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Abstract: The viscoelastic properties of materials such as polymers can be quantitatively evaluated
by measuring and analyzing the viscoelastic behaviors such as stress relaxation and creep. The
standard linear solid model is a classical and commonly used mathematical model for analyzing
stress relaxation and creep behaviors. Traditionally, the constitutive equations for analyzing stress
relaxation and creep behaviors based on the standard linear solid model are derived using the
assumption that the loading is a step function, implying that the loading rate used in the loading
process of stress relaxation and creep tests is infinite. Using such constitutive equations may cause
significant errors in analyses since the loading rate must be finite (no matter how fast it is) in a real
stress relaxation or creep experiment. The purpose of this paper is to introduce the constitutive
equations for analyzing stress relaxation and creep behaviors based on the standard linear solid
model derived with a finite loading rate. The finite element computational simulation results
demonstrate that the constitutive equations derived with a finite loading rate can produce accurate
results in the evaluation of all viscoelastic parameters regardless of the loading rate in most cases. It
is recommended that the constitutive equations derived with a finite loading rate should replace the
traditional ones derived with an infinite loading rate to analyze stress relaxation and creep behaviors
for quantitatively evaluating the viscoelastic properties of materials.

Keywords: viscoelasticity; viscoelastic models; viscoelastic properties; mechanical properties; material
characterization; finite element; modeling and simulation; computational materials science

1. Introduction

Polymers are fundamental materials in numerous industries such as aerospace, auto-
mobile, biomedicine, cosmetics, electronics, packaging, sports, textile, rubber and plastics,
and so on. The applications of polymers are still advancing and increasing rapidly, thanks
to their exceptional mechanical properties. The mechanical behaviors of all polymers
are viscoelastic, meaning that they exhibit time-dependent mechanical behaviors of both
viscous fluids and elastic solids [1–5]. By measuring and analyzing the viscoelastic behav-
iors (such as stress relaxation and creep) of a polymer when it is subjected to loading, its
viscoelastic properties can be quantitatively evaluated [6–10]. The viscoelastic properties
of polymers have profound impacts on applications since they not only determine the
performance and quality of products in relevant industries but also determine the ease and
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success of manufacturing processes during production [1]. The viscoelastic properties can
also be applied to classify and compare different types of polymers [11–14]. In addition
to polymer engineering and science, viscoelastic properties have important applications
in many other fields. For example, the viscoelastic properties can be served as quantities
to differentiate normal and pathological tissues in clinical diagnosis [7,15–21], to evaluate
the functional statuses of engineered tissues in tissue engineering [22–24], to understand
the conditions of cells and the disease evolutions in biological and medical sciences [25,26],
and so on. For successful applications of viscoelastic properties, it is an important issue
regarding how to accurately evaluate them. In order to evaluate the viscoelastic properties
of materials accurately, viscoelastic mathematical models and the accurate presentations of
their solutions are required.

The Maxwell form of the standard linear solid model (abbreviated as the standard
linear solid model in the following text), as shown in Figure 1, is a classical viscoelastic
mathematical model commonly applied to analyze experimentally measured or computa-
tionally simulated viscoelastic behaviors such as stress relaxation and creep for evaluating
the viscoelastic properties of materials [27–30]. Other than the standard linear solid model,
there are many other types of viscoelastic models available to use, including more com-
plicated models such as generalized Maxwell and Kelvin models [31–44] and fractional
order models [11,45–47]. Nevertheless, the standard linear solid model is still one of the
most common and popular viscoelastic models because of its simplicity and high applica-
bility. The standard linear solid model has been widely applied to analyze the viscoelastic
behaviors of a great variety of materials, including polymers [48–60], single cells [61–65],
blood vessels [66,67], heart muscles [68], cartilages [69,70], intervertebral discs [71,72],
hydrogels [55,73–75], and various biomaterials, to name a few.

Figure 1. The Maxwell form of the standard linear solid model. E1, E2 and η are three parameters in
the model relevant to the viscoelastic properties.

In literature, traditionally, the stress relaxation behavior based on the standard linear
solid model is described by the following equation [30,76,77]:

σrelaxation(t) =
(

E1 + E2e
−t
τR

)
ε0 (1)

where t is time, σrelaxation(t) is the stress as a function of time during the stress relaxation
process, ε0 is the constant strain during the stress relaxation process, τR = η/E2 is the re-
laxation time constant, E1, E2 and η are three parameters in the standard linear solid model
relevant to the viscoelastic properties. On the other hand, traditionally, the creep behavior
based on the standard linear solid model is described by the following equation [30,76,77]:

εcreep(t) =
σ0

E1

(
1− E2

E1 + E2
e
−t
τC

)
(2)
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where εcreep(t) is the strain as a function of time during the creep process, σ0 is the constant
stress during the creep process, τC = η(E1 + E2)/E1E2 is the creep time constant (or called
the retardation time constant).

These two equations are widely applied to analyze experimentally measured or com-
putationally simulated stress relaxation and creep behaviors for evaluating the viscoelastic
properties of materials. However, these two equations are derived based on the assumption
that the loading is a step function, implying that the rate of loading is infinite (i.e., extremely
fast). Using such equations may cause significant errors in analyses since the rate of loading
(no matter how fast it is) must be finite in a real stress relaxation or creep experiment. Some
previous experimental studies have reported that the patterns of viscoelastic behaviors
depend on the loading rate, demonstrating the need for the constitutive equations that
take the finite loading rate into account to analyze the strain-rate-dependent viscoelastic
behaviors [78–81].

