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Abstract: The present study was to investigate the application and mechanism of salicylic acid
(SA) as SA-Ricemate for the control of leaf blight disease using a Synchrotron Radiation-based
Fourier-Transform Infra-Red (SR-FTIR) microspectroscopy and docking studies. After treating rice
plants cv. KDML 105 with SA-Ricemate, the leaves were inoculated with Xanthomonas oryzae pv.
oryzae, the causal agent of leaf blight, and disease severity were assessed. The leaves were also
used to detect changes in endogenous SA content. The results indicated that SA-Ricemate, as an
activated compound, reduced disease severity by 60% at three weeks post-inoculation and increased
endogenous content by 50%. The SR-FTIR analysis of changes in the mesophyll of leaves (treated
and untreated) showed that the groups of lipids, pectins, and proteins amide I and amide II occurred
at higher values, and polysaccharides were shown at lower values in treated compared to untreated.
Besides, docking studies were used to model a three-dimensional structure for Pathogenesis-related
(PR1b) protein and further identify its interaction with SA. The results showed that ASP28, ARG31,
LEU32, GLN97, and ALA93 are important residues that have strong hydrogen bonds with SA. The
docking results showed that SA has a good interaction, confirming its role in expression.

Keywords: salicylic acid; rice bacterial leaf blight disease; pathogenesis-related (PR1b); induced
resistance; SR-Fourier transform infrared microspectroscopy; docking studies

1. Introduction

Leaf blight of rice (LB) is a serious disease caused by Xanthomonas oryzae pv. oryzae
(Xoo) that causes 20–50% losses in rice production worldwide [1,2]. It is regarded as one
of the most devastating rice diseases in Thailand due to favorable climate conditions
for pathogen survival and pathogenesis. The Xoo typically penetrates rice leaves through
hydathodes at the leaf margin [3]. In addition, Xoo could access to xylem through wounds or
openings of rice leaf sheath [4]. After going inside leaves, bacteria multiply in intercellular
spaces, then enter plant cells and spread into the rice plant through its xylem [3]. Inside
xylem, Xoo interacts with parenchyma cells [5]. The pathogen not only moves vertically
through the leaf through primary veins but also progresses laterally through commissural
veins [3]. After a few days, bacterial cells and EPS can fill the xylem vessels, then ooze out
from leaf hydathodes, forming bacterial beads or strands on the leaf surface [4]. Plants use
a salicylic acid-mediated response in pathogen attack, which is mediated by the PR protein
and is effective in disease resistance [6].
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Chemical pesticides, particularly copper hydroxide, have been recommended and
widely used to control the disease. Nonetheless, its application is frequently ineffective
and can harm humans and environment. In recent years, abiotic elicitors have been widely
used to reduce the severity of plant diseases through mode of induced resistance (IR) in
various crops, such as rice, chili, grapevine, chickpea, tomato, and maize [7–11]. IR is a
type of plant defense that contributes to increasing plant resistance against pathogens by
multiple mechanisms that can be induced by elicitors [12]. The priming of plants to increase
defense metabolite expression in response to bacterial infection is an important feature of
IR [13]. Secondary metabolites are substances formed as a result of interactions between
plants and pathogens. The presence of phenolic compounds, terpenes, sulfur-containing,
and nitrogen-containing secondary metabolites characterize these interactions [14,15].
Salicylic acid (SA) has been used as an elicitor against LB disease and acts as a signal
molecule in plants by activating the expression of plant pathogenesis-related (PR) genes
from the cinnamate pathway, which provides precursors for various phenylpropanoid
compounds [15]. Disease resistance in rice plants can be activated by spraying with SA,
resulting in a 38% reduction in LB disease severity [16]. Synchrotron Fourier-Transform
Infra-Red (SR-FTIR) microspectroscopy has been developed as a novel bio-analytical
technique that examines samples in a non-destructive manner [17,18]. This novel technique
employs synchrotron light, which has small and bright characteristics and can identify
molecular chemistry in biological tissues, including structural and non-structural lignin,
proteins, lipids, carbohydrates, and their ratios [17,19]. For example, the vibration peaks
1700–1600 are referred to as Amide I, 1600–1500 as Amide II, and 1300–1200 as stretching
hemicelluloses and lignins [19]. Therefore, SR-FTIR can help to track biochemical changes
in plant tissues. Pathogens and pathophysiological defense mechanisms can both induce
a wide range of defense-related pathophysiological (PATH) and antimicrobial (AMP)
molecules. This system allows plants to respond quickly to environmental and other
stresses, and it has long been studied as a resistance strategy used by the innate immune
system, specifically for them, such as resistance response signaling pathways used by the
plant cytoskeleton [9]. Even though many PR proteins and peptides have already been
isolated, their current functional roles remain unknown. However, new scientific tools
have assisted scientists in isolating and identifying a large number of new PR molecules.
Previous research revealed that PR genes improve both biotic and abiotic stress tolerance,
making them one of the most promising candidates for new stress-tolerant crop varieties.
As a result, plant genetic engineering techniques, in general, are thought to be more
interesting in the attempt to develop new disease-resistant transgenic crops that use PR
genes than the specific knowledge of how PR genes can be used to do so. Many pathogens
can now be dealt with by producing more defense enzymes at the same time [9]. The
interaction of SA on rice plants against Xoo, reported that PR1b played a crucial role in
enhancing disease resistance [20]. Similarly, PR1b also an important protein in local and
systemic tissues during the interaction with SA on tomato against bacterium Xanthomonas
campestris pv. vesicatoria [21]. The expression of protein PR1b with SA was surveyed on
many types of research but underlaid their mechanisms [20,21]. However, there is no model
of PR1b, especially the active site of PR1b on interaction to the systemic signal of SA during
induced systemic resistance. In present in silico study as an in-depth appendix external to
the design, due, on the bases of literature data [20,21] the PR1b proteins interaction with
SA involved during induced systemic resistance evaluated, for better to understand the
mechanism. The structure-function relationship of SA and pathogenesis-related (PR1b)
was studied using molecular phylogeny, comparative modeling, and molecular dynamics
(MD) to understand the evolution and viability of pathogen resistance. The purpose of this
study was to characterize the mechanism of resistance by SA against LB disease in rice
through in vitro and in silico studies using the SR-FTIR microspectroscopy technique and
monitoring biochemical changes involved in plant defense mechanisms. Generally, gene
expression, protein level, and histopathological response studies were used to characterize
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induced systemic resistance mechanisms, but the current study using SR-FTIR along with
docking studies was novel.

