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More than one third of ovarian cancer patients present with ascites at diagnosis, and
almost all have ascites at recurrence. The presence of ascites correlates with the peri-
toneal spread of ovarian cancer and is associated with poor disease prognosis. Malignant
ascites acts as a reservoir of a complex mixture of soluble factors and cellular compo-
nents which provide a pro-inflammatory and tumor-promoting microenvironment for the
tumor cells. Subpopulations of these tumor cells exhibit cancer stem-like phenotypes,
possess enhanced resistance to therapies and the capacity for distal metastatic spread
and recurrent disease. Thus, ascites-derived malignant cells and the ascites microenviron-
ment represent a major source of morbidity and mortality for ovarian cancer patients. This
review focuses on recent advances in our understanding of the molecular, cellular, and
functional characteristics of the cellular populations within ascites and discusses their con-
tributions to ovarian cancer metastasis, chemoresistance, and recurrence. We highlight in
particular recent translational findings which have used primary ascites-derived tumor cells
as a tool to understand the pathogenesis of the disease, yielding new insights and targets
for therapeutic manipulation.
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INTRODUCTION
Ovarian cancer has the highest mortality rate of all gynecologi-
cal cancers worldwide and is frequently (>75%) diagnosed at an
advanced-stage (1). As the disease is asymptomatic, early detec-
tion is difficult so that at the time of diagnosis the tumor has
metastasized (FIGO stages III–IV). Even with optimal debulk-
ing surgery followed by aggressive front-line chemotherapy, which
results in an 80% initial cure rate, advanced-stage disease in the
majority of cases is incurable. This is due to the development of
a chemoresistant disease which results in recurrence within 16–
22 months and a 5-year survival rate of only ∼27% (2). More than
one third of ovarian cancer patients present with malignant ascites
at diagnosis; additionally, development of ascites is a fundamen-
tal part of chemoresistant and recurrent disease (2, 3). The onset
and progression of ascites is associated with poor prognosis and
deterioration in the quality of life of patients, as ascites can cause
debilitating symptoms such as abdominal pain, early satiety and
compromised respiratory, gastrointestinal, and urinary systems
(2). In newly diagnosed ovarian cancer patients, ascites is treated by
using standard treatment for the underlying disease, that is, intra-
venous treatment of combination of platinum and taxol-based
chemotherapy. However, once the chemoresistant and recurrent
features of the disease develop, management of large volumes of
ascites can be a major problem, and the majority of patients are
subjected to frequent paracentesis to temporarily relieve the symp-
toms. This in turn can lead to visceral and vascular injury resulting
in septic complications, further complicating the treatment of

the patients. In addition, ascites contains a rich tumor-friendly
microenvironment which not only promotes tumor cell growth
and motility (4, 5) but also results in inhibiting the response of
chemotherapy (6). In short, ascites plays a major role in the pro-
gression of the advanced-stage disease, emphasizing the necessity
to understand its pathophysiology and its impact on the biology
of ovarian tumor cells, including its role in chemoresistance and
mechanisms of tumor progression.

MECHANISM OF INTRAPERITONEAL DISSEMINATION OF
OVARIAN CANCER
Ovarian cancer is characterized by rapid growth and spread of
intraperitoneal tumors and accumulation of ascites (1). Early
metastasis in ovarian cancer occurs by direct extension of cancer
growth to sites proximal to primary tumors, through a series of
complex processes which involves cellular proliferation, epithelial-
to-mesenchymal transition (EMT) which results in tumor cells
migration to distant sites, and mesenchymal-to-epithelial tran-
sition (MET) for colonization (7, 8). The early steps of cancer
progression also involve disruption of the ovarian tumor capsules
and shedding of malignant cells from the primary tumors into the
peritoneum where they survive as single cells or free-floating mul-
ticellular aggregates, commonly known as spheroids, in the ascites.
Under this scenario, attachment and disaggregation of spheroids
on mesothelial extracellular matrix (ECM) allows them to anchor
as secondary lesions on pelvic organs and at a later stage, metasta-
size to distant organs (9, 10). Dissemination to distant sites, which
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carries a poor prognosis for ovarian cancer patients, has been sug-
gested to occur via transcoelomic, lymphatic, or hematogenous
routes (11, 12). Among these, metastasis through transcoelomic
route is commonly observed in advanced-stage patients and is fre-
quently associated with the production of ascites (11). The term
“malignant ascites” is commonly used when the tumor fluid is
tested positive for malignant cells and has a high level of lactate
dehydrogenase (13, 14), suggesting that the ascites may contain
tumor cells with rapid proliferative rates indicative of rapid pro-
gression of the disease. The fact that Stage 1A ovarian cancers
(disease is confined to the ovary) have fewer relapses (29%) than
Stage 1C (59%) (capsule has ruptured and peritoneal washings
are positive for malignant cells), suggests that if the tumor can
be removed before it is exposed to ascites in the peritoneum,
subsequent metastatic spread, and relapses can be reduced (11, 15).

ORIGIN OF ASCITES
Under normal physiological conditions, capillary membranes of
the peritoneal cavity continuously produce free fluid to keep the
serosal surfaces of the peritoneal lining lubricated so that there is
an easy passage of solutes between the peritoneum and the adja-
cent organs. Two thirds of this peritoneal fluid is reabsorbed into
the lymphatic channels of the diaphragm and is propelled into the
right subclavian vein by the negative intrathoracic pressure (16).
In cases of disseminated intra-abdominal cancer, further increased
production of peritoneal fluid is induced by the tumors due to the
increased leakiness of tumor microvasculature and obstruction of
the lymphatic vessels (17, 18). As a result, fluid accumulation in the
peritoneal cavity exceeds fluid reabsorption, resulting in the build-
up of ascites. It has been suggested that the flow of ascites currents
within the peritoneal cavity dictate the routes of dissemination
of ovarian cancer (11, 19). The physiological factors that drive
this process are gravity, diaphragmatic pressure, organ mobility,
and recesses formed by key anatomical structures (20). The three
most common intra-abdominal sites of ovarian cancer metastasis
are the greater omentum, right subphrenic region, and pouch of
Douglas, areas which have easy access to ascites (21). Detached
ovarian tumor cells either singly or in the form of multicellular
spheroids primarily colonize to these distant sites under the influ-
ence of ascites flow; however, little is known about the impact of
ascites flow on the heterogeneity of metastatic ovarian tumors that
colonize to distant sites (20).

