity of iNOS [162]. Furthermore, the neuropro-
tective potential of Allium sativum has been explored. 
Several such studies include remediation of neuronal 
damage by SAC [163, 164], neuroprotective poten-
tial in mice model [165], improved behavioral activity 
in mice [166] and finally memory enhancing effects of 
aged garlic extract [167]. While Aβ induced neurotoxic-
ity remains an indicator of neurodegenerative tauopa-
thies, Jeong et al. [168] further stressed the ameliorative 
potential of garlic. Finally, Allium sativum is classified 
as a member of GRAS (Generally Recognized as Safe) 
by FDA, due to its limited adverse effect, as such it is 

acknowledgeable to encourage the use of garlic for 
human consumption (Fig. 2).

Withania somnifera
Withania somnifera (WS) is popularly referred to as Ash-
wagandha, belonging to the family Solanaceae and identi-
fied by a small green shrub with long roots. Distributed 
across south Africa, middle east India and China, WS 
have had its part exploited since ages in the management 
of various human diseases [169, 170]. Biochemically 
composed of a combined steroidal alkaloids and lactones 
called Withanolide [171]. Withanolide are side chain ste-
roidal nucleus decorated by six membered lactone rings 
[172, 173], consisting of essential alkaloids such as witha-
nanine, tropine, choline, anaferine amidst others. Evalu-
ation of the toxicological properties of WS by several 
studies and FDA, considers WS as a safe drug for human 
consumption, having been explored and revealed antioxi-
dant capabilities, sedative, anti-inflammatory potential, 
memory enhancing capabilities, pain relief and antimi-
crobial potential [174–176]. The neuroprotective poten-
tial of WS has undergone extensive studies (Scheme 2).

Some of which includes; enhancement of dendrites for-
mation in neuroblastoma cell [177], memory enhance-
ment via withanoside IV induced RET modulation [178], 
regeneration and reconstruction of axons and synapses 
in mice damaged brain [179] and protection against cel-
lular brain damage [180]. Recall that neurodegenerative 
tauopathies are characterized by the onset of Aβ toxicity, 
however, WS bioactive compound withanolide protected 
against pheochromocytoma cells against Aβ toxicity and 
inhibited fibril formation [181, 182].

Furthermore, the antidementia potential of WS in 
mice model of AD shows upregulation of low-density 

Scheme 1  Structures of bioactive compounds present in Allium sativum 
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lipoprotein receptor in AD pathology reversal and 
improved cognitive functioning [183], all pointing at 
the neuroprotective potential of WS in the ameliora-
tion of neurodegenerative tauopathies. Finally, WS has 
been affirmed in regulating oxidative stress, inhibiting 
lipid peroxidation [184], and increasing ROS scavenging 

activity by upregulating SOD and catalase activity [185] 
(Fig. 3).

Bacopa monnieri
Bacopa monnieri (Brahimi; BM) is a perennial, highly 
branched, succulent herb characterized by a fleshy, 

Scheme 2  Bioactive compounds in Withania somnifera 

Fig. 2  Describing the role of S-allyl cysteine on misfolded protein (a characteristic of tauopathies) ↓↓: downregulation ↑↑: upregulation
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spatulate and sessile leaves, singly arranged pale blue 
flower, bivalve ovoid capsule fruits and minute seeds 
[187]. They are distributed across India, Africa, Pakistan 
and China; mostly grown for medicinal purposes [188]. 
Acclaiming a height of about 2–3 feet tall, Brahimi has 
been phytochemically analyzed to be a multi-functional 
compound with multiple bioactive compounds [189]. 
Some of which includes triterpenoids saponins, gly-
cosides, alkaloids and alcohols. Looking inward, their 
alkaloid contains brahmine, nicotine and herpestine, 
their glycoside contains pseudojujugbogeun (3-O-[α-1-
arabinofuranosyl (1–2) β-d-glucopyranosyl]), and their 
triterpenoids contains Bacoside A3 (chemically known 
as triterpenoid saponin 3-β-[O-β-d-glucopyranosyl 
(1–3)-O-[α-l-arabinofuranosy (1–2)]-O-β-d-glucopy- 
ranosyl)oxy]), and Bacoside A [190] (Scheme 3).