2. Results
2.1. The Effectiveness of the SA-Ricemate Elicitor on Inducing Resistance against LB

The application of SA-Ricemate was firstly checked for the control of LB disease
through a range of SA-Ricemate concentrations including 50, 100, 150, 200, 250, and
300 ppm. By spraying the SA-Ricemate elicitor three times before inoculating Xoo, the
results of this experiment confirmed the control effectiveness of SA-Ricemate against LB.
The results showed that 100 ppm or higher of SA-Ricemate elicitor showed a reduction
of disease severity at 41–67% approximate control effectiveness calculated from disease
severity, which was significant when compared to untreated and non-significant when
compared to the positive control (57–58%) as commercial elicitor. In contrast, a 50 ppm SA-
Ricemate elicitor dose only reduced the disease severity by 12–26% which is significantly
lower than the positive control (Table 1). Therefore, ≥100 ppm SA-Ricemate elicitor doses
showed high efficiency to control LB lesions on rice leaves.

Table 1. Effectiveness of SA-Ricemate on the control of bacterial leaf blight disease of rice cv. KDML 105 caused by
Xanthomonas oryzae pv. oryzae strain SUT1-121.

Treatment 1 Disease Severity (%) 2 Control Efficacy % (%)

7 DPI 14 DPI 21 DPI 7 DPI 14 DPI 21 DPI

SA-Ricemate 50 ppm 26.04 ± 2.75 c 35.42 ± 4.54 c 39.58 ± 2.75 c 13.80 ± 7.75 a 12.88 ± 4.96 a 26.77 ± 10.83 a
SA-Ricemate 100 ppm 17.71 ± 2.75 b 18.75 ± 1.04 b 21.88 ± 1.04 b 41.39 ± 4.81 b 53.88 ± 1.18 b 59.53 ± 3.91 b
SA-Ricemate 150 ppm 15.63 ± 3.12 b 16.67 ± 1.04 b 22.92 ± 1.52 b 48.28 ± 8.51 b 59.00 ± 3.12 b 57.60 ± 5.19 b
SA-Ricemate 200 ppm 16.67 ± 2.77 b 19.79 ± 2.11 b 21.88 ± 1.00 b 44.83 ± 7.39 b 51.31 ± 3.25 b 59.53 ± 2.99 b
SA-Ricemate 250 ppm 13.54 ± 2.71 b 17.71 ± 2.08 b 20.83 ± 2.18 b 55.18 ± 7.73 b 56.44 ± 3.49 b 61.46 ± 3.99 b
SA-Ricemate 300 ppm 12.50 ± 2.85 b 16.67 ± 1.41 b 17.71 ± 1.44 ab 58.63 ± 6.58 b 59.00 ± 5.86 b 67.24 ± 3.95 cb