SOLUBLE COMPONENTS OF ASCITES
Accumulation of ascites is a combined result of lymphatic obstruc-
tion, increased vascular permeability and secretions of resident
tumor, and associated stromal and immune cells (11). As a result,
malignant ascites constitutes a dynamic reservoir of survival fac-
tors, including cytokines, chemokines, growth factors, and ECM
fragments, which individually and in a combined fashion affect
tumor cell growth and progression through different cellular
mechanisms (4, 5, 22, 23). A recent multiplex profiling of cytokines
in the ascites obtained from 10 epithelial ovarian cancer patients
has demonstrated enhanced expression of several factors including
angiogenin, angiopoietin, GRO, ICAM-1, IL-6, IL-6R, IL-8, IL-
10, leptin, MCP-1, MIF, NAP-2, osteoprotegerin (OPG), RANTES,
TIMP-2, and urokinase plasminogen activator receptor (uPAR)

(24). Among these OPG, IL-10, and leptin in the ascites of ovar-
ian cancer patients were shown to be associated with shorter
progression-free survival (24). OPG, a secreted member of tumor
necrosis factor receptor (TNFR) superfamily, has been shown to
bind and inhibit TRAIL-induced apoptosis of ovarian cancer cells,
suggesting that ovarian tumor cells in the ascites with high expres-
sion of OPG may be able to evade TRAIL-induced cell death (25).
Leptin is an adipokine produced predominantly by adipocytes and
leptin-mediated signaling has been shown to promote ovarian can-
cer cell growth in vitro (26). On the other hand, IL-10 is known to
inhibit T helper cell proliferation, hamper dendritic cell matura-
tion, and inhibit T cells co-stimulatory molecules suggesting that
IL-10 in ascites may help tumor cells to evade host immunological
surveillance (27–29). Consistent with that, ascites-derived ovarian
tumor cells have been shown to constitutively release CD95 ligand
(also known as Fas ligand), which can induce apoptosis in immune
cells expressing CD95 (30).

Exosomes derived from the ascites of ovarian cancer patients
have been shown to impair the cytotoxic activity of peripheral
blood mononuclear cells (31). Malignant ascites has been shown
to also contain GD3 ganglioside, which inhibits the innate nat-
ural killer T (NKT) cell activity (32), while MUC16 expressed on
the surface of ovarian cancer cells has been shown to inhibit the
interaction of ovarian cancer cells with natural killer cells thus
providing protection to ovarian cancer cells from host immunity
(33). Additionally, correlations between the occurrence of regula-
tory T cells (Treg) (which inhibit tumor-specific T-cell immunity)
in the ascites and reduced survival in ovarian cancer patients have
been noted (11). These findings suggest that ascites contain the
amenities to help tumor cells evade host immunosurveillance so
that the tumor cells can avail unrestricted growth characteristics.

The concentration of inflammatory cytokines such as IL-1β, IL-
6, IL-8, IL-10 was shown to be significantly higher in the ascites of
ovarian cancer patients compared to that present in the serum, and
correlated with poor prognosis and response to therapy (34, 35).
The expression of IL-8 has been associated with increased tumori-
genicity and ascites formation in animal models (36). IL-6, on the
other hand, not only promotes tumor growth, migration, and inva-
sion (34, 37, 38) but also facilitate chemoresistance (39, 40) and
angiogenesis (41). In addition, high level of IL-6 in ovarian can-
cer ascites has been associated with shorter progression-free sur-
vival (42–44). Moreover, patients who responded to chemotherapy
tended to have lower ascites IL-6 levels, compared with patients
who did not respond to chemotherapy (45), suggesting that level
of IL-6 in the ascites of ovarian cancer patients is an independent
predictor of patient’s response to therapy.

Hepatocyte growth factor present in malignant ascites of ovar-
ian cancer patients has been shown to stimulate the migration
of ovarian cancer cells (46). Finally, lysophosphatidic acid (LPA),
a bioactive phospholipid present in high levels in the ascites of
ovarian cancer patients and produced by ovarian cancer cells,
signals through cell surface bound G-protein dependent recep-
tors and impose diverse affects on ovarian cancer cells which
includes increased transcriptional regulation of vascular endothe-
lial growth factor (VEGF), uPA, IL-6, and IL-8 (47, 48). Among
many other functions, LPA has been shown to increase de novo
lipid synthesis in ovarian cancer cells crucial for LPA-induced
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proliferation of ovarian cancer cells (49). LPA also disrupts the
junctional integrity of epithelial ovarian cancer cells (50) which
not only results in the metastatic dissemination of ovarian cancer
cells but also results in increased membrane permeability which
leads to enhanced ascites accumulation (2).