The purpose of this paper is to introduce the constitutive equations for analyzing
stress relaxation and creep behaviors based on the standard linear solid model derived
with a finite loading rate. Finite element computational simulation will be conducted to
compare the accuracy of the constitutive equations derived with finite loading rate to that
of the traditional equations derived with infinite loading rate. The results will demonstrate
that, compared to the traditional constitutive equations derived with infinite loading rate,
the constitutive equations derived with finite loading rate can produce more accurate
results in the evaluation of all viscoelastic parameters regardless of the loading rate in most
cases. One of the main intentions of this paper is to provide practical tools for the readers
to directly analyze their data. Therefore, we provide the MATLAB (R2021a; Mathworks,
Natick, MA, USA) computer programming codes for analyzing (i.e., curvefitting) stress
relaxation and creep data based on the constitutive equations introduced in this paper.
Only the most important mathematical equations are mentioned in the main text of the
paper; however, the readers can find the detailed derivation of each equation that appeared
in the paper in Supplementary Materials File S1.

2. Materials and Methods
2.1. Overview

The constitutive equations (both our proposed ones derived with finite loading rate
and the traditional ones derived with infinite loading rate) for analyzing stress relax-
ation and creep behaviors based on the standard linear solid model will be introduced
in Sections 2.2 and 2.3, respectively. Intuitively, it seems that stress relaxation and creep
are two different viscoelastic behaviors. However, actually, stress relaxation and creep
behaviors are interrelated and can be regarded as the two sides of the same coin [82–84]. In
the stress relaxation test, we control the strain (by controlling the strain rate) in the loading
process and then monitor how the stress changes with time during the stress relaxation
process. On the other hand, in the creep test, we control the stress (by controlling the stress
rate) in the loading process and then monitor how the strain changes with time during the
creep process. Since the processes in the stress relaxation and creep tests are very similar,
the content in Section 2.2 for introducing the constitutive equations for stress relaxation
and the content in Section 2.3 for introducing the constitutive equations for creep will be
very similar. However similar these two sections are, the readability could be higher if
these two sections could be presented as two separate sections and written independently.
Therefore, Sections 2.2 and 2.3 can be viewed as two independent sections. Please note
the differences when reading these two sections: the main difference between these two
sections is that the term “stress” in Section 2.2 will be replaced by “strain” in Section 2.3,
the term “strain” in Section 2.2 will be replaced by “stress” in Section 2.3, while the term
“stress relaxation” in Section 2.2 will be replaced by “creep” in Section 2.3.

Section 2.4 will describe the details of using finite element computational simulation
to compare the accuracy of our proposed constitutive equations derived with finite loading
rate to that of the traditional constitutive equations derived with infinite loading rate. Finite
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element computational simulation will be used to simulate a series of stress relaxation
and creep curves tested with different loading rates (from extremely slow to extremely
fast). Each of the simulated stress relaxation and creep curves will be curvefitted by the
two equation forms, respectively. In order to determine the accuracy of each equation form,
the viscoelastic properties designated in the finite element simulation software suite during
the simulation (served as the true viscoelastic properties of materials) will be compared to
those obtained by each of the two equation forms.

2.2. Two Constitutive Equation Forms for Analyzing Stress Relaxation Behavior Based on the
Standard Linear Solid Model
2.2.1. Introduction to the Stress Relaxation Test

There are two sequential processes (the term “process” here can be interpreted as the
action performed on the material in the test) in the stress relaxation test: loading process
and stress relaxation process (Figure 2).

Figure 2. Illustration of the stress–time and strain–time relationships in the stress relaxation test.
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In the loading process, an external load is applied to the material with a constant strain
rate from the initial state (the state in which the material has no stress and strain) until a
prescribed strain value is reached. In the loading process, the stress of the material increases
monotonically with time; therefore, the stress–time curve (called the loading curve) is a
monotonically increasing curve (Figure 2). The strain of the material increases linearly with
time since the strain rate is constant.

The solution for describing the stress–time curve of the loading process in the stress
relaxation test based on the standard linear solid model is:

σloading(t) = E1rt + E1r(τC − τR)

(
1− e

−t
τR

)
(3)

Please refer to Supplementary Materials File S1 for the derivation of Equation (3).
Once the prescribed strain value is reached at the end of the loading process, the strain

is held as constant at that prescribed strain for a period of time to trigger the stress relaxation
behavior. In the stress relaxation process, during the period when the strain is constant, the
stress decreases monotonically with time until constant stress is reached (Figure 2). The
stress–time curve of the stress relaxation process is called the stress relaxation curve.

The solution for describing the stress–time curve of the stress relaxation process in the
stress relaxation test based on the standard linear solid model is:

σrelaxation(t) = (σ0 − E1ε0)e
−t
τR + E1ε0 (4)

Please refer to Supplementary Materials File S1 for the derivation of Equation (4).
Once the stress relaxation test is completed, a loading curve (from the loading process)

and a stress relaxation curve (from the stress relaxation process) can be obtained (Figure 2).
By using the solution for describing the stress relaxation behavior to analyze (i.e., curvefit)
the stress relaxation curve, the corresponding viscoelastic properties of the material can
be evaluated. The accuracy of the evaluation depends on both the strain rate used in the
loading process and the constitutive equation form chosen for the analysis. Depending
on considering the strain rate as finite or infinite, there are two constitutive equation
forms based on the standard linear solid model for curvefitting the stress relaxation curve,
introduced as follows.