Commercial elicitor 12.50 ± 2.14 b 17.50 ± 1.61 b 22.50 ± 1.12 b 57.13 ± 5.98 b 58.00 ± 3.60 b 58.38 ± 3.12 b
Copper hydroxide

77% WP 8.33 ± 1.04 a 10.42 ± 1.24 a 12.50 ± 1.20 a 72.42 ± 4.13 c 74.38 ± 2.88 c 76.88 ± 1.71 c

Control (water) 30.21 ± 4.10 c 40.63 ± 2.98 d 54.17 ± 3.75 d 0 0 0
1 Rice plants were treated by foliar sprays at 15, 30, and 45 DPS, with SA-Ricemate elicitor at different concentrations, commercial elicitor
and copper hydroxide used as the positive control, and water used as the control. Rice leaves were inoculated with Xoo SUT1-121 strain at
50 DPS. 2 Disease severity was evaluated at 7, 14, 21 days post-inoculation. Each value represents a mean of five replicates. The mean in the
column followed by the same letter (a, b, c, d) is a non-significant difference according to Duncan’s multiple range test at p = 0.05.

2.2. Accumulation of Endogenous SA Content

The effect of exogenous application of SA-Ricemate on endogenous SA content in rice
plants was evaluated. The results showed that all treatments increased the endogenous SA
content in rice plants at 24 h post-inoculation, as shown in Table 2. The endogenous SA
shown 30.78, 51.27, 48.00, 54.05, 48.84, 51.44, and 38.33%, respectively with treated with
different concentration of Ricemate, compared with control (11.40%). This is considered a
significant difference when compared to the copper hydroxide treatment, which had an
endogenous SA increase of 5.19% versus 11.40% in the untreated samples.

2.3. SR-FTIR Microspectroscopy

The SR-FTIR spectra are used for investigating changes in rice biochemical and cellular
compositions after treating with SA-Ricemate. The results show a clear difference between
the untreated (water-mock) and treated clusters of 100 ppm SA-Ricemate, as shown by the
PCA score plot, which was explained by 51% PC1 and 26% PC2. (Figure 1A). PC1 had a
high positive loading at 2935, 1660, and 1552 cm−1, which corresponded to the positive
score plot from the treated sample. Whereas, the high negative loading from the PC1 at
1162 and 1039 cm−1 corresponded with the negative score plot from the untreated sample
(Figure 1B). The difference in the SR-FTIR spectra changes in the mesophyll revealed three
distinguishable regions in the SA-Ricemate treated sample (Figure 1C). The first region
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(3000–2800 cm−1) of the treated sample was higher than the untreated sample, according
to the CH2, CH3 from lipid groups, with a clear peak at 2964, 2929, and 2854 cm−1. The
second region (1700–1500 cm−1) is composed of proteins and peptides with an amide group,
and the treated sample has a peak at 1654 and 1546 cm−1 that is higher than the untreated
sample. The third region (1300–900 cm−1) involving polysaccharides and carbohydrates
has untreated sample peaks at 1160, 1106, 1037, and 989 cm−1 that are higher than the
treated sample peaks at 1160, 1106, 1037, and 989 cm−1.

Table 2. Effectiveness of SA-Ricemate elicitor on the accumulation of endogenous SA in Rice leaf cv.
KDML 105.

Treatment 1
Endogenous Salicylic Acid
(µg g−1 of Fresh Weight) 2 Increase of SA

Activity (%)
Pre Inoculation Post Inoculation 24 h

SA-Ricemate 50 ppm 12.12 ± 0.17 a 17.60 ± 0.03 b 30.78 ± 1.87 b
SA-Ricemate 100 ppm 12.20 ± 0.18 a 18.46 ± 0.10 b 51.27 ± 3.10 b
SA-Ricemate 150 ppm 12.39 ± 0.14 a 18.34 ± 0.08 b 48.00 ± 4.42 b
SA-Ricemate 200 ppm 11.78 ± 0.26 a 18.14 ± 0.21 b 54.05 ± 6.24 b
SA-Ricemate 250 ppm 12.28 ± 0.22 a 18.28 ± 0.26 b 48.84 ± 4.42 b
SA-Ricemate 300 ppm 12.19 ± 0.21 a 18.46 ± 0.25 b 51.44 ± 4.64 b
Commercial elicitor 11.99 ± 0.38 a 16.61 ± 0.37 b 38.33 ± 4.17 b
Copper hydroxide

