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Background. Neuroblastoma is a common solid tumor originating from the sympathetic nervous system, commonly found in
children, and it is one of the leading causes of tumor-related deaths in children. In addition to pathological features, molecular-
level features, such as how much gene expression is present and the mutational profile, may provide useful information for the
precise treatment of neuroblastoma. Transcription factors (TFs) play an important regulatory role in all aspects of cellular life
activities. But there are currently no studies on transcription factor-based biomarkers of neuroblastoma prognosis, and this study
is much needed. Methods. We downloaded RNA transcriptome data and clinical data from the TARGETdatabase to construct a
prognostic model. )e prognostic model was constructed by using univariate Cox analysis, LASSO, and multivariate Cox re-
gression. We divided the patients into low-risk and high-risk groups using the median value of the risk score as the cut-off. )en,
we validated the prognostic model with the dataset GSE49710. Results. We constructed a prognostic model consisting of eight
genes (SATB1, ZNF564, SOX14, EN1, IKZF2, SLC2A4RG, FOXJ2, and ZNF521). Patients in the high-risk group had a lower
survival rate than those in the low-risk group.)e area under the 3-year ROC curve of the model reached 0.825, suggesting a good
predictive efficacy. We performed target gene prediction for the eight transcription factors in the model using six online databases
and found that TUT1 may be a target gene for transcription factor EN1 and is associated with immune infiltration. Conclusion.
)is prognostic model consisting of eight transcription factor-associated genes demonstrated reliable predictive efficacy. )is
prediction model may provide new potential targets for the treatment of neuroblastoma and personalized monitoring of
neuroblastoma patients with high and low risk.

1. Introduction

Neuroblastoma is the most common extracranial solid tu-
mor of childhood, accounting for 8% of all pediatric tumors
and also 15% of tumor-related deaths in children [1].
Neuroblastoma arises from neural crest precursor cells,
which proliferate uncontrollably due to impaired differen-
tiation [2].)e clinical diversity of neuroblastoma reflects its
heterogeneous character. In some patients, the tumor re-
gresses on its own, while others progress rapidly and become
resistant to treatment. Although significant progress has
been made in the treatment of neuroblastoma in recent
years, recent studies have identified several molecules, such

as MYCN, ALK, and ARID1B, involved in the development
of neuroblastoma [3], the prognosis of neuroblastoma pa-
tients remains very poor, especially in cases of advanced or
recurrent tumors. )erefore, there is an urgent need to
discover novel markers with prognostic and predictive
power in order to target and individualize the treatment of
neuroblastoma patients.

Transcription factors (TFs) are a number of proteins that
can specifically bind DNA sequences and regulate tran-
scription [4]. TFs play an important role in tumorigenesis,
progression, invasion, metastasis, and drug resistance [5].
Statistically, about 20% of oncogenes are TFs [6]. On the
other hand, loss of function of TFs with tumorigenic
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suppressive effects leads to uncontrolled cell division and
cancer development and progression [7]. However, there are
few studies on TFs with prognostic values.

In this study, we constructed a prognostic model for
patients with neuroblastoma based on TF-related genes by
downloading transcriptomic data from the )erapeutically
Applicable Research to Generate Effective Treatments
(TARGET) database and validated it using the Gene Ex-
pression Omnibus (GEO) database. Our study found that
our risk score could be an independent prognostic factor for
neuroblastoma. In conclusion, our study shows that the
prognostic model has a very high predictive value for
neuroblastoma patients and provides a new potential target
for the treatment of neuroblastoma patients.

2. Materials and Methods

2.1. Data Collection. In 2018, Lambert et al. published a
review that identified more than 1600 TFs that may be
involved in human physiological and disease processes
[8]. We collected 1639 TFs from the literature for analysis
(Table S1). Figure 1 shows the flow chart of this study. We
downloaded transcriptomic data and clinical information
from the TARGET database and the GEO database. Data
from 148 patients in the TARGET database were used for
model construction. Data from 498 neuroblastoma pa-
tients in the GEO dataset (GSE49710) were used for model
validation.

2.2. Construction of the Prognostic TF-Based Signature. To
screen TFs with prognostic value, we performed univariate
Cox regression analysis of 1639 TFs to assess the correlation
between TFs and overall survival (OS) in the TARGET
dataset. We defined a screening criterion of Cox P< 0.01 for
later analysis. To avoid overfitting between variables during
model construction, we used the least absolute shrinkage
and selection operator (LASSO) regression algorithm to
extract the best subset. Finally, we obtained the coefficients
of each incorporated TF in the model. Risk scores were
calculated according to the following equation:

risk score � 􏽘
N

i�1
(Expi∗Coei). (1)

Expi represents the expression of each TF, and Coei is
the regression coefficient of the corresponding multivariate
Cox result.