Vascular endothelial growth factor is found in abundance in
the ascites of ovarian cancer patients and plays a central role
in modulating the tumorigenic characteristics of ovarian cancer
cells. VEGF is over expressed in ovarian tumor cells and is associ-
ated with poor prognosis (51, 52). High VEGF production from
primary tumors has been reported to correlate with increased
metastatic spread and worse prognosis compared to low VEGF
secreting tumors (53). Retroviral enforced expression of VEGF in
ovarian cancer cells has been shown to dramatically reduce the
time of onset of ascites formation (54). One of the mechanisms by
which VEGF modulates permeability of peritoneal membranes is
by down regulation of tight junction protein claudin 5 in the peri-
toneal endothelial cells (55). In addition, VEGF has been shown
to induce tyrosine phosphorylation of cadherin-catenin complex
which results in decreased endothelial junctional strength and
increased permeability (56). Several factors have been shown to
influence the production of VEGF by ovarian cancer cells. These
included hypoxia, LPA, tumor necrosis factor, matrix metallo-
proteinases, insulin-like growth factor, epidermal growth factor,
platelet derived growth factor, and transforming growth factor
beta (2). In line with these studies, systemic administration of the
VEGF-Trap have been shown to prevent ascites accumulation and
inhibit the growth of disseminated cancer in mouse models (54),
suggesting thatVEGF expression is crucial for ascites accumulation
and ovarian cancer progression. Several agents that target VEGF
have been evaluated in Phase II trials in women with recurrent
ovarian cancer (57). Bevacizumab, a humanized monoclonal anti-
body against VEGF is currently in several Phase III studies with
encouraging results (58).

CELLULAR COMPONENTS OF ASCITES
The origin and phenotype of the cells in the ascites is poorly under-
stood. Similar to other tumor microenvironments, ascites contains
a complex heterogeneous mixture of “resident”and“non-resident”
cell populations, each having a defined role and connected with
each other through soluble mediators, some of which have been
described above. Belonging to the resident components of the
ascites are tumor cells and cancer-associated fibroblasts (CAFs),
to be distinguished from the non-resident populations, i.e., cells
recruited from the outside the tumor microenvironment such as
infiltrating macrophages/monocytes, bone marrow-derived mes-
enchymal stem cells (MSCs), and cytotoxic or Treg (59). Tumor
cells within the ascites of ovarian cancer patients are either present
as single cells or, more commonly, as aggregates of non-adherent
cells, also known as spheroids (60). In this scenario, multiple
(a few hundred) tumor spheroids can be seen either floating
or embedded in the peritoneal cavity during primary debulk-
ing surgery (61). Some of these tumor spheroids are loosely
attached to the underlying mesothelium and are detached during
debulking surgery, while others are tightly attached to the peri-
toneum as individual small adherent tumors having independent
vasculatures (61).

Neoplastic progression of ovarian carcinomas in the ascites
occurs as differentiated epithelial tumors floating as tumor spher-
oids (62). However, it has been suggested that primary ovarian
tumor cells may undergo an EMT-like process during localized
invasion in the peritoneum and retain mesenchymal features in
advanced tumors (8, 63). Even though the mesenchymal phe-
notype is central to EMT, ovarian cancer cells in ascites retain
epithelial features and cell–cell contacts and are able to invade
(60). Although enhanced E-cadherin expression, indicative of an
epithelial cell type, has been demonstrated in the tumor cells of
the ascites, especially those obtained from chemoresistant recur-
rent ovarian tumors (60), its expression is most commonly lost in
metastasis (62). E-cadherin expressing ovarian carcinoma spher-
oids have been shown to adhere to and invade the surrounding
mesothelium (9). Spheroids undergo reduced proliferation and
have limited drug penetration resulting in decreased suscepti-
bility to chemotherapy (64) and thereby mimic traits of cancer
stem cells (CSCs)-like cells (62). Contributing to the hetero-
geneity of the resident ascites cells, CSCs are a population of
cells that resists chemotherapy and is the source of proliferating
tumor cells with progressive differentiating potential (65). These
CSCs, when purified by sorting and xenografted into nude mice,
have been shown to generate a significantly greater tumor bur-
den compared to unsorted tumor cells (66, 67). On the other
hand, non-resident cells within the ascites include non-cancer
cells such as inflammatory cells, immature myeloid cells and
activated mesothelial cells, and MSCs (which can be resident or
non-resident) (68), all of which influence tumor cell behavior and
response to chemotherapy (69). The resident and non-resident
elements of the ascites microenvironment constantly interact with
each other forming a unique tumor microenvironment (69). We
discuss the non-resident cell populations within the ascites in
detail below.

IMMUNE CELLS INFILTRATING THE ASCITES MICROENVIRONMENT
Recent studies have demonstrated that immune system influences
the clinical outcome of high-grade serous ovarian cancer patients
(70, 71). The presence of tumor-infiltrating CD8+ T cells in pri-
mary tumors is associated with prolonged disease-free and overall
survival of ovarian cancer patients (70, 71). In this context, the
polyfunctional T-cell response of ovarian cancer patients has been
shown to be disrupted by the factors in the ascites (72). Some
of these factors have been discussed above, while additional fac-
tors include T cell co-stimulatory ligands B7-H4, stromal derived
factor (SDF)-1, Fas ligand, and soluble IL-2 receptor (70, 71). A
recent study has demonstrated that ovarian tumor T cell sup-
pression can be alleviated by leukocyte depletion, suggesting that
soluble factors secreted by leukocytes may also contribute to the
suppression of T cells (73). Furthermore, a high CD4/CD8 T
cell ratio in ascites was shown to be an indicator of the pres-
ence of Treg, which was associated with poor survival outcome
(74). It has been reported that a high T cell/Treg ratio indepen-
dently predicts increased survival (75). However, it was suggested
that it is not so much the presence of Treg but in general the
presence of immune responsive T cells which was observed to
exert survival effects (75). In addition, reduced accumulation of
CD3+CD56+ cells (natural killer or natural killer-like T cells) in
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the ascites was also correlated with increased platinum resistance
(76). Furthermore, ascites from ovarian cancer patients contain-
ing elevated levels of IL-17 (a cytokine predominately produced
by Th17 and other effector T cells) was correlated with increased
overall survival (77).