77% WP 11.69 ± 0.08 a 13.03 ± 0.32 a 5.19 ± 1.57 a

Control (water) 13.21 ± 0.10 a 13.89 ± 0.07 a 11.40 ± 2.57 a
1 Rice plants were treated by foliar sprays at 15, 30, and 45 DPS, with SA-Ricemate elicitor at different concen-
trations, commercial elicitor and copper hydroxide used as the positive control, and water used as untreated.
Rice leaves were challenged with Xoo SUT1-121 strain at 50 DPS. 2 Endogenous salicylic acid was evaluated
pre-inoculation and 24 h post-inoculation. Each value represents a mean of five replicates. The mean in the
column followed by the same letter (a, b) is a non-significance difference according to Duncan’s multiple range
test at p = 0.05.

2.4. Homology Modeling of PR1b Domain

The lack of a three-dimensional structure of PR1b in the database, as well as the
importance of PR1b structure in studying interactions with SA, prompted to create a PR1b
model. A model for PR1b was predicted by using homology modeling methods and this
structure was used for docking with SA in this study. The protein sequence was retrieved
from the UNIPROT database and compared to a template structure.

2.5. Identification of Template

Only ICFE A (Chain A, Solanum Lycopersicum) showed a high degree of sequence
identity with the PR1b domain when analyzed using BLAST. In this case, 1CFE was chosen
as a template structure, and the structure was collected using the PDB database. This
comparison revealed that the target sequence and the template had a sequence identity of
56%. Alignment of the target sequence and template structure should be established at a
high level of identity.

2.6. Sequence Alignment

To calculate comparative protein models, a precise similarity relationship between the
target protein and its template structure is required. In homology modeling, a template
structure with at least 30% identity to PR1b was required. The protein sequences for PR1b
and the protein on which the alignment was performed show that the two sequences share
50.4% identity (Figure 2).
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Figure 1. The SR-FTIR spectra of mesophyll of rice leaf tissue; (A) Principle component analysis (PCA)
analysis of a rice leaf, (B) loading plots from PCA analysis of mesophyll treated and untreated group,
and (C) Overlay of the average 2nd derivative spectrum range of 3000–2800 cm−1 and 1800–900 cm−1

of mesophyll of rice leaf tissue between treated with SA-Ricemate compared to the untreated and
then challenge inoculation with Xanthomonas oryzae pv. oryzae.
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Figure 2. Sequence alignment of PR1b with template 1CFE. * indicates amino acids from PR1b and 1CFE are same in
comparison whereas . and : indicates amino acids have some similarity regarding groups in comparing with PR1b and
1 CFE. Gaps in the alignment was shown by - - - - -.

2.7. Prediction of the Three-Dimensional Structure

MODELLER9V7 was used to create the three-dimensional model, and the final model
was used for validation and subsequent processes after energy minimization. There were
three helixes and no sheets in the quaternary structure (Figure 3).
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2.8. Structural Validation

The structural model of PR1b of Oryza sativa L. was examined with a variety of struc-
tural variables to validate its results of the psi and phi distributions from the Ramachandran
plot. The results showed that 95.3% of each PR1b are in the preferred region and 2.0% are in
the generously permitted regions (Figure 4). Procheck was applied to verify the generated
structure against static analysis, and PRO-MOD was used to evaluate the generated struc-
ture, were analyzed by PROCHECK (Figure 5). The preferred range of the basic-protein
motifs present in this region suggests that the predicted model of PR1b is reliable. Mollify
deviation was used to find the differences between the calculated and predicted molecular
structures, a molecular dynamics simulation was employed. The templates and backbones
were on average 0.25◦ out of flexion and 0.3◦ of extension concerning the Cα were 0.25◦ to
3.0◦ (Figure 6).
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2.9. Active Site Identification

Predicted model binding locations were identified by the CASTp server for docking
purposes. This PR1b model had no previously considered structure; however, based on the
predicted model, the largest pocket size and important residues involved in the active site
were predicted to dock with SA. The abundance of amino acid residues in the active site of
PR1b showed that the structure is highly conserved with the template, and the residues
involved in the active site are ASP28, ARG31, LEU32, GLN97, and ALA93 (Figure 7).
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2.10. Docking Studies of SA with PR1b

Salicylic acid was prepared on scaffolds with a larger radius of expansion. Previous
research has shown that docking is the best strategy for demonstrating ligand-protein
interactions and protein-compound binding from docking results. According to the docking
results, the PR1b residues play an important structural and functional role. Docking studies
confirmed that SA has a good interaction with PR1b. SA formed hydrogen bonds with the
active residues of PR1b, confirming its role in enhancing PR1b’s function in pathogenicity
protection. The docking score generated by the interaction was 26.2 KJ/mole, and Figure 8
depicts the complex of PR1b and SA.
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Figure 8. Docking studies of SA with PR1b. (A) Molecular interaction of SA (green color) with PR1b (red color). (B) Amino
acids from PR1b involved in docking to SA (green color). Hydrogen bonding interactions are mentioned in green color lines.