However, Bacoside A and Bacoside B is attributed to be 
responsible for the neuroprotective potential of Brahimi, 
with respect to the presence of several saponins including 
Bacoside A3, bacopaside, jujubogenin and bacoposapo-
nin C [191]. Notable therapeutic efficacy of BM includes 
neuroprotection against AD [192], memory dysfunction 
[193] and dementia [194]. However, further studies have 
explained its role in enhancing cognitive functioning 
[195], anti-inflammation capabilities [196], hepatopro-
tective potential [197] and anti-aging capabilities [198]. 
A hallmark of oxidative stress induced cellular damage is 

the oxidation of intracellular proteins resulting in neuro-
degenerative diseases [199], however, BM reduces protein 
carbonyl levels in cytosol and mitochondrial fragments 
in prevention of oxidative damage [200]. More so, the 
irreversible damage caused of cellular organelles caused 
by lipid peroxidation has showed BM as an efficient cel-
lular protective compound in protecting the prefrontal 
cortex, striatum in rat models [201] and reducing MDA 
levels [202]. Furthermore, the maintenance of SOD levels 
[203, 204], glutathione activity [200, 205] and glutathione 
peroxidase activity reduction [205–207]. Designated as 
a memory booster, and considered as a nootropic herbal 
drug, BM has showed its efficacy in igniting cognitive 
functioning [192, 208]. While the decline in in cognitive 
functioning still remains as a manifestation in neurode-
generative tauopathies, the improvement in logical think-
ing, sense of judgement and problem-solving skills relays 
the therapeutic potential of BM. Similarly, the aggre-
gation of Aβ and tau proteins in AD and other tauopa-
thies have been shown to be on decline in WS and BM 
treatment [209]. This efficacy is attributed to the neuro-
protective potential of Bacoside A, against Aβ induced 
cytotoxicity in SH-S454 cells [210]. Terneehooheep et al. 
[211], in his study reflected on the ameliorating potential 
of BM extract on tauopathies suggests that BM prevents 
the hyperphosphorylation of tau proteins and as such 
attenuates tau-mediated toxicity. Neuroinflammation of 

Fig. 3  Illustrating the possible role of Withania somnifera as an anti-neuroinflammatory nutraceutical [186]
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tauopathies is triggered by the deposition of tau protein 
aggregates which in principle activates proinflammatory 
cytokines TNF α and IL1β; i.e. the exposure of Aβ fib-
ers, triggers the activation of proinflammatory cytokines, 
causing neuroinflammation [212]. However, a study by 
Viji et  al. [213], explained the anti-inflammatory poten-
tial of BM via the inhibition of NF-Kβ and ERK signal-
ing cascades, thus improving learning, memory and 
consequently synapse functioning. More so, the inhibi-
tion of TNF α by the bioactive compound triterpenoids 
and bacoside has further been elucidated [214]. Finally, 
the efficacy of BM in the reduction of 1L1β in an in vivo 
brain damage rat study, results in improved cognitive 
functioning [215].

Role of tumeric in neurodegenrative tauopathies
Turmeric, also known as Curcuma longa is a plant prom-
inently grown in Southeast Asia, including China. The 
dried rhizomes are eaten as spice and is related to the 
family of ginger. Curcumin is an essential component 
of turmeric, responsible for its brownish-yellow color. 
Amongst its other bioactive compounds are desmethoxy-
curcumin and bisdemethoxycurcumin which can collec-
tively be known as curcuminoids [216]. Curcumin, with 
the chemical nomenclature ((1E,6E)-1,7-Bis(4-hydroxy-
3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is classified 
as a beta-diketone molecule enabling both chemical and 
medicinal activities such as anti- oxidant, anti- inflamma-
tory and anti- cancer activities, as well as a "cleanser of 
the body"[217] (Scheme 4).