2.2.2. Constitutive Equation Derived with “Finite” Loading Rate for Analyzing Stress
Relaxation Behavior

The constitutive equation derived with finite loading rate for curvefitting stress relax-
ation curve is derived based on the fact that the strain rate used in the loading process in
the stress relaxation test is a finite constant. This constitutive equation describes a realistic
situation since the strain rate must be a finite constant (no matter how slow or fast it is) in a
real stress relaxation test.

The solution for describing the stress–time relationship of the loading process,
i.e., Equation (3), and the solution for describing the stress–time relationship of the stress
relaxation process, i.e., Equation (4), are used in the derivation of the constitutive equation
considering the strain rate as finite for curvefitting stress relaxation curve.

Letting t = t′ (the time point at the end of the loading process, which is also the time
point at the beginning of the stress relaxation process) in Equation (3), we can obtain σ0 as
a function of ε0:

σloading(t′) = σ0 = E1rt′ + E1r(τC − τR)

(
1− e

−t′
τR

)
= E1ε0 + E1r(τC − τR)

(
1− e

−ε0
τR ·r

) (5)
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In Equation (5), we have used the relationship ε0 = rt′, meaning that the strain at the
end of the loading process is equal to the strain rate multiplies the time duration of the
loading process. Substituting Equation (5) into Equation (4), the stress–time relationship of
the stress relaxation process can be expressed as:

σrelaxation(t) =
[

E1r(τC − τR)

(
1− e

−ε0
τR ·r

)]
e
−t
τR + E1ε0 (6)

If the time-dependent ordinary exponential function in Equation (6), i.e., e−t/τR , is

replaced by a stretched-exponential function e−(t/τR)
k
, the curvefitting ability of the consti-

tutive equation can be greatly improved so that the constitutive equation can account for
the stress relaxation behaviors of most of the materials. By doing so, Equation (6) becomes:

σrelaxation(t) =
[

E1r(τC − τR)

(
1− e

−ε0
τR ·r

)]
e−(

t
τR

)
k

+ E1ε0 (7)

where k ∈ R and 0 < k ≤ 1. Equation (7) is namely the constitutive equation derived
with finite strain rate for curvefitting stress relaxation curve based on the standard linear
solid model. In Equation (7), E1, E2 and η are three parameters in the standard linear
solid model relevant to the viscoelastic properties, and they are unknown variables to be
determined in the analysis. The values of r (i.e., the strain rate used in the loading process)
and ε0 (i.e., the constant strain during the stress relaxation process) are known since they
are preset parameters designated by the tester in the stress relaxation test. r and ε0 can also
be obtained from the data of the test.

The practical method of using Equation (7) to analyze stress relaxation behavior to
obtain the viscoelastic properties of materials is: Using Equation (7) to curvefit the stress
relaxation curve, the values of E1, τC and τR can be obtained. By solving two simultaneous
equations τC = η(E1 + E2)/E1E2 and τR = η/E2, the values of E2 and η can be obtained.
Therefore, all of the three parameters in the standard linear solid model relevant to the
viscoelastic properties, E1, E2 and η, can be obtained. Please see Supplementary Materials
File S2 for a MATLAB computer programming code for curvefitting stress relaxation curve
based on using Equation (7).

2.2.3. Constitutive Equation Derived with “Infinite” Loading Rate for Analyzing Stress
Relaxation Behavior

The constitutive equation derived with infinite loading rate for curvefitting stress
relaxation curve is derived based on the assumption that the strain rate used in the loading
process approaches infinity (i.e., extremely fast):

σrelaxation(t) =
(

E1 + E2e
−t
τR

)
ε0 (1)

Please refer to Supplementary Materials File S1 for the derivation of Equation (1).
The practical method of using Equation (1) to analyze stress relaxation behavior to

obtain the viscoelastic properties of materials is: Using Equation (1) to curvefit the stress
relaxation curve, the values of E1, E2 and τR can be obtained. Since E2 and τR have been
obtained, and knowing that τR = η/E2, the value of η can be obtained. Therefore, all
of the three parameters in the standard linear solid model relevant to the viscoelastic
properties, E1, E2 and η, can be obtained. Please see Supplementary Materials File S2 for a
MATLAB computer programming code for curvefitting stress relaxation curve based on
using Equation (1).
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2.3. Two Constitutive Equation Forms for Analyzing Creep Behavior Based on the Standard Linear
Solid Model
2.3.1. Introduction to the Creep Test

There are two sequential processes (the term “process” here can be interpreted as the
action performed on the material in the test) in the creep test: loading process and creep
process (Figure 3).

In the loading process, an external load is applied to the material with a constant stress
rate from the initial state (the state in which the material has no stress and strain) until a
prescribed stress value is reached. In the loading process, the strain of the material increases
monotonically with time; therefore, the strain–time curve (called the loading curve) is a
monotonically increasing curve (Figure 3). The stress of the material increases linearly with
time since the stress rate is constant.

The solution for describing the strain–time curve of the loading process in the creep
test based on the standard linear solid model is:

ε loading(t) =
r

E1
t +

r
E1

(τR − τC)

(
1− e

−t
τC

)
(8)

Please refer to Supplementary Materials File S1 for the derivation of Equation (8).
Once the prescribed stress value is reached at the end of the loading process, the stress

is held as constant at that prescribed stress for a period of time to trigger the creep behavior.
In the creep process, during the period when the stress is constant, the strain increases
monotonically with time until a constant strain is reached (Figure 3). The strain–time curve
of the creep process is called the creep curve.