3. Discussion

Pathogen activation of plant defense reactions may employ a variety of signaling
mechanisms, the most effective of which is endogenous SAagainst pathogens. The abiotic
elicitor SA-Ricemate, which is based on the plant defense-elicitor SA, was described in
this study as a potential new bio-stimulant that acts as an elicitor of resistance. The
concentration of SA-Ricemate determines the efficacy of the treatment in controlling the LB
disease, with studies demonstrating that a concentration range of 100 ppm to 300 ppm is
an optimal concentration range. Low concentrations of less than 100 ppm are thought to be
ineffective against rice LB. This could be because the appropriated concentration of elicitor
has an efficient plant defense mechanism. Several studies have previously recognized the
role of SA in plant defense response and involvement in endogenous signal-mediated local
and systemic plant defense. According to War et al. (2011), chickpea (Cicer arietinum L.)
responded to a SA treatment at 1.5 mM with greater induction of plant defense enzymes,
such as POD, PPO, H2O2, and defense protein activities, than the use of SA at 1 and
2 mM. These findings suggest that SA at 1.5 mM could be effective for activating the plant
immune system [19]. Wani et al. (2017) reported that applying SA to plants improved the
initiation of pathogenesis-related gene expression, as well as the synthesis of defensive
compounds involved in local and systemic acquired resistance [22]. Yang et al. (2019)
found that pretreatment with SA resulted in lower rice blast disease (Magnaporthe oryzae)
and higher expression levels of rice defense-related genes PR1a, PAL, HSP90, and PR5 on
rice leaves [23].
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Through a signaling transduction pathway, the inducing resistance (IR) mechanism
protects distant parts of rice plants. The SA pathway is a major signaling pathway during
rice LB resistance by crosstalk between signaling that can provide a potential for efficient
energy and accumulation of potential enzymes against pathogens [24–26]. According to
Sticher et al. (1997), the SA signaling pathway can be triggered by exogenous SA, which
increases disease resistance, because this pathway is related to systemic acquired resistance
(SAR), which can occur when endogenous SA accumulates and is activated after plant
pathogen infection. Our findings show that the accumulation of endogenous SA content in
treated rice plants after Xoo infection is approximately 50% higher than in non-treated rice
plants. The results of this research are in line with previous studies. After treatment with
the elicitor, ASM 1 mM for Tomato Virus and Citrus Viroid, an increased concentration
of endogenous SA was observed in tomato and citrus plants [26]. Babu et al. (2003)
discovered in their study that a pre-treatment with SA at 1000 µmol L−1 by a significant
increase of 44.35% of endogenous SA accumulation resulted in a significant reduction of
LB development and LB lesion length of around 20% in the susceptible rice variety IR50.
Thus, the concentration of endogenous SA may be an important component of this resistant
mechanism in rice, determining immune activation selectively during pathogen infection
and invasion [27,28].

Endogenous SA or resistance signal of SA is involved in the synthesis of secondary
plant defense metabolites such as terpenes, phenolic compounds, and alkaloids [29,30]. The
concentration of endogenous SA can influence the selective activation of defense responses
during pathogen infection and invasion, which can alter the plant’s physiological, bio-
chemical, and molecular levels [15,19]. SA activates several enzymes, including peroxidase
(POD, POX), superoxide dismutase (SOD), polyphenol oxidase (PPO), and phenylalanine
ammonia-lyase (PAL) [31]. These enzymes protect the cell from oxidative stress and play an
active role in metabolism [19,29]. These plant defense metabolites and enzymes take part
in creating physical barriers at biochemical and cellular levels on host plants. The changes
at the biochemical and cellular level of plant tissues could be characterized by SR-FTIR
spectroscopy. Principal Component Analysis (PCA) score plot is a multivariate technique
used to decompose the data matrix and to concentrate the source of variability of the data
into loading PCs. In this work, a PCA score plot was used to visualize the existing clusters
from the sample data. Spectra analysis of treated and untreated samples was performed in
the spectral range of 3000–2800 cm−1 and 1800–900 cm−1. The lipid region was found at
2800–3000 cm−1 which is assigned to asymmetric/symmetric of CH3/CH2. The spectral
band at 1733 cm−1 arises from the C=O ester of pectin. The region at 1515 cm−1 englobes
the stretching vibration of C=C aromatic skeleton vibration from lignin. In addition, the
region between 1200–900 cm−1 is induced by functional groups of C-O-C glycoside either
mainly composed of hemicelluloses or by polysaccharides. The PCA score plot (Figure 1A)
can be separated by a total variance of 77% from PC1 (51%) and PC2 (26%). The clear
separation of 51% from PC1 showed the relative distinction which indicated the chemical
composition between groups of samples that corresponded to loading. The positive loading
PC1 was the one that most contributed to treated samples that present higher intensity of
amide I protein and lipids. The negative loading PC1 classified untreated samples that
corresponded to the polysaccharide region (Figure 1B). The average second derivative
spectrum (Figure 1C) presented high intensity at the main peak which is correlated to
loading. The spectral data from the treated samples showed higher intensity of lipids and
proteins than the untreated samples data whereas the high absorbance intensity of the
polysaccharide region was higher in untreated samples data.