In addition to above, malignant ascites contains significant
numbers of activated CD163+ M2 type of macrophages the pres-
ence of which correlates with enhanced levels of IL-6 and IL-10
and inversely correlates with relapse-free survival period in ovarian
cancer patients (78). Ascites also contains rare plasmacytoid den-
dritic cells (PDCs) (<0.1% of blood monocytes) (79). Activated
macrophages and PDCs cells secrete CCL22 which is present in
high levels in the ascites of ovarian cancer patients (80). In vivo
treatment with monoclonal antibody to CCL22 resulted in sig-
nificantly decreased Treg cell migration into tumors, suggesting
that CCL22 may be contributing to the presence of Treg in ascites
(80). In this context, tumor-associated PDC have been shown to
induce angiogenesis in vivo by secreting TNF-α and IL-8 (81).
In contrast, myeloid dendritic cells (MDCs) were absent from
malignant ascites. MDCs derived in vitro suppressed angiogen-
esis in vivo through production of interleukin 12. Thus, the tumor
may attract PDCs to augment angiogenesis while excluding MDCs
to prevent angiogenesis inhibition, demonstrating a novel mecha-
nism for modulating tumor neovascularization (81). In addition,
myeloid-derived suppression cells (MDSCs) have been found in
ovarian cancers transplanted in immune-compromised mouse
models (82). These are a heterogeneous population of cells derived
from immature granulocytes or monocytes released from bone
marrow in response to stress induced by the tumor (83). The
common functional feature of these cells is the repression of infil-
trating functional T lymphocytes and natural killer cells (83).
Hence, these cells critically control tumor progression but its role
is yet to be identified in ovarian cancer. The above studies suggest
that several factors and concerted mechanisms in the ascites create
a microenvironment where cancer cells can grow unhampered.

STROMAL AND MESOTHELIAL CELLS IN THE ASCITES
MICROENVIRONMENT
The pro-metastatic role of inflammatory stroma has been
described in the literature (84). A significantly enhanced num-
ber of CAFs has been associated with high-grade ovarian tumors
compared to benign and borderline tumors (85). Abundant CAFs
were associated with the occurrence of lymph node and omen-
tal metastases and increased lymphatic and microvessel densities
(85). CAFs isolated from high-grade ovarian tumors facilitated
more migration and invasion in ovarian cancer cell lines than
those isolated from normal tissues (85). In another study, CAFs
isolated from omentum were shown to be activated by ovarian
tumor cells to promote ovarian cancer growth, adhesion, and inva-
siveness through the TGFβ1 pathway (86). Interleukin-1β secreted
by ovarian tumor cells was shown to induce a p53/NFκB-mediated
stromal inflammatory response to support ovarian tumorigenesis
(87). A recent study has provided evidence of the inter-conversion
of CAFs into MSCs required for promoting tumor growth by
paracrine production of inflammatory cytokines (88). Ovarian
cancer-associated MSCs have also been shown to have a greater
ability to promote tumor growth compared to normal MSCs

(68). This was shown to be mediated through abnormal pro-
duction of BMP2. Treatment in vitro of ovarian cancer cell lines
with recombinant BMP2 was shown to enhance the production
of ALDH+CD133+ ovarian CSCs (68). In another study, the
expression of HOXA9, a Müllerian-patterning gene, was shown
to promote ovarian cancer growth by converting normal peri-
toneal fibroblasts into ovarian CAFs (89). In the same study, the
expression of HOXA9 was also shown to induce normal adipose
and bone marrow-derived MSCs to acquire features of CAFs by
transcriptional activation of TGFβ2 mediated by the expression
of CXCL12, IL-6, and VEGFA. These studies, even though not
directly related to CAFs in the ascites of ovarian cancer patients
implicate CAFs as an important modulator of promoting ovarian
tumor growth.

In addition to CAFs, ascites contains a significant proportion
of activated mesothelial cells which remain as single cells or are
embedded with floating spheroids. These mesothelial cells are a
major source of VEGF and LPA in ascites which have demon-
strated enhanced adhesion, migration, and invasion of ovarian
cancer cells in vitro (90). Peritoneal mesothelial cells also have an
enhanced expression of SDF-1/CXCR4-dipeptidyl peptidase IV
(DPPIV) which has been suggested to be involved with the re-
epithelization of discarded peritoneal basement membranes after
the attachment of secondary tumors on the peritoneum (91).

CANCER STEM CELLS IN THE ASCITES MICROENVIRONMENT
In recent years, many reports have described the CSC characteris-
tics of ovarian cancer (66, 69, 92). In these models, resident cells in
the ascites or primary tumors have been demonstrated to have the
features of self-renewal, multi-lineage differentiation, and tumor
initiation characteristics in vivo (93, 94). CSCs in these reports
have also been demonstrated to have the ability to colonize to
distant sites and to survive chemotherapy. Genetic and epigenetic
mechanisms appear to be the main factors in this scenario (69).
In vitro enrichment and propagation of CSCs are achieved by
growing cells in an unattached condition in the form of “spher-
oids” (94–96). As one of the features of ascites-derived ovarian
cancer cells is to survive in a free-floating anchorage independent
condition, the highest concentration of CSCs in ovarian cancer has
been proposed to reside within the free-floating tumor spheroids
contained in the ascites (60, 62). In support of this notion, it has
recently been demonstrated that cells within the ascites have CSC
characteristics (60, 93). It has also been shown that the abundance
of CSCs is more in the ascites-derived spheroids of chemoresis-
tant and recurrent patients compared to that in the chemonaive
patients (60). This may be due to the chemoresistant phenotype
of ovarian CSCs in ascites which remains undetected as residual
tumor cells after treatment and gradually increase in number with
consecutive cycle of treatments.