The solution for describing the strain–time curve of the creep process in the creep test
based on the standard linear solid model is:

εcreep(t) =
(

ε0 −
σ0

E1

)
e
−t
τC +

σ0

E1
(9)

Please refer to Supplementary Materials File S1 for the derivation of Equation (9).
Once the creep test is completed, a loading curve (from the loading process) and a

creep curve (from the creep process) can be obtained (Figure 3). By using the solution for
describing the creep behavior to analyze (i.e., curvefit) the creep curve, the corresponding
viscoelastic properties of the material can be evaluated. The accuracy of the evaluation
depends on both the stress rate used in the loading process and the constitutive equation
form chosen for the analysis. Depending on considering the stress rate as finite or infinite,
there are two constitutive equation forms based on the standard linear solid model for
curvefitting the creep curve, introduced as follows.

2.3.2. Constitutive Equation Derived with “Finite” Loading Rate for Analyzing
Creep Behavior

The constitutive equation derived with finite loading rate for curvefitting creep curve
is derived based on the fact that the stress rate used in the loading process in the creep test
is a finite constant. This constitutive equation describes a realistic situation since the stress
rate must be a finite constant (no matter how slow or fast it is) in a real creep test.

The solution for describing the strain–time relationship of the loading process,
i.e., Equation (8), and the solution for describing the strain–time relationship of the creep
process, i.e., Equation (9), are used in the derivation of the constitutive equation considering
the stress rate as finite for curvefitting creep curve.
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Figure 3. Illustration of the strain–time and stress–time relationships in the creep test.

Letting t = t′ (the time point at the end of the loading process, which is also the time
point at the beginning of the creep process) in Equation (8), we can obtain ε0 as a function
of σ0:

ε loading(t′) = ε0 = r
E1

t′ + r
E1
(τR − τC)

(
1− e

−t′
τC

)
= σ0

E1
+ r

E1
(τR − τC)

(
1− e

−σ0
τC ·r

) (10)

In Equation (10), we have used the relationship σ0 = rt′, meaning that the stress at
the end of the loading process is equal to the stress rate multiplies the time duration of the
loading process. Substituting Equation (10) into Equation (9), the strain–time relationship
of the creep process can be expressed as:

εcreep(t) =
[

r
E1

(τR − τC)

(
1− e

−σ0
τC ·r

)]
e
−t
τC +

σ0

E1
(11)

If the time-dependent ordinary exponential function in Equation (11), i.e., e−t/τC ,

is replaced by a stretched-exponential function e−(t/τC)
k
, the curvefitting ability of the
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constitutive equation can be greatly improved so that the constitutive equation can account
for the creep behaviors of most of the materials. By doing so, Equation (11) becomes:

εcreep(t) =
[

r
E1

(τR − τC)

(
1− e

−σ0
τC ·r

)]
e−(

t
τC

)
k

+
σ0

E1
(12)

where k ∈ R and 0 < k ≤ 1. Equation (12) is namely the constitutive equation derived
with finite stress rate for curveffing creep curve based on the standard linear solid model.
In Equation (12), E1, E2 and η are three parameters in the standard linear solid model
relevant to the viscoelastic properties, and they are unknown variables to be determined
in the analysis. The values of r (i.e., the stress rate used in the loading process) and σ0
(i.e., the constant stress during the creep process) are known since they are preset parameters
designated by the tester in the creep test. r and σ0 can also be obtained from the data of
the test.

The practical method of using Equation (12) to analyze creep behavior to obtain the
viscoelastic properties of materials is: Using Equation (12) to curvefit the creep curve,
the values of E1, τC and τR can be obtained. By solving two simultaneous equations
τC = η(E1 + E2)/E1E2 and τR = η/E2, the values of E2 and η can be obtained. Therefore,
all of the three parameters in the standard linear solid model relevant to the viscoelastic
properties, E1, E2 and η, can be obtained. Please see Supplementary Materials File S2
for a MATLAB computer programming code for curvefitting creep curve based on using
Equation (12).

2.3.3. Constitutive Equation Form Derived with “Infinite” Loading Rate for Analyzing
Creep Behavior

The constitutive equation derived with infinite loading rate for curvefitting creep
curve is derived based on the assumption that the stress rate used in the loading process
approaches infinity (i.e., extremely fast):

εcreep(t) =
σ0

E1

(
1− E2

E1 + E2
e
−t
τC

)
(13)

Please refer to Supplementary Materials File S1 for the derivation of Equation (2).
The practical method of using Equation (2) to analyze creep behavior to obtain the

viscoelastic properties of materials is: Using Equation (2) to curvefit the creep curve, the
values of E1, E2 and τC can be obtained. Since E1, E2 and τC have been obtained, and
knowing that τC = η(E1 + E2)/E1E2, the value of η can be obtained. Therefore, all of the
three parameters in the standard linear solid model relevant to the viscoelastic properties,
E1, E2 and η, can be obtained. Please see Supplementary Materials File S2 for a MATLAB
computer programming code for curvefitting creep curve based on using Equation (2).