The association of the biomolecular and its intensity from the average spectra suggests
higher accumulations of lipids (3000–2800 cm−1) and proteins (1700–1500 cm−1) [31].
Lipids are the major component of a cell membrane, and they play a role in several cellular
systems, including energy storage, protection communication, structural support, and
hydrocarbon as a monomer that prevents water loss, protects plant cells and nutrients, and
coats the surface of plant leaves to inhibit pathogens. According to Zhang et al. (2015),
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phospholipids and phosphatidic acid (PA) belonging to the membrane lipid bilayer act as
a signaling immunity and link to ROS activity and SA accumulation, whereas Gao et al.
(2017) reported lipids and lipid metabolites are important in rice plants to protect against
LB and rice blast via plant-microbe interactions [32,33]. Furthermore, enzymes such as beta-
glucanases and chitinases are components of pathogenesis-related (PR) proteins, which play
an important role in protecting plant cells from pathogen infection [17,32–34]. When plants
detect an insect, fungal, bacterial, or virus-viroid attack, beta-1,3-glucanase or chitinase
activates plant defenses against fungal infection. Anita et al. (2014) reported that systemic
induce resistance in rice against rice root-knot can occur by increasing chitinase enzyme
activity and plant defense protein [35–37]. Amide I and amide II are linked to a second
protein, which is an important amino acid implicated in disease resistance, such as L-
phenylalanine, which is a precursor to plant defense metabolites via the phenylpropanoid
and lignin pathways. According to Macoy et al. (2015), several plant amide groups,
such as hydroxycinnamic acid amides, have shown significant interaction between plant
and pathogen [38–40]. Similarly, Thamunu et al. (2017) reported changes in absorbance
as a peak of proteins (1656 cm−1) shifted to higher by induced resistance with Bacillus
subtilis strain D604 on chili plants, indicating the response mechanisms against anthracnose
disease infection [36]. These biochemical changes have been linked to callose deposition
and cell wall thickening in plants. Furthermore, polysaccharides (1200–900 cm−1) as
carbohydrates or sugars groups are required to supply the energy source for defenses’ and
can be used as regulation signals for defense genes, which may be useful in controlling plant
diseases [41,42]. During infection, plants modify or change their sugar source and activate
their defense responses by increasing PR proteins and some sugars used as activating
agents to combat pathogens [43,44].

Protein structure prediction is the most reliable and most widely accepted technique.
Conformational modeling provides the sequence identities for one or more target pro-
teins [45]. If the sequence identity between the template and the target protein is significant,
the structure-based drug design approach can even produce a correct model. Predicted
homology was performed using a template-based 3D model of the structural coordinates,
while modeling and refinement were performed with MODELLER 9V7 using software-
specified line commands [46]. Secondary structure analysis of developed PR1b from
Oryza sativa predicted that there is an expected similarity in the abundance of α-helix,
β-sheet, and other secondary conformations of the structural β-sheet relative proportions
of the model PR1b [47–50]. To be more specific, PROCHECK and verify 3D checked out
and verified a very simple and accurate model that correctly predicted the final struc-
ture [51,52]. Because there was a difference in the RMS deviation of this structure from
the template structure, as well as a difference after MD simulations, our predicted form
can be used safely for docking [53–56]. Because the PR1b sequence and structure of both
proteins are conserved, the function of the respective proteins is highly likely to be the same.
These are conserved during all of the commoner’s expansion of plant lectins [57–59]. They
discovered that all lectins share a common active site that is filled with highly conserved
amino acid residues, as well as one that varies by species [60–63]. The calculations include
changes in molecular weight and binding enthalpy [64]. Lipinski’s Rule Five docking
theory confirmed that the SA-designed molecule passed completely without issue under
the Salicylic docking standard. PR1b and Salic acid react to broaden and unfold the protein,
which appears to be appropriate for deducing domain and compound binding mechanisms
in docking studies.