Wintzell et al. (97), also reported high levels of CSCs in freshly
derived ascites, in both spheroids as well as in cells existing as
single-cell population, but these authors concluded that the single-
cell population was more enriched in CSCs than the spheroids.
Both Wintzell et al. (97), and Latifi et al. (60), showed that ascites
spheroids were high expressers of E-cadherin and EpCAM and
low/negative expressers of vimentin, CD44 and MMPs (MMP2
and MMP9) compared to single-cell population. In addition, Latifi

Frontiers in Oncology | Women’s Cancer September 2013 | Volume 3 | Article 256 | 4

http://www.frontiersin.org/Women's_Cancer
http://www.frontiersin.org/Women's_Cancer/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ahmed and Stenvers Ascites in ovarian cancer

et al. (60), showed that the single-cell population from ascites
also have high expression of MSC markers such as CD73, CD90,
CD105 as well as fibroblast surface protein (FSP), indicative of
the CAF-like phenotype of single cells described by Wintzell et al.
(97). However, Latifi et al. (60) found high expression of Oct4,
STAT3, and CA125 in spheres and lack of expression of CA125
in the single-cell population. These observations were consistent
with the lack of tumor forming ability of single cells in nude mice
for as long as 20 weeks while the same number of cells collected
from spheres formed tumors in nude mice within 12–14 weeks
(60). These observations suggest that the tumorigenic component
of ascites may exist within the spheres while single cells (poten-
tially CAFs) may be the supporting entity, which is contrary to the
conclusions of Wintzell et al. (97).

Distinct pattern of CSC marker co-expression may exist in
spheres and single cells of the ascites and this needs to be explored
further in future studies. High expression of Oct4 in single cells as
described in Wintzell et al. (97), in contrast to high expression of
Oct4 in spheres shown in Latifi et al. (60) may occur due to the
differences in the separation techniques used by the two studies
which may impact on the phenotypic changes in the cells. In addi-
tion, differences in the recruitment of patients in two studies may
also contribute to the differences in the findings. While in Latifi et
al. (60), only high-grade primary serous patients were recruited,
the patient cohort in Wintzell et al. (97) contained different histo-
logic subtypes of ovarian, Fallopian tube, and peritoneal cancers.
Moreover, the expression of Oct4 was deduced at the mRNA level
in Latifi et al. (60), while Western blot was used to detect the pro-
tein expression of Oct4 in Wintzell et al. (97). These differences in
the approaches may contribute to the ambiguity of the Oct4 sta-
tus in the spheres or single cells in the two studies. Hence, future
studies on bigger cohorts of ovarian cancer patients are needed to
determine if ascites spheres or single cells are the main repository
of CSCs. Nevertheless, existing evidence indicates that the ascites
microenvironment is a CSC-niche which facilitates processes such
as EMT, inflammation, hypoxia, and angiogenesis in the resident
cells which ultimately determine the function and fate of CSCs
(69, 98).

EXPERIMENTAL AND TRANSLATIONAL APPROACHES TO
THE STUDY OF ASCITES-DERIVED CELLS
Ascites is an indicator of poor prognosis in ovarian cancer patients,
with the tumor cells within the ascites postulated to play dominant
roles in metastatic spread, chemoresistance, and ultimately, the
recurrence of the cancer (2, 60). Hence, a thorough understand-
ing of the biology of the ascites microenvironment is essential
for developing effective therapeutic intervention for metastatic
ovarian cancer. Established ovarian cancer cell lines, often origi-
nally isolated from ascites, are readily available, immortalized, and
low-cost options to assess tumor cell behavior. However, the dis-
tinct disadvantage of cell lines is their accumulation of numerous
genetic and phenotypic abnormalities over years of culture which
no longer accurately reflect the clinical disease (99). Ascites iso-
lated from ovarian cancer patients represents a readily accessible
source of primary cancer cells and cancer-associated cells with the
potential to provide direct insights into the molecular and cellu-
lar pathophysiology of ovarian cancers as they metastasize within

the peritoneal cavity. Reviewed below are some of the clinically
relevant model systems which have provided novel insights into
the contribution of ascites-derived cells and the ascites microen-
vironment to ovarian cancer tumorigenicity and the metastatic
progression of the disease.

ISOLATION AND CHARACTERIZATION OF ASCITES-DERIVED CELL
POPULATIONS
As reviewed above, ascites contains a complex heterogeneous mix-
ture of malignant and non-malignant cell types. Tumor cells can be
isolated from ascites without mechanical or enzymatic digestion
(100) and, if cultured under non-adherent conditions, retain their
molecular and phenotypic profiles long-term (60). Most methods
devised for the isolation and primary culture of ascites-derived
cells incorporate a step to remove contaminating red blood cells,
with some methods further separating cell populations based on
their molecular and/or phenotypic profiles (60, 61, 93, 97, 101,
102). Notably, there have been several studies which isolated pre-
sumptive CSC populations from ascites using clonal selection
(93) or FACS sorting for particular cell surface markers (101)
or Hoechst dye 33342 exclusion (103). Isolated cells are charac-
terized for their expression of stem cell markers, such as Oct4,
Nanog, Bmi1, ABCG2, and then tested in vitro and in vivo for
self-renewal and differentiation capabilities (104). These studies
resulted in the paradigm-shifting identification of ovarian CSC
populations within the ascites and the recognition of the roles
CSCs play in the pathophysiology of epithelial ovarian cancer.
CSCs are capable of asymmetric division which enables their own
self-renewal as well as the generation of the heterogeneous differ-
entiated cell populations that comprise the majority of the tumor
mass (66, 67). When transplanted into immunodeficient mice,
CSCs isolated from tumors can recapitulate the primary disease
(93). Furthermore, the high rate of cancer recurrence following
platinum and taxol-based chemotherapeutics is thought to be due
to a failure to eradicate CSCs, which exhibit heightened chemore-
sistance compared to the rest of the tumor (62, 67, 105, 106).
These data underscore the need to understand the central regula-
tory pathways critical to CSC survival in order to effectively target
recurrent disease therapeutically (69).