Curcumin has been of great interest because of its 
strong efficacy and affinity for fibrillar amyloid proteins 
[218]. Anti-amyloid properties of curcumin result in 
decreasing Aβ production, inhibiting Aβ aggregation and 
promotion of Aβ clearance. Curcumin binds readily with 
other β pleated proteins such as A-Synuclein, p-tau & AD 
and prion proteins [219, 220]. The major chemical feature 
of Aβ is the presence of two aromatic end group which 
has effect on its activity if altered. Due to the lipophilic 
property of curcumin, brain tissue enables it to bypass 
the blood brain barrier and binds to plaques thus, inhib-
iting the aggregation of Aβ proteins [221].

One of the major characteristics of tauopathies is 
inflammation of nerve cells. Inflammation is there-
fore reduced by curcumin mainly by inhibiting Egr-1 
DNA binding activity in THP-1 cells (a major inflam-
matory transcription factor) [222, 223]. Curcumin also 
serve as an anti- inflammatory agent by inhibiting the 
enzyme cyclooxygenase (Cox-2),5- Lipoxygenase(5-Lox), 
enzymes responsible for biosynthesis of prostaglandins 
[224]. NF-kB, a neuroinflammatory marker protein is also 
downregulated by Turmeric [225], as well as the expres-
sion of IL-1, IL-6 and TNF-α in LPS-stimulated BV2 

Scheme 3  Structure of Bacoside

Scheme 4  Structure of curcumin
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microglia, is reduced by curcumin [226, 227]. Aβ aggre-
gate and generation of ROS in various neurodegenerative 
diseases can be produced by heavy metal such as copper 
(cu), zinc (zn), lead(pb) and manganese [228, 229]. Con-
sidering the chemical structure of curcumin, the pres-
ence of two phenolic group and one active methylene 
group makes it a perfect binding agent for any metal ion 
attached by coordinate bonds preventing neurotoxic-
ity [230]. A coordinate bonds is formed when curcumin 
binds with copper, iron and zinc causing the non-availa-
bility of metals to produce amyloid protein aggregation.

There is also increase in the expression of NF-KB lev-
els by heavy metals causing neuroinflammation. Since 
it has been noted that curcumin check inflammation by 
obstructing NF-kB levels, possibly, this is carried out by 
metal chelation [231, 232].

A study carried out by Kozmon and Tvaroska 2015, 
revealed the association between Aβ peptide and copper 
ions and curcumin and was observed that curcumin not 
only chelated heavy metals (cu, pb, zn) but also form "cur-
cumin—cu2 +—Aβ and curcumin-Aβ complexes when 
curcumin is directly attached to Aβ thereby decreasing 
toxic B-sheets structure [233]. Turmeric shows prop-
erties of antioxidants i.e. curcumin, the major active 
component protects cells from damage caused by free 
radicals. This damage occurs when there is accumulation 
of ROS which in return affect polyunsaturated fatty acids. 
Antioxidant properties of curcumin help to increase 
superoxide dismutase, glutathione peroxidase, glu-
tathione transferase activities which in return preserves 
the level of glutathione and decreases malonaldehyde 
accumulation [234]. Along with the antioxidant effects, 
curcumin has also been noted to eliminate NO-based 
radicals [235]. An In-vivo study revealed suppression in 
the level of carbonyl protein in transgenic mouse models 

exhibiting human Alzheimer’s disease gene when admin-
istered curcumin. Thus, it was deduced that curcumin 
prevent oxidative damage caused by lipid peroxidation, 
which induce carbonyl compounds (hydroxynomenal), 
while also inhibiting the activity of AP1; a transcription 
factor involved in expression of amyloid [236] (Fig. 4).

Role of ginseng in neurodegenerative tauopathies
Ginseng is known to be one of the popular traditional 
plants of the family are Araliaceae (perennial plant) 
and genus "panax". It has its name originated from "Jen 
Sheng" a Chinese word meaning "man herb" due to the 
shape of the root which is human like shape [237], “ 
panax” a Greek word meaning "all heal", this shows that 
it can cure all kind of diseases [238]. The commonly 
studied Ginseng are "Panax ginseng", "Panax quinque-
folium" and Panax notoginseng [239] exhibiting a lot of 
biological effects [237]. The active constituents of ginseng 
called "ginsenosides" shows neuroprotective effects and 
enhances memory [240] (Scheme 5).