2.4. Finite Element Computational Simulation

The purpose of the finite element computational simulation is to evaluate the accuracy
of the constitutive equations derived with finite and infinite loading rate. The idea is: First,
finite element computational simulation will be used to simulate a series of stress relaxation
and creep curves tested with different loading rates (from extremely slow to extremely
fast). The viscoelastic properties of the material designated in the finite element simulation
software suite during the simulation are served as the true viscoelastic properties of the
material. Next, each of the simulated stress relaxation and creep curves is curvefitted by
the constitutive equations derived with finite and infinite loading rates, respectively. The
curvefitting on each simulated curve by each equation form will yield a set of evaluated
viscoelastic properties (i.e., analysis results, called the analyzed viscoelastic properties).
Finally, the analyzed viscoelastic properties will be compared to the true ones. If the ana-
lyzed viscoelastic properties are close to the true ones, the equation form can be validated
to be accurate.
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Finite element computational simulation is performed using ABAQUS 2019 (Dassault
Systems Simulia Corporation, Johnson, RI, USA). In the finite element computational
simulation, an axisymmetric model with radius of 5 mm and thickness of 10 mm is used. A
total of 5000 quadrilateral elements (0.1 mm × 0.1 mm) and 5151 nodes are used to mesh
the model. The boundary conditions are that the top and sides of the model are not fixed
(i.e., displacements and rotations are allowed along all directions) while the bottom is fixed
along the depth direction (i.e., displacements are not allowed along the depth direction
while rotations are not allowed along the lateral direction).

The material that makes up the model is linearly viscoelastic. The material is also
assumed to be incompressible, isotropic, and homogeneous. The mechanical properties
of the material are defined by four parameters, including the modulus of elasticity (E),
Poisson’s ratio (set as 0.495, the maximum Poisson’s ratio that can be set in ABAQUS), g
and τR, which are two parameters in the one-branch dimensionless relaxation modulus:

gR(t) = 1− g
(

1− e
−t
τR

)
(14)

where g is a material constant (0 < g < 1), and τR is the relaxation time constant. It has
been reported that E1 of the standard linear solid model is equal to E, while g is equal to
E2/(E1 + E2) and τR is equal to η/E2 [8]. From the equation g = E2/(E1 + E2), it can be
deduced that E2 = Eg/(1− g). Then, from the equation τR = η/E2, it can be deduced
that η = τRE2 = τREg/(1− g). Therefore, there exists a relationship between the three
mechanical properties defined in ABAQUS (i.e., E, g and τR) and the three parameters in
the standard linear solid model (i.e., E1, E2 and η). By using this relationship, E, g and τR
can be transformed into E1, E2 and η, and vice versa.

Nine material models with different mechanical properties are analyzed, and the
setting of their mechanical properties are shown in Table 1. The material models are
assumed to be hydrogels that mimic soft tissues; therefore, the values of the modulus of
elasticity [85] and the relaxation time constant [86] defined for the material models are
within the range of reported values for soft tissues.

Table 1. The setting of the mechanical properties of the nine material models used in the simulation.

Mechanical Properties Set in
ABAQUS Corresponding Parameters in the Standard Linear Solid Model

Number of
Material Models E (kPa) τR (s) g E1 (kPa) E2 (kPa) η (Pa · s)

1 5 0.5 0.8 5 20 10
2 5 2 0.8 5 20 40
3 5 5 0.8 5 20 100
4 10 0.5 0.8 10 40 20
5 10 2 0.8 10 40 80
6 10 5 0.8 10 40 200
7 30 0.5 0.8 30 120 60
8 30 2 0.8 30 120 240
9 30 5 0.8 30 120 600

In the simulation of stress relaxation behavior, a uniform deformation is applied to the
top of the model. For each material model, the strain rate used in the loading process is
respectively set as 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100 1/s (the corresponding time interval
in the loading process is 100, 10, 1, 0.1, 0.01, 0.001, and 0.0001 s, respectively); in other
words, each material model is tested with these seven strain rates respectively. Since there
are nine material models, there is a total of 63 simulation trails in the simulation of stress
relaxation behavior. Once the maximum deformation of 0.1 mm is reached, the deformation
is then maintained as constant at 0.1 mm for a period of time. During this period, each
element in the model exhibits stress relaxation behavior; that is, the stress of each element
decreases with time until a constant stress level is reached. Figure 4 shows an example of
a series of simulated stress relaxation curves with associated loading curves tested using
different strain rates. The stress and strain (along the depth direction) versus time data of
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each element are recorded and then imported into MATLAB for analysis. The two equation
forms, i.e., Equations (1) and (7), are used respectively to curvefit the stress relaxation
curve of each element for obtaining the corresponding E1, E2 and η. Consequently, for
each equation form, each element is associated with a specific set of E1, E2 and η. For each
equation form, the average of the values of all of the elements in each viscoelastic property
(E1, E2 and η) is defined as the analyzed viscoelastic property, which is compared to the
true viscoelastic property using the following equation:

error =
|analyzed viscoelastic property− true viscoelastic property|

theoretical viscoelastic property
(15)

Figure 4. Illustration of an example of a series of simulated stress relaxation curves with associated
loading curves measured with different strain rates. (a) Loading curve and stress relaxation curve.
(b) Stress relaxation curve only.