Distinct subpopulations of ascites-derived cells have also been
separated during culture on the basis of their differing phe-
notypes. For example, mesenchymal-like cells can be separated
from epithelial tumor cells on the basis of their relative adher-
ence to low-attachment plates (60, 107). In this method, the bulk
of the ascites-derived tumor cells float as aggregates while non-
tumorigenic mesenchymal cells attach to the plates (60). This
method has been used to understand how the biology and mol-
ecular profile of the ascites microenvironment in patients with
chemonaive and chemoresistant disease differs and how these dif-
ferences relate to tumor behavior in in vitro and in vivo assays
(60). Specifically, these studies demonstrated that chemotherapy
treatment induces a CSC-like phenotype in vitro (107) which is
recapitulated in primary ascites-derived ovarian cancer cells from
chemoresistant patients with recurrent disease (60). These findings
are supported by an independent study of ascites-derived cells,
which characterized stromal progenitor cells within the ascites
(101). These researchers noted that ascites from patients with
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recurrent and late-stage epithelial ovarian cancers contained more
cells with a higher expression of stem cell markers than ascites from
patients with early-stage tumors (101). Various cell isolation and
culture methods have been used to access ascites cell populations,
and the current data present a picture of significant intra- and
inter-patient heterogeneity. Nevertheless, subpopulations of cells
from ascites with CSC-like cell surface protein expression profiles
and self-renewal capabilities consistently display a more aggressive
metastatic, chemoresistant phenotype than cell populations lack-
ing CSC-like features in both in vitro and in vivo xenograft models
of ovarian cancer metastasis (102, 105).

These novel findings suggest the need for a thorough evalua-
tion of the subpopulations of ascites-derived cells in association
with cancer stage, patient response to chemotherapy, and overall
patient survival in order to identify molecular or protein signatures
within ascites subpopulations with prognostic and diagnostic sig-
nificance. To this end, comprehensive gene expression assessment
methods such as RNA and microRNA screens, proteomics strate-
gies, and NextGen sequencing are being applied to the analysis of
ascites-derived cells (2). A recent study demonstrated the clinical
potential of one such a high-throughput, integrative approach.
Using microarray and clinical data from over 1000 patients with
high-grade serous epithelial ovarian cancer a novel prognostic
model was developed which was based on the altered profiles of
family members of lethal-7 (let-7) microRNAs (108). This study
identified let-7b as the master regulator of a network of genes,
with higher levels of let-7b predictive of poorer outcomes after
primary chemotherapy (108). Notably, patients could be strati-
fied on the basis of their let-7b profiles into low, intermediate,
and high-risk groups which corresponded to response to front-
line chemotherapy and 5-year survival rates (108). While this
method was developed using publicly available gene array data sets
derived from advanced ovarian cancers, adaptation of this method
to the study of freshly isolated ascites-derived tumor cells from
chemonaive and chemoresistant patients would represent a means
for improved prediction and monitoring of patients’ response to
chemotherapies.

FUNCTIONAL ANALYSES OF ASCITES-DERIVED CELL POPULATIONS
As spheroid formation within ascites is postulated to directly
contribute to disease spread and to the development of chemore-
sistance (see above), several methods have been developed for the
functional assessment of ascites-derived cells in vitro and in vivo,
with the aim of mirroring various in vivo microenvironments as
accurately as possible. The overarching aim of these studies is
the development of new therapeutic approaches which specifi-
cally target particular stages of ovarian cancer metastasis, e.g., the
formation or stability of spheroids within the ascites to enhance
sensitivity to chemotherapeutics or the attachment and invasion
of spheroids into the peritoneal lining to block colonization at
distal sites.

In vitro modeling of spheroid formation, survival, and metastasis
Cancers which spread through the blood and lymphatic vascu-
lature undergo repeated intravasation and extravasation through
vessel walls. In contrast, during ovarian cancer metastasis, cancer
cells are shed from the primary tumor into the peritoneal cavity

and must survive suspended within the ascites (8, 10). To model
this stage of ovarian cancer metastasis, ovarian cancer cell lines or
primary ascites-derived cells are maintained under non-adherent
conditions, such as in hanging-drops, in a liquid overlay, or in
low-attachment culture dishes (109, 110). Under non-adherent
conditions, cancer cells inherently aggregate together to form
multicellular spheroids, which exhibit enhanced abilities to avoid
anoikis (111). The main advantage that spheroid cultures have
over monolayer cultures is that spheroid cultures more accu-
rately model the complex three-dimensional structures assumed
by ovarian cancers metastasizing within the peritoneum and reca-
pitulate the molecular (e.g., oxygen, nutrient, metabolite) gradi-
ents found in vivo. Thus, multicellular spheroids cultured under
non-adherent conditions which mimic the ascites more accurately
predict in vivo behaviors and responses to therapies. For example,
cancer cells grown as spheroids can be up to 100 times less sensi-
tive to chemotherapies than the same cells cultured as monolayers,
reflecting the inherent chemoresistance exhibited by metastasizing
ovarian cancer spheroids in a clinical setting (109). The enhanced
survival capabilities of spheroids were recently demonstrated using
primary ascites-derived epithelial ovarian cancer cells (112). In
this study, when grown as spheroids in non-adherent culture,
ascites-derived tumor cells exhibited resistance to Myxoma-virus-
mediated death despite the virus entering and replicating within
the spheroids. In contrast, if the tumor cells were grown as mono-
layers in adherent culture or if spheroids were replated onto adher-
ent surfaces, they exhibited sensitivity to Myxoma-virus-mediated
death (112). This study has important implications for the devel-
opment of treatments for advanced, metastatic ovarian cancers,
underscoring the need to study the non-adherent spheroid stage
of ovarian cancer metastasis in the development of new therapeu-
tic regimens in order to ensure that new treatment options are
effective against tumor spheroids floating within the ascites.