4. Materials and Methods
4.1. Rice Cultivar

Thai jasmine rice variety KhaoDawk Mali 105 (Oryza sativa L.) was used in this research
as a susceptible variety.
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4.2. Xanthomonas oryzae pv. oryzae Strains and Culture Conditions

The virulent Xoo strain SUT1-121, causal agent of LB disease, was obtained from the
stock culture of the Plant Pathology and Biopesticide Laboratory (PPB Lab), Suranaree
University of Technology, Nakhon Ratchasima, Thailand. The bacterial strain Xoo was
inoculated on nutrient glucose agar (NGA) media and incubated at 28 ± 1 ◦C, 180 rpm
for 48 h. For preparing culture suspension, the Xoo bacteria were inoculated in nutrient
glucose broth (NGB) and incubated at 28 ± 1 ◦C, 180 rpm for 48 h. The specific absorbance
of the Xoo suspension was measured and adjusted at OD 0.2 in sterile distilled water to
approximately 1 × 108 CFU mL−1 [15,65,66].

4.3. Preparation of a Commercial Abiotic Elicitor Product (SA-Ricemate)

The exogenous SA elicitor (SA-Ricemate) prototype is a product of Bioactive Agro
Industry Co. Ltd., Nakhon Ratchasima, Thailand. SA-Ricemate contains SA, which is the
most commonly used product in Thailand. The SA concentration is appropriate for Thai
rice which was developed at PPB Lab, Suranaree University of Technology, Thailand.

4.4. Efficacy of the SA-Ricemate Elicitor in Inducing Resistance Against LB

The efficacy of SA elicitor (SA-Ricemate) in inducing resistance against LB was studied
at concentrations of 50, 100, 150, 200, 250, and 300 ppm. With five replications and
two pots per replication, the treatments included a positive control (commercial elicitor
and copper hydroxide 77% WP) and negative control (Water). Rice seeds cv. KDML
105 were soaked with sterile distilled water for 24 h before planting. The seedlings were
transferred into 30 cm diameter plant pots that contained 5 kg of farm soil from the
Suranaree University of Technology. The pots were kept under greenhouse conditions with
12 h of photoperiod, 28 ± 4 ◦C, and 60–75% of humidity. Sprays of SA-Ricemate elicitor at
various concentrations and a control of 30 mL on rice leaf in each treatment were shown
after 15, 30, and 45 days. At 50 days after sowing, the rice plants were inoculated with a
density of Xoo suspension at 1 × 108 CFU mL−1 on top-leaves by cutting the leaf 3 cm from
the leaf tip, then covered with transparent bags and incubated for 24 h [67–70].

The severity of LB disease was recorded three times at 7 days post-inoculation (DPI)
intervals using the International Rice Research Institute (IRR) disease score chart for
assessing LB symptoms. Then, the percentage of disease severity was calculated by using
the following, Formula (1).

Disease severity (%) =

(
∑n

i=1 ri

n × m

)
× 100 (1)

where ‘r’ is the set of numerical ratings, ‘n’ is the total of evaluations per sample, and ‘m’ is
the maximum value used for the evaluations [15,71]. The reduction of disease severity was
calculated using the formulated Equation (2):

Reduction on disease severity (%) =
DSn − DSt

DSn
× 100 (2)

where DSn is the calculated disease severity from untreated samples, and DSt is the
calculated disease severity from elicitor-treated samples.

4.5. Determination of Endogenous SA

After soaking 0.5 g of rice leaf samples from each treatment in liquid N2, they were
homogenized with 1 mL of extraction buffer (methanol: glacial acetic acid: water; 90:9:1 by
volume) and centrifuged at 14,000× g for 10 min at 4 ◦C. In an equal volume, 0.5 mL of the
supernatant above the sediment was mixed with 0.02 M ferric ammonium sulfate solution
and incubated for 5 min at 30 ◦C. The absorbance at 530 nm was measured using a Bio-Tek,
Winooski, VT, USA microplate reader and compared to standard references to determine
the amount of endogenous SA in the sample [68,72].
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4.6. Biochemical Change Analyses Using SR-FTIR Microspectroscopy

The leaf samples were chosen from the previous experiment’s best concentration
treatment. The leaves were fixed with Optimal Cutting Temperature compound (Tissue-
Trek®, Torrance, CA, USA), then rapidly cooled in liquid nitrogen. Each frozen sample was
transversely cut with a cryostat microtome (Leica 3050 S, Wetzlar, Germany) at 7 microns
and placed on 13 × 2 mm infrared-transparent barium fluoridate slides [15,34].