If the error is less than 5%, the evaluation is considered to be accurate. The error
margin of 5% is chosen in our analyses because it is an error margin commonly used in
various fields of scientific research according to literatures [87–94]. For each viscoelastic
property (E1, E2 and η), the relationship between the strain rate and the error analyzed by
each equation form is investigated.
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In the simulation of creep behavior, a uniform pressure is applied to the top of the
model. For each material model, the stress rate used in the loading process is respectively
set as 1, 10, 100, 1000, 10,000, 100,000, 1,000,000 Pa/s (the corresponding time interval
in the loading process is 100, 10, 1, 0.1, 0.01, 0.001 and 0.0001 s respectively); in other
words, each material model is tested with these seven stress rates respectively. Since
there are nine material models, there is a total of 63 simulation trails in the simulation of
creep behavior. Once the maximum pressure of 100 Pa is reached, the pressure is then
maintained as constant at 100 Pa for a period of time. During this period, each element
in the model exhibits creep behavior; that is, the strain of each element increases with
time until a constant strain level is reached. Figure 5 shows an example of a series of
simulated creep curves with associated loading curves tested using different stress rates.
The stress and strain (along the depth direction) versus time data of each element are
recorded and then imported into MATLAB for analysis. The two equation forms, i.e.,
Equations (2) and (12), are used respectively to curvefit the creep curve of each element for
obtaining the corresponding E1, E2 and η. The following data analysis method is the same
as that described above in the simulation of stress relaxation behavior.

Figure 5. Illustration of an example of a series of simulated creep curves with associated loading
curves measured with different stress rates. (a) Loading curve and creep curve. (b) Creep curve only.
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3. Results
3.1. Results: Stress Relaxation

Figure 6 shows the relationship between the strain rate and the error in the evaluation
of the viscoelastic properties on different material models analyzed using the two equation
forms. Figure 7 only shows the results analyzed using the constitutive equation derived
with a finite loading rate in order to highlight the details. Please remember that the
evaluation is considered to be accurate if the error is less than 5%. Some observations on
the analysis results that are more relevant to practical applications are summarized below:

(1) The constitutive equation derived with a finite loading rate can always produce
accurate results in the evaluation of all of the viscoelastic properties E1, E2 and η,
regardless of the strain rate (Figures 6 and 7). In the evaluation of E1, E2 and η,
the results are dependent on both the strain rate and the relaxation time constant
of the material; some significant trends can be observed (Figure 7). However, these
dependencies might not be important for practical applications since the errors are
already very low regardless of the strain rate, and the error values at different strain
rates do not differ significantly.

Figure 6. The relationship between the strain rate and the error in the evaluation of the viscoelastic
properties on different material models in the stress relaxation simulation, analyzed using the two
constitutive equation forms (i.e., the newly−introduced form derived with finite loading rate, and
the traditional form derived with infinite loading rate).
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(2) For the constitutive equation derived with infinite loading rate in the evaluation of
E2 and η, the higher the strain rate, the more accurate the result is (the second and
third columns in Figure 6). This equation form can produce accurate evaluations if
and only if when the strain rate is higher than a threshold (which is the strain rate
value at the intersection of the green dotted line and the red curves in Figure 6). It
can be observed that the threshold is dependent on the relaxation time constant of the
material; the lower the relaxation time constant, the higher the threshold.

(3) In the evaluation of E1, the two equation forms can produce accurate and identical
evaluations regardless of the strain rate (the first column in Figure 6). The results are
dependent on both the strain rate and the relaxation time constant; some significant
trends can be observed. However, these dependencies might not be important for
practical applications since the errors are already very low regardless of the strain
rate, and the error values at different strain rates do not differ significantly.

(4) No matter what the modulus of elasticity (E) of the material is (5000, 10,000, or
30,000 Pa), the analysis results are identical (three rows in Figure 6). That is to say, the
analysis results are independent of the modulus of elasticity.

3.2. Results: Creep

Figure 8 shows the relationship between the stress rate and the error in the evaluation
of the viscoelastic properties on different material models analyzed using the two equation
forms. Figure 9 only shows the results analyzed using the constitutive equation derived
with a finite loading rate in order to highlight the details. Please remember that the
evaluation is considered to be accurate if the error is less than 5%. Some observations on
the analysis results that are more relevant to practical applications are summarized below:

(1) The constitutive equation derived with a finite loading rate can always produce
accurate results in the evaluation of E1 and η, regardless of the stress rate (Figures 8
and 9). However, in the evaluation of E2, this equation form can produce accurate
results if and only if when the stress rate is higher than a threshold (which is the stress
rate value at the intersection of the green dotted line and the red curves in Figure 9).
It can be observed that the threshold is dependent on the relaxation time constant of
the material; the lower the relaxation time constant, the higher the threshold.

(2) For the constitutive equation derived with infinite loading rate in the evaluation of
E2 and η, the higher the stress rate, the more accurate the result is (the second and
third columns in Figure 8). This equation form can produce accurate evaluations if
and only if when the stress rate is higher than a threshold (which is the stress rate
value at the intersection of the green dotted line and the red curves in Figure 8). It
can be observed that the threshold is dependent on the relaxation time constant of the
material; the lower the relaxation time constant, the higher the threshold.

(3) In the evaluation of E1, the two equation forms can produce accurate and identical
evaluations regardless of the stress rate (the first column in Figure 8). The results are
dependent on both the stress rate and the relaxation time constant; some significant
trends can be observed. However, these dependencies might not be important for
practical applications since the errors are already very low regardless of the stress rate,
and the error values at different stress rates do not differ significantly.

(4) The analysis results are dependent on the modulus of elasticity (E) of the material.
Generally speaking, the higher the modulus of elasticity, the larger the error (three
rows in Figure 8).