To further validate the predictive performance of the TF-
based prognostic model, we evaluated the AUC of the time-
dependent ROC curves to assess the predictive value of risk
scores on time-dependent outcomes.

2.3. Gene Set Enrichment Analysis (GSEA). We used GSEA
to analyze the potentially different biological mechanisms
between the high- and low-risk groups. )e GSEA was
annotated using the “clusterProfiler” package in R
software.

2.4. Immune Infiltration Analysis. We calculated the level of
22 tumor-infiltrating immune cells by CIBERSORT algo-
rithm [9], a method to calculate a certain cell composition
from the gene expression profile of a tissue. In the present
study, we used the CIBERSORT algorithm to calculate the
level of immune cell infiltration in tumor samples from the
TARGET and GEO databases.

2.5. Statistical Analysis. We used R software (version 3.8.2)
to complete all statistical analyses. Student’s t-test was
employed to examine statistically significant differences
between groups, while one-way ANOVA was used for the
comparison of differences between groups. )e chi-square
test was employed to compare the clinical features of the two
groups. Neuroblastoma patients were analyzed using the
Kaplan–Meier technique and the log-rank test to determine
their overall survival time (OS). )e predictive value of risk
score and clinical characteristics was assessed by using one-
way and Cox regression analysis. Spearman analysis was
used to analyze the correlation between the two variables
(P< 0.05).

3. Results

3.1. Identifying the Potential Prognostic Transcription Factor.
We obtained a list of 1639 human TFs from the public
literature [8, 10]. After corresponding to the TARGET da-
tabase, a total of 1375 TFs had gene expression data for
inclusion in the follow-up study. Information on the clinical
characteristics of neuroblastoma patients in both datasets is
in Table S2.

Univariate Cox regression analysis of the gene expres-
sion was performed, and we searched for TFs with prog-
nostic significance from 1375 TFs. 65 TFs with P≤ 0.01 were
obtained for the next analysis (Table S3).

3.2. Constructing the TF-Based Predictive Model. To avoid
overfitting between variables during model construction, we
used the LASSO regression algorithm to extract the best
subset (Figure 2). )en, we obtained the coefficients of each
TF in the prognostic model by multivariate Cox regression
analysis (Table 1), consisting of 8 genes that constituted this
prognostic model. )e coefficients of ZNF564, SOX14, EN1,
and SLC2A4RG were positive and were risk genes for poor
prognosis. In contrast, the coefficients of SATB1, IKZF2,
FOXJ2, and ZNF521 were negative and were protective
factors.

We divided the patients into high- and low-risk groups
by median risk score (Figure 3(c)). High-risk patients had a
higher mortality rate than low-risk patients (Figure 3(b)).
From the heat map, we found that ZNF564, SOX14, EN1,
and SLC2A4RG had increased expression in high-risk
group, while SATB1, IKZF2, FOXJ2, and ZNF521 had in-
creased expression in the low-risk group (Figure 3(e)).
Figure 3(a) shows the Kaplan–Meier curves for the two
groups, with longer OS in low-risk patients than the other
groups. Our sensitivity and specificity evaluation of the
model was performed by time-dependent ROC analysis. In
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the 3-year ROC curve, the AUC was 0.825, indicating the
good predictive performance of the prediction model for 3-
year OS (Figure 3(d)).

3.3. Validation of the TF-Based Signature. )e prediction
model we constructed was validated in another dataset
GSE49710. We used the same prognostic model obtained
from the TARGETdataset to calculate risk scores for a total
of 498 patients in the GSE49710 dataset. )e same division
into low- and high-risk groups was done according to the
median risk score. In GSE49710, the sensitivity and
specificity of our TF-based prognostic model for 3-year OS

were evaluated as 0.778 (Figure 4(c)). Other findings, in-
cluding heat map and Kaplan–Meier analysis, were also
consistent with the results of the TARGET cohort, sug-
gesting that our TF-based prognostic model has good
stability in neuroblastoma patients (Figures 4(a), 4(b), 4(d),
and 4(e)).

3.4.1eIdentificationof theTF-BasedSignature’s Independent
Predictive Activity. To further investigate whether the TF-
based prognostic model can independently predict the
prognosis of neuroblastoma patients. Univariate Cox re-
gression analysis of whether the TF-based prognostic model
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Figure 2: 65 TFs with significant prognostic value subjected to LASSO regression analysis. (a) Each line represents a TF with a significant
prognostic value. (b) Plot of partial likelihood deviation.

�e training set
(TARGET database)

Construction of a TF–
based signature

Univariate Cox
regression analysis

LASSO regression
analysis

Validation of TF–
based signature in

GSE49710

Regulatory
mechanism analysis

Correlation analysis
of clinical factors

GSEA
analysis

Immune infiltration
analysis

Multivariate Cox
regression analysis

Figure 1: Flowchart of this study.
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Figure 3: Continued.