4.7. Data Analysis of SR-FTIR Microspectroscopy

The spectral data were collected and imaging was done at the beamline 4.1 IR Spec-
troscopy, Synchrotron Light Research Institute (SLRI). The determinations were carried
out by using the mode of mapping with an aperture size of 10 × 10 µm, 4 cm−1 of spectral
resolution, and 64 scans for the background [73–75]. Spectral derivative and equipment
were performed by OPUS 7.2 software (Bruker Ltd., Hanau, Germany) then, data analyzed
by cytospecTM software and unscramblerX10.0 software, NJ, USA [34,75].

4.8. Domain Identification and Template Search

All molecular computations were done on the cutting-edge, using AMD 64-powered
Linux dual-processing Linux workstation. No PR1b structure was found in the database, so
the amino acid sequence of the pathogenesis-related protein from Oryza sativa L. (Uniprot
ID: P04284) was retrieved from the UNIPROT databank. PR1b was submitted to the
SBASE domain search server. Using FASTA format, the protein searched against the PDB
data bank’s database in BLAST search to identify related proteins that have similar three-
dimensional structures to the query [47,48]. Predicted protein structures were found by the
BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 25 January 2021)) against the
protein database provided and which has the highest sequence identity to the protein PR1b
and the results were highlighted as a preferred. Protein coordinates from the templates
were assigned to the sequence using spatial requirements. ClustalX [50–54] uses the default
parameters to align the reference structures to the target sequences.

4.9. D Model Building of PR1b

Homology modeling is used to create the initial structure of PR1b. The structure is
generated using MODELLER9V7, which is further developed using molecular dynamics
methods. The software generated fifty models, and the least energy of these was chosen for
further analysis. The generated model was subsequently used to assist in the stabilization
of the three-dimensional protein structure by molecular dynamics simulations [53,54]. The
NAMD 2.8 was used to simulate generated structure using CHARMM fields. The tracking
method is multiple-time stepping with long-range electrostatic determined after every two
steps. This study employs Hamilton’s equations of motion to find new velocities. Data
was used to produce the new model and compared it to its previously known template
thermodynamic properties in terms of RMSD [55,56].

4.10. Structure Validation of PR1b

After an alternative structure was determined using molecular dynamics and envi-
ronment simulation, a low Root Mean Square Deviation (RMSD) is generated, which is
then evaluated using the PROCHECK and structure evaluation server for profile applica-
tions [57]. After PR1b is minimized, this protein can be used to identify the active site and
docked with SA.

4.11. Active site Identification of PR1b

With the successful completion of the final model, structural comparison of the tem-
plate and the model was performed to identify the binding sites of PR1b from Oryza sativa
L. In addition, the binding sites were predicted using the CASTp server for the PR1b
modeled structure [58]. This server was used to generate different binding pockets and

https://blast.ncbi.nlm.nih.gov/Blast.cgi


Pathogens 2021, 10, 652 14 of 17

their volumes, from which we selected the highest pocket in size and volume for docking
with SA.

4.12. Docking Studies with SA

Docking studies were performed to gain insight into the binding conformation of SA
using FRED (Open eye scientific software, Santa Fe, NM, USA) [57–61]. Because PR1b
has multiple sites that are expected to react with different types of confirmations, and
SA was expected to produce different confirmations with novel physiological properties,
a library of different SA confirmations was built. To investigate the interaction of PR1b
with SA, a strong correlation was discovered between docking values and experimental
values [59,60].

5. Conclusions

The findings of this study showed that SA-Ricemate can reduce the severity of bacterial
leaf blight on rice by inducing resistance. The resistance mechanism occurred through
the expression of endogenous SA as the systemic signal, the alterations of lipids, pectins,
proteins amide I, proteins amide II, and polysaccharides. Homology modeling was used to
generate a three-dimensional structure for the PR1b sequence during IR. It was discovered
in this study that ASP28, ARG31, LEU32, GLN97, GLN, and ALA 93 of PR1b form hydrogen
bonds with SA. The docking studies shown that salicylic acid is involved in expression of
PR1b mechanism.
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