Polymers 2022, 14, 2124 15 of 25

Figure 7. The relationship between the strain rate and the error in the evaluation of the viscoelastic
properties on different material models in the stress relaxation simulation, analyzed using the
newly−introduced constitutive equation derived with finite loading rate.
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Figure 8. The relationship between the stress rate and the error in the evaluation of the viscoelastic
properties on different material models in the creep simulation, analyzed using the two constitutive
equation forms (i.e., the newly−introduced form derived with finite loading rate, and the traditional
form derived with infinite loading rate).
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Figure 9. The relationship between the stress rate and the error in the evaluation of the viscoelastic
properties on different material models in the creep simulation, analyzed using the newly−introduced
constitutive equation derived with finite loading rate.

4. Discussion

This paper introduces the constitutive equations for analyzing stress relaxation and
creep behaviors based on the standard linear solid model derived with finite loading rate,
i.e., Equations (7) and (12). The finite element computational simulation results demonstrate
that, by using these constitutive equations to curvefit stress relaxation and creep curves,
they can produce accurate results in the evaluation of all of the viscoelastic properties E1,
E2 and η regardless of the loading rate used in the loading process of the stress relaxation
and creep tests in most cases (the exceptions will be discussed in the next paragraph).

The viscoelastic properties are intrinsic properties of a material, therefore should
be constant and independent of the loading rate used for testing. Hence, theoretically
speaking, if a constitutive equation is derived with a finite loading rate, the analyzed
viscoelastic properties by that constitutive equation should be constant and independent
of the loading rate. Indeed, it is true that the constitutive equation derived with a finite
loading rate for stress relaxation can always produce accurate results in the evaluation
of all of the viscoelastic properties E1, E2 and η regardless of the strain rate. However,
surprisingly, the constitutive equation derived with a finite loading rate for creep cannot be
universally applied to all creep behaviors tested with any stress rate. Specifically, although



Polymers 2022, 14, 2124 18 of 25

it can always produce accurate results in the evaluation of E1 and η regardless of the stress
rate, it cannot produce accurate results in the evaluation of E2 if the stress rate is lower
than a threshold. It means that if the constitutive equation derived with a finite loading
rate for creep is intended to be applied to analyze a creep curve, the stress rate used in
the loading process of the creep test for obtaining that creep curve must be higher than
the threshold to yield an accurate evaluation for all of the viscoelastic properties. Based
on the results of the present study on a limited range of data, a stress rate higher than
100 Pa/s can ensure an accurate evaluation. Unfortunately, this threshold value is typically
unknown in a real experiment when the viscoelastic properties of a material are unknown
and intended to be determined since this threshold depends on the viscoelastic properties,
including the relaxation time constant and the modulus of elasticity, as the findings of
the present study have shown. The reason why the constitutive equation derived with
a finite loading rate for creep cannot be universally applied to all creep behaviors tested
with any stress rate can be understood by examining Equation (12). If r (i.e., the stress rate)
in Equation (12) approaches zero, the first term right to the equality sign (i.e., the term
involving the time-dependent exponential function that characterizes the time-dependent
viscoelastic behavior) approaches zero, and only the second term (i.e., the constant term
that characterizes the time-independent elastic solid behavior) remains. It means that if the
stress rate is very low, the viscoelastic material behaves more similar to an elastic solid and
displays only a few or no viscoelastic behaviors. The evidence can be observed in Figure 5
that when the stress rate is very low, the pattern of the creep curve is relatively insignificant.
Therefore, if the constitutive equation derived with a finite loading rate for creep is applied
to analyze a creep curve tested with an extremely low stress rate, an accurate evaluation
might not be obtained. The same problem might occur in the analysis of stress relaxation
but at a strain rate lower than the minimum strain rate investigated in the present study.
Therefore, such a problem is not observed in the analysis of stress relaxation in the present
study. In order to avoid this problem in practice, we suggest that a relatively higher stress
rate (or strain rate) should be used in the loading process of a creep test (or stress relaxation
test), and the relevant constitutive equation derived with finite loading rate is then applied
for the analysis.

The present study shows that the traditional constitutive equations derived with
infinite loading rate for both stress relaxation and creep can produce accurate results in
the evaluation of E2 and η if and only if when the loading rate is higher than a threshold.
The higher the loading rate, the more accurate the evaluation. On the other hand, if the
loading rate is lower than the threshold, the evaluation can be very inaccurate (the error
can be up to near 100% if the loading rate is very low). Such findings are expectable.
Since these constitutive equations are derived with an infinite loading rate, they are just
approximations and can only be applied to analyze data acquired with extremely fast
loading rates. Since our proposed constitutive equations derived with finite loading rate
can be universally applied to all stress relaxation and creep behaviors regardless of the
loading rate in most cases, it is recommended that our proposed equations should replace
the traditional equations to analyze stress relaxation and creep behaviors for quantitatively
evaluating the viscoelastic properties of materials. Compared to using the constitutive
equations derived with finite loading rate, there could be no benefits from using the
traditional equations derived with infinite loading rate.

In the evaluation of E1, it is interesting to note that the two constitutive equation forms
can produce accurate and identical evaluations regardless of the loading rate. This finding
can be applied to both stress relaxation and creep. The reason why the evaluation of E1 is
independent of the equation form used for the analysis is that the physical meaning of E1 is
the modulus of elasticity of the material [8], which is a solid elastic property independent
of the loading rate. Since the fundamental difference between the two equation forms is
their dependencies on the loading rate, the two equation forms can produce accurate and
identical results in the evaluation of the loading-rate-independent property E1. On the
other hand, since both E2 and η are properties relevant to viscous fluids that are dependent
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on the loading rate, their evaluations must be dependent on the equation form used for
the analysis.