Aβ is coined for peptides constituting 36–43 amino 
acid residues. Aβ formation is from Aβ precursor protein 
(APP) present in neurons through successive hydrolysis 
of protein with an enzyme beta secretase 1(BACE1) and 
γ-secretase [241].

Some ginsenosides are BACE1 inhibitors. 
Their inhibiting ability is in decreasing order: 
Rc > Rg1 > Rg2 > Rb1 > Rg3 > Re [241]. Gintonin acts in 
ameliorating tauopathies via the reduction of accu-
mulated amyloid plaque. Hyperphosphorylated tau 
protein inhibits Panax ginseng by upregulating the 
activities of phosphatase activities in SY5Y cells. How-
ever, Ginsenosides Rd and Rb1 reduces hyperphospho-
rylated tau by increasing phosphatase 2A level (PP2A) 
[242]. Rg1 also reduces Aβ formation and decreases 

Fig. 4  Schematic representation of the mechanism of curcumin action in neurodegenerative tauopathies
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hyperphosphorylated tau. One of the major treatments of 
AD is a principal Acetylcholine (ACh) neurotransmitters 
in which cognition and memory process is reduced in AD 
[237]. This neurotransmitter is terminated by an enzyme 
known as Acetylcholinesterase (AChE), and butyryl cho-
linesterase (BChE), which is present in patients with AD 
as well as inhibiting of choline acetyltransferase (ChAT) 
activity (an enzyme responsible for ACh metabolism) 
[243].Studies have shown that Rb1,Rb2, Rc,Re,Rg1 and 
Rg3 have a reducing property on AChE and BChE [243, 
244]. Rg2 also decreases intracellular Ca2 + level and 
ROS which is caused by the presence of Aβ also reduce 
lipid peroxidation that is produced by glutamate. Ginse-
nosides Rb1 and Rb5(in-vitro) and genocide Rd(in-vivo) 
are capable of reducing the expression of anti-inflam-
matory factors such as IL-1B, IL-6, TNF-α by inhibit-
ing the activation of NF-kβ [245]. Cox-2 and NOS 2, a 
major enzyme in the biosynthesis of prostaglandins and 
neurotransmitter that helps in learning and memory 
mechanism respectively is seen to be increased in mod-
els of tauopathies and the level of NOS1 reduces. None-
theless, management of tauopathies using ginsenosides 
Rg5 reduces the level of Cox-2 and NOS 2 [245], while 
the increase in the level of NOS 1 increases and Cox-2 
decreases with the treatment of Rb1 [246] (Fig. 5).

Role of physical activity in neurodegenerative tauopathies
Physical activity and exercise is defined as contraction 
of skeletal muscle expressing the movement of the body, 
yielding energy expenditure. Nevertheless, the major 
difference between physical activity and exercise is that 
the former includes various types of movement while 
the latter is a type of physical activities which helps in 
the improvement and maintenance of physical fitness by 
planned and structural activities [248]. Due to the pleio-
tropic favorable impact on human tissues e.g. Muscles, 