For experimental study, spheroids can be harvested freshly from
ascites using centrifugation or low-attachment plates (60,97). Har-
vested spheroids can be replated onto different solid surfaces or
co-cultured with other peritoneal cell populations to model later
stages of ovarian cancer metastasis, when multicellular spheroids
attach to and invade the peritoneal lining to form a secondary
tumor (113–115). In particular, co-cultures of ovarian cancer cells
with specific subpopulations of the peritoneal lining and omen-
tum, such as fibroblasts (86, 116), adipocytes (117), and mesothe-
lial cells (115) have provided particular insights into the phys-
ical, biomechanical, and chemical interactions between invading
tumor cells and the peritoneal environment in the establishment of
metastatic nodules within the peritoneum. These models are grow-
ing increasingly sophisticated, with the use of primary omental
and peritoneal tissue for three-dimensional organotypic models
(116, 118). These studies demonstrate that peritoneal and omen-
tal fibroblasts, adipocytes, and mesothelial cells directly contribute
to the pro-metastatic environment of the peritoneal cavity, releas-
ing soluble factors into the ascites, secreting ECM components,
and supplying energy reserves for the invading cancer cells.

As over 75% of ovarian cancers have already metastasized at
the time of diagnosis (1), the information gained from these
approaches is urgently needed in order to derive novel strate-
gies which specifically disrupt the interactions between ovarian
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cancer spheroids and the peritoneal microenvironment, thereby
preventing the establishment of secondary tumors. In recent years,
three-dimensional spheroid culture methods have been adapted
to a variety of high-throughput systems, with the aim to expe-
diting the screening the effectiveness of therapeutic compounds
and identifying the key factors underlying metastatic growth and
dissemination (109, 110). Of note, a recent study has used a
microfluidic platform to study the effects of the hydrodynamic
forces of ascites on tumor phenotype (20). This study used sev-
eral on-chip analyses [immunofluorescence for epidermal growth
factor receptor (EGFR); mRNA isolation for RT-PCR; and protein
isolation for biomarker quantification] to show that continuous
flow induced EMT in an ovarian cancer cell line, which con-
tributed to a more aggressively invasive phenotype. These data
demonstrate yet another facet of the ascites microenvironment
which contributes to the ovarian cancer metastatic process (i.e.,
biochemical), furthermore, this experimental approach represents
a high-throughput modality in which to study the efficacy of var-
ious targeted therapies in the prevention of the establishment and
growth of secondary tumors.

In vivo modeling of the intraperitoneal environment
A number of studies have studied the role of vascularization in
ovarian cancer metastasis or verified their in vitro results using
either subcutaneous or intraperitoneal injection of ascites-derived
tumor cells into nude mice, e.g., the validation of the tumor-
repopulating abilities of isolated ascites-derived tumor cells or
putative ovarian cancer CSCs in vivo (60, 93, 102, 105). These
models provide an in vivo microenvironment for testing estab-
lished and novel chemotherapeutic approaches and are a necessary
preclinical model system. However, these models lack the true
metastatic features of ovarian cancer which occurs in the peri-
toneum and involves the ovaries, adjacent organs (extra-ovarian
pelvic organs, e.g., colon, bladder, liver) as well as spheroids
carried around in the ascites to distal organs of the peritoneal
cavity (1). Moreover, the xenotransplantation immunocompro-
mized mouse model currently used may select populations of
tumor cells that can override the weak immunogenic response of
nude mice which is entirely different from the immune response
in patients against their own tumors (119) In recognition of
this latter problem, recently a refined mouse xenograft model
has been developed using human embryonic stem cells to gener-
ate a “human” microenvironment within immunocompromized
mice. Using malignant cells freshly isolated from the ascites
of an ovarian cancer patient, six derivative cell subpopulations
were developed, and it was found that the human microenvi-
ronment permitted some patient-derived ascites cells to gener-
ate tumors which failed to grow in a conventional nude mouse
model (120). This improved method may enable the study of the
in vivo behaviors of previously unstudied cell subpopulations and
also provides insights into the role of the human microenviron-
ment in the tumorigenicity and metastatic capabilities of ovarian
cancers.

ASCITES AS A PLATFORM FOR TRANSLATIONAL RESEARCH
As discussed above, ascites is a source of tumor material
from which valuable information can be extracted not only to