The physical significances of our proposed constitutive equations derived with fi-
nite loading rate and the traditional constitutive equations derived with infinite loading
rate are summarized in Table 2 (for stress relaxation) and Table 3 (for creep). In each
equation, the term involving the time-dependent exponential function characterizes the
time-dependent viscoelastic behavior, while the constant term characterizes the time-
independent elastic solid behavior. It can be observed that the constant term characterizing
the time-independent elastic solid behavior is the same for both equation forms. In addition,
the initial mechanical response at t = 0 for the traditional equation is a constant, while that
for our proposed equation is positively correlated with r. It means that, in a real experiment,
the larger the loading rate, the larger the initial mechanical response at t = 0, as predicted
by our proposed equation. These observations can be applied to both stress relaxation
and creep.

Table 2. Physical significances of our proposed constitutive equations derived with finite loading rate,
i.e., Equation (7), and the traditional equations derived with infinite loading rate, i.e., Equation (1),
for stress relaxation.

Physical Significances Equation (1) Equation (7)

The term involving the
time-dependent exponential function
that characterizes the time-dependent
viscoelastic behavior
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−ε0
τR ·r

)]
e−(

t
τR

)
k

The constant term that characterizes
the time-independent elastic solid
behavior (which is also the
equilibrium stress when t→ ∞ )

E1ε0 E1ε0

The initial stress at the beginning of
the stress relaxation process at t = 0) (E1 + E2)ε0 E1r(τC − τR)
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−ε0
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)
+ E1ε0

Table 3. Physical significances of our proposed constitutive equations derived with finite loading rate,
i.e., Equation (12), and the traditional equations derived with infinite loading rate, i.e., Equation (2),
for creep.

Physical Significances Equation (2) Equation (12)

The term involving the
time-dependent exponential function
that characterizes the time-dependent
viscoelastic behavior
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The constant term that characterizes
the time-independent elastic solid
behavior (which is also the
equilibrium strain when t→ ∞ )
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the creep process at t = 0)
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)]
+ σ0

E1

Using an accurate solution form of the standard linear solid model for the analy-
sis is important for successful applications. For example, the standard linear model has
been applied in the development of an ultrasound imaging technique called ultrasound
viscoelastic creep imaging, which aims to quantitatively evaluate the internal spatial dis-
tributions of the viscoelastic properties of materials [9,10,95]. In ultrasound viscoelastic
creep imaging, a constant uniaxial stress field is produced within the material using either
acoustic radiation force or mechanical compression to induce the creep behavior of the
material, and then ultrasound imaging is used to measure the creep curve of each pixel of
the image. By applying an appropriate solution form of the standard linear solid model
to curvefit the creep curve of each pixel, the viscoelastic properties of each pixel can be
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quantitatively evaluated. Then, by collecting the viscoelastic properties of every pixel of
the image, the two-dimensional spatial distribution maps of the viscoelastic properties of a
cross section of the material can be obtained. Based on the present study, there are many
forms of solution for the standard linear solid model, and choosing the most accurate one
for the analysis in ultrasound viscoelastic creep imaging is important for obtaining accurate
maps of the viscoelastic properties and ensuring the authenticity of the further analyses.
The resulting images of the viscoelastic properties obtained using ultrasound viscoelastic
creep imaging can be useful for researchers and practitioners to apply in many fields, such
as rehabilitation [96]. For instance, with the evaluated viscoelastic properties of tissues,
therapists can treat them as a reliable index to objectively evaluate the condition of tissues
and diagnose the severity of injuries of tissues. In addition, by monitoring the viscoelastic
properties of tissues during the recovery process, therapists can use them as the basis for
assessing the effect of rehabilitation since one of the aims of many rehabilitation strategies
focuses on inducing positive changes in the viscoelastic properties of tissues. Based on
such information, therapists can select the best rehabilitation strategy by monitoring the
responses of viscoelastic properties to interventions for a specific patient with functional
impairments. Furthermore, quantitative evaluation of the viscoelastic properties of tissues
can help to identify new rehabilitation strategies.

The main limitation of the present study is that only a limited number of viscoelastic
properties and loading rates can be investigated in the finite element computational sim-
ulation. In the future, it is important to acquire a larger data set by investigating a wider
range of viscoelastic properties and loading rates in order to investigate the generality and
validity of our proposed constitutive equations derived with a finite loading rate.

5. Conclusions

This paper introduces the constitutive equations for analyzing stress relaxation and
creep behaviors based on the standard linear solid model derived with a finite loading rate,
i.e., Equations (7) and (12). The finite element computational simulation results show that,
by using those constitutive equations to analyze stress relaxation and creep curves, they
can produce accurate results in the evaluation of all of the viscoelastic properties E1, E2,
and η regardless of the loading rate used in the loading process of the stress relaxation and
creep tests in most cases. Since the constitutive equations derived with a finite loading
rate can be universally applied to all stress relaxation behaviors tested with any strain rate
and can be applied to all creep behaviors tested with any stress rate except for those tested
with extremely slow stress rates, it is recommended that the constitutive equations derived
with a finite loading rate should replace the traditional equations derived from an infinite
loading rate to analyze stress relaxation and creep behaviors for quantitatively evaluating
the viscoelastic properties of materials.
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