vascular, heart and brain, constant physical activities are 
considered as an important component of a healthy living 
resulting in inhibition and resistance of various chronic 
pathological disease such as cardiovascular, metabolic 
and neurodegenerative diseases [249]. Some benefits of 
exercise have been found to ameliorate special learning, 
working memory, executive and cognitive function [250, 
251]. In addition, it causes many neurobiological opera-
tions e.g. regulating giving off of neurotransmitters [12], 
regulating hormones and neurotrophic factor levels [252] 
to be produced on brain areas activating both acute and 
chronic biological effects. Many factors affecting growth 
required in the growth of correct brain tissue, e.g. Fibro-
blast growth factor-2 (FGF-2) [253], insulin –like growth 
factor-1 (IGF-1) [254], vascular endothelial growth fac-
tor (VEGF)[255], and brain derived neurotrophic factor 
(BDNF)[256] are through exercise increased in level. The 
decrease of OS at brain level in addition to the regulation 
of these factors [257], and the regulation of cell death 
and inauguration of neurogenesis in precise area of the 
brain [258], is accountable for defensive consequences 
of exercise as regards neurodegenerative diseases [12]. 
Much likely defensive procedure, essential for the impact 
of physical activity on dementia danger have been sug-
gested as well as rise in brain derived neurotrophic factor 
(BDNF), decrease in cardiovascular disease and meta-
bolic syndrome risk, with rise in flow of cerebral blood 
[259]. Eminently, there is an association of decrease in 
danger of a number of dementia types, in addition to 
AD emerging to be most sensitive with regulation of the 
afore-mentioned elements via increase in physical activ-
ity [260]. Consequently, it’s rational to postulate that vari-
ations of mechanism and deterioration of Aβ and tau are 
significantly essential procedures expected amid exercise 
and AD risk. Extracellular amyloid plaques are formed 
by the aggregation of Aβ peptides resulting to decrease 

Scheme 5  Structure of ginsenosides
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in cognitive functions and neuronal death in tauopathies. 
Major components of amyloid plaques is the lengthy, 
and more fibrillar isoform of Aβ, Aβ 1–42[261]. It had 
been identified by autopsy evaluation of AD brains that 
there is amyloid deposit initially detected in the cingu-
late cortex, accompanied by the temporal and parietal 
cortices and the caudate. There is formation of plagues 
located in occipital, sensory and motor brain region 
at the subsequent stage of this neuropathological pro-
cess [262]. Identifying individuals with AD, it has been 
proven within living human studies that quantification 
of Aβ in the cerebrospinal fluid and brain (through posi-
tron emission tomography, PET, and Aβ binding agent) 
have proven responsive and precised [263]. Instead of 
complete inhibition, there is likelihood that exercise hold 
back and also decrease Aβ accumulation. Which reflects 
the importance of exercise being commenced before 
start of symptoms (preclinical period). Additionally, Um 
et  al. [264] for seventeen months, measured Aβ, notic-
ing impact of exercise on decreased Aβ 1–42 deposi-
tion. Following physical activity and exercise, it has been 
reported from many animal studies that there is reduc-
tion in phosphorylation of tau present in brain and tau 
pathology [265–269], and reduction in hippocampal tau 
pathology [266, 267, 270] using intervention varying 
from 2 to 5 months and 2–9 months have been observed 
from studies. In the effect of physical activity and exercise 
on brain tau, it is uncertain whether specific aspects of 
intervention involve in a key function from the findings 

made. In respect of tau reduction, as it may be postulated 
that greater potency running can evoke better favora-
ble impact. Yet, research applying forced running [266, 
267] and voluntary wheel running probably at a reduced 
intensity [265, 270] detect result on both phosphorylation 
and accumulation. Over a certain period of 2 months, it 
is feasible that steady aerobic exercise evokes decrease 
in tau using animal specimen. However, a review dis-
closed rise in insoluble tau levels and phosphorylation 
of tau at the C terminus implementing physical activi-
ties [271]. Notwithstanding, there is a complex correla-
tion amid exercise, inflammation and neurodegenerative 
processes: Decreased AD pathology is linked to increase 
and decrease in inflammatory marker, having ranging 
(increase to decrease) adaptive inflammatory response to 
exercise [272, 273]. In detecting brain tau, varying tech-
niques were used, such as western blotting [267, 268, 
271, 274], enzyme linked immunosorbent assays [270], 
Sarkozy extraction [265], and immunofluorescence [269]. 
Although it still remains obscure, how these varying pro-
cedures could impact the reported results because of the 
all-round procedures used. According to Gratuze et  al. 
(2017) [265], described none impact of voluntary wheel 
moving on some tau kinases (GSK3, CDK5, C-JUN N ter-
minal kinases (JNK) and calmodulin -dependent protein 
kinase 11 (camk11)) nor phosphatase (which dephospho-
rylate tau in  vitro) in their animals. It has been shown 
that a lack in 2 cholesterol binding proteins, Niemann-
pick disease, type C1 (NPC1) and type 2 (NPC2), give 