understand the pathophysiology of ovarian cancer progression
but also for the development of markers which will predict prog-
nosis and monitor the progression of the disease. The frequent
presence of ascites at first presentation, and subsequent relapses,
provides an accessible pool of tumor material that can be studied
to determine the molecular characteristics of cells as the disease
progresses. With the establishment of methods which can sepa-
rate the different soluble and cellular components of the ascites
(60), it may now be possible to identify and differentiate the
true molecular perturbations that exist between the chemon-
aive, chemoresistant, and recurrent status of the disease. Isolated
cellular components of the ascites can be preserved as paraffin
embedded blocks for immunohistochemical analysis (121, 122),
or can be frozen for molecular analysis at the RNA and protein
levels (60, 122). Moreover, ascites provides a substantial amount
of biological material which can be obtained to design studies
which require relatively larger amounts of tumor material, which
previously were only limited to genome-based studies due to the
scarce availability of primary and metastatic tumors leftover after
pathological diagnosis. These studies include methods to elucidate
the protein profile of ascites-derived tumor and associated cells by
proteomic methods such as matrix-assisted laser desorption and
ionization (MALDI), surface enhanced laser desorption and ion-
ization (SELDI), and liquid chromatography followed by mass
spectroscopy (MS) (2, 123), all of which require larger amounts
of samples than that used by genomic methods. In addition, high-
throughput automated array-based proteomics techniques such
as reverse phase protein arrays (RPAs) can be used to understand
the differential expression of proteins in the isolated ascites cellu-
lar components from chemonaive and chemoresistant patients. A
recent study which used the RPA analysis on ascites samples and
pleural effusions obtained from ovarian cancer patients showed
significantly higher expression of AKT, cAMP-responsive element
binding protein (CREB), and Jun-N-terminal kinase (JNK) in
malignant ascites compared to benign effusions (124). Given that
deregulation of PI3 kinase and the downstream AKT pathway has
been demonstrated in ovarian cancer (125, 126), and high levels
of p38 and an increase in the ratio of phosphorylated EGFR and
phosphorylated JNK were associated with bad prognosis in ovar-
ian cancer patients (124), it seems that the proteomic profile of the
ascites environment may imitate the protein expression profile of
the original tumors (2). These observations suggest the enormous
potential of using ascites samples for diagnostic, prognostic, and
therapeutic endpoints.

Accessibility to ascites also provides a means of comparing
the secretory components of the chemonaive and chemoresistant
patients. A recent study has determined the cytokine expres-
sion profile of the ascites of ovarian cancer patients. Out of 120
cytokines analyzed OPG, IL-10, and leptin was found to be associ-
ated with worst prognosis in ovarian cancer patients (24). The con-
cept that the damage of tumor cells in response to chemotherapy
treatment can activate autocrine and paracrine secretory responses
of residual tumor cells (69, 127, 128), suggest that the soluble
component of the ascites microenvironment of chemonaive and
chemoresistant patients may be significantly different. In addition,
the tumor growth promoting effect of exosomes released by ovar-
ian tumors has been reported (129). Malignant ascites-derived
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exosomes of ovarian carcinoma patients have been shown to con-
tain CD24 and EpCAM (130). The exosome-associated proteolytic
activity in the tumor vicinity has been suggested to augment
tumor invasion into the stroma (130). Exosomes released by ovar-
ian cancer cells have been shown to induce apoptosis of mature
dendritic cells and peripheral blood nuclear cells suggesting they
have a negative effect on host immunity (31). In addition, ascites
have been shown to contain pro-survival factors which compro-
mised the therapeutic effects of TRAIL and were shown to be
associated with shorter disease-free intervals in ovarian cancer
patients (131). These data suggest that the signals derived from
the soluble ascites microenvironment plays a crucial role in regu-
lating ovarian tumor cells and targeting the survival promoting
activity of the soluble component of ascites may be manda-
tory for the development of efficient therapies for ovarian cancer
patients.

FUTURE DIRECTIONS
From a clinical perspective, our understanding of ascites and
its associated cellular and soluble components are of utmost
importance to understand the advanced-stage disease. The cen-
tral component of such investigations would be ascites obtained
from patients pre- and post-chemotherapy and understanding
both the soluble and cellular components individually and/or
in association with each other. These studies can be performed
using microfluidic systems to investigate the impact of ascites
on resident and non-resident cell systems either individually or
in combination (20). Microfluidic platforms have been used to
investigate the morphological parameters and migratory poten-
tials of immune cells in response to external stimulus (132).
Other studies have used cell-on-chip based platforms to inves-
tigate the interaction of tumor cells with endothelial cells (133).
Recently, a simple cell-on-chip platform was developed to investi-
gate the crosstalk between immune cells and cancer (89). Using
this approach, which consisted of three wide parallel cham-
bers interconnected via an array of short and narrow cap-
illary migration channels, it was possible to visualize under
the microscope the interaction between the immune and can-
cer cells (89). Hence, customized microfluidic platforms may
be helpful to study and mimic the events of ascites-derived

microenvironment. This can also provide helpful clinical infor-
mation as understanding the crosstalk between cancer cells with
associated surrounding cells in the native ascites microenviron-
ment will result in the improvement of therapies for ovarian
cancer.

CONCLUSION
The accessibility of ascites undeniably provides a rich source of
tumor samples to monitor the course of chemotherapy treatment
in patients. In addition, it also provides an opportunity for the
identification of prognostic and treatment-monitor markers, as
well as options for molecular profiling of both the cellular and
soluble components. The cellular and molecular profile of indi-
vidual ascites is a subject of inter-patient variations which will
differ not only with the treatment protocol but also how each
patient responds to a particular therapy. Hence, to provide a mol-
ecular characterization which would fit into a defined pattern
to design appropriate targeted therapies would be challenging.
Hence, long-term, longitudinal studies within the same patient
cohorts, starting with chemonaive status and periodic evaluations
of molecular and cellular characterization of the ascites com-
ponents as the disease progresses would be useful to develop
an individualized predictive profile which will be crucial for
designing targeted therapies. The interrogation of soluble and
cellular variations in ascites during the treatment regimen in
patients may guide clinical decision making for patient manage-
ment (134). This may form a basis for informed and effective
personalized treatment approaches. Hence, with the advances
in our understanding of the pathophysiology of ascites and the
development of new methods which can delineate the cross
talk between the different cellular components it is anticipated
that more effective and targeted strategies for the management
of ascites and ovarian cancer patients will be available in near
future.
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