Fig. 5  Graphical illustration of gintonin effects against tauopathies. Gintonin stimulates the release of acetylcholine, thus upregulating chat 
expression and stimulating cognitive functioning of neural cells (source: [247])
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rise to tau Pathology. Belarbi and partners in their mice 
following voluntary wheel running, observed upregu-
lation of NPC1 and NPC2mRNA [270]. There is a fur-
ther requirement of extensive research considering the 
numerous potentially mediating factors such as kinases 
and phosphatases. Baker et  al. [275] discovered a lower 
CSF tau in healthy group only to be associated with high-
intensity physical activity: It is certain that insufficient 
intensity or volume of exercise might be undertaken by 
MCI group to discover a connection with CSF tau. The 
relationship between habitual physical activity levels and 
CSF biomarkers of AD has been evaluated with the use of 
objectively measured physical activity (actigraphy),[276]; 
a lesser proportion of total tau/Aβ1-42 and phosphoryl-
ated tau /Aβ 1–42 (showing a less cerebral pathology) 
was seen in people spending adequate time participating 
in moderate physical activity. Lately, Brown et  al. [277] 
reported the greatest levels of exercise showing lesser 
extent of PET calculated tau in reasonably elderly per-
sons and also, pathological extent of tau protein is not yet 
reached even with those having "greater" extent of tau in 
the brain. With the recent studies on tau neuroimaging, 
the association between physical activity and brain tau 
in people is a great research work in the coming years 
(Table 2).

Conclusion
As explored in this study, tau have proved essential in 
triggering neurodegenerative diseases cascade, repre-
senting a great hurdle to human health of the twenty-first 
century. Since induction of oxidative stress, instability of 
microtubule, upregulation of proinflammatory cytokines 
and cognitive repression are involved in the progression 
of neurodegenerative tauopathies, potential ameliorat-
ing strategies to traditional pharmacological treatments 
(such as dietary administration of nutraceuticals and 
moderate physical activity) should focus on modulation 
of microtubule tau activity. Essentially, nutraceutical-
containing nano systems, for targeted neuronal activity 
have a great potential neuronal remediation strategy, as 
they could bypass blood brain barriers for targeting neu-
ronal cells, thus enhancing the bioactive effects. Tailored 
interventions with targeted nutraceuticals to reduce 
neuroinflammation, improve cognitive functioning and 
to induce enzymes with a great antioxidant potential, 
together with the activation of exercise in increasing the 
levels of growth factors involved in correct brain tissue 
development, such as fibroblast growth factor-2 (FGF- 2), 
insulin-like growth factor-1 (IGF-1), vascular endothelial 
growth factor (VEGF), and brain derived neurotrophic 
factor (BDNF),thus contributing to the improvement 
of the pathological profile of diverse oxidation-related 
brain neuropathology. However, despite the promising 

relationship between tau, physical activity, nutraceuticals 
and neurodegenerative tauopathies, the challenge to con-
form in vivo study model to human model still remains 
and is still to be fully elucidated.

Future perspective
Apart from explored therapeutic target, biomarkers 
and drugs available, the quest for complete treatment of 
tauopathies still persist. While the synergism between 
pharmacological and non-pharmacological treatments is 
applaudable, the role of secondary metabolites in Chinese 
nutraceuticals is praiseworthy. However more robust 
preclinical and clinical trials against novel drug target 
with minimal adverse effect for the complete suppression 
of tauopathies modulation should be carried out.

Transformation achievements belonging to tauopa-
thies such as therapeutic employment of neuro-imaging, 
identification of molecular cascades involving mediating 
tau-induced neuronal loss, atrophy, development of tau-
based immunotherapy and antisense oligonucleotides 
are rapidly evolving the biological comprehension, man-
agement and diagnosis in treatment of tauopathies, thus 
offering a great hope for the future.

Finally, nanotechnology has made great stride in dis-
eases managements and drug design in recent years. 
Thus, future studies should explore the role of nanotech-
nology in neurodegenerative tauopathies as well as creat-
ing a novel therapeutic target.
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