Table 1: Eight TF-related genes identified by multivariate Cox regression analysis.

Id coef HR HR.95L HR.95H P value
SATB1 −0.56897 0.566111 0.365756 0.876216 0.010684
ZNF564 1.370636 3.937853 2.136288 7.258708 1.12E-05
SOX14 3.153827 23.42554 2.019831 271.6841 0.011663
EN1 0.34383 1.410339 1.180563 1.684837 0.000151
IKZF2 −0.87769 0.415742 0.239868 0.720567 0.001761
SLC2A4RG 1.118871 3.061396 1.680095 5.578342 0.000257
FOXJ2 −0.65706 0.518375 0.313321 0.857627 0.010532
ZNF521 −0.66938 0.512027 0.383883 0.682947 5.24E-06
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Figure 3: Characteristics of the prognostic model consisting of eight TFs in the TARGETdataset. (a) Kaplan–Meier survival analysis of the
TF-based prognostic models. (b) Distribution of survival times of neuroblastoma patients. (c) Distribution of risk scores of neuroblastoma
patients. (d))e AUC value reflects the high prognostic accuracy of the TF-based signature. (e) Distribution of the expression values of TFs
in the model.
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Figure 4: Continued.
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could independently predict other clinicopathological
characteristics showed that ploidy, histology, COG risk, and
risk score were associated with OS in the TARGET dataset
(Figure 5(a)). We then included the variables in a multi-
variate Cox regression analysis showing that ploidy and risk
score remained independent predictors of OS (Figure 5(b)).
In GSE49710, age and risk score were associated with OS
(Figure 5(c)), and age and risk score remained independent

prognostic indicators of OS after multivariate Cox regres-
sion (Figure 5(d)).

3.5. GSEA Identifies Biological Pathways. To further inves-
tigate the relevant signaling pathways in the high-risk group,
we performed GSEA analysis between the high-risk and low-
risk groups. In the high-risk group of the TARGETdatabase,

EN1

ZNF564

SOX14

SATB1

IKZF2

ZNF521

SLC2A4RG

FOXJ2

type

−4

−2

0

2

4

type
high
low

(e)

Figure 4: Validation of the eight TF-based risk signatures in GEO cohort. (a) Kaplan–Meier survival analysis of the TF-based prognostic
models. (b) Distribution of survival times of neuroblastoma patients. (c) Distribution of risk scores of neuroblastoma patients. (d) Area
under the curve reflects the high prognostic accuracy of the TF-based signature. (e) Distribution of the expression values of TFs in themodel.
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Figure 5: Univariate (a, c) and multivariate (b, d) Cox regression analyses in OS of neuroblastoma patients among the gene signature and
clinicopathological factors. (a, b) TARGET cohort. (c, d) GEO cohort.
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one carbon pool by folate, base excision repair, and DNA
replication were enriched (Figures 6(a)–6(c)). )ese were
further validated in the GEO database (Figures 6(d)–6(f)).

3.6. 1e Regulatory Mechanism Analysis Based on Six
Databases. To validate this transcriptional regulatory rela-
tionship, we used six online databases, including JASPAR,
ENCODE, CHEA, MotifMap, TRANSFAC, and TRRUST.
We made predictions for the target genes of the eight TFs in
the model (Table S4), listing evidence supported by more
than two databases (Table 2). “√” indicated that the cor-
responding TF has a regulatory relationship with the target
gene.

3.7. Survival Analysis of TUT1 and Correlation with Immune
Infiltration. Interestingly, we found that the higher the
expression of TUT1, the shorter the OS of the patients in
both TARGETand GEO datasets (Figures 7(a) and 7(b)). By
using CIBERSORT to calculate immune cell infiltrations, we
found that TUT1 was positively correlated with T cells CD8,
Tcells regulatory (Tregs), macrophages M0, B cells naive and
negatively correlated with T cells CD4 memory resting,
macrophages M2, monocytes, eosinophils, NK cells resting,
dendritic cells activated, and T cells gamma delta in TAR-
GET database (Figure 7(c)). We also found that TUT1 was
positively correlated with plasma cells and neutrophils and
negatively correlated with eosinophils, dendritic cells rest-
ing, T cells CD4 memory resting, and monocytes in GEO
database (Figure 7(d)). )ere may be a role for TUT1 in the

Table 2: Predictions for the target genes of the eight transcription factors included in the model supported by more than two public
databases.

TF Gene CHEA ENCODE JASPAR MotifMap TRANSFAC TRRUST
EN1 TUT1 — — √ — √ —
EN1 SAV1 — — √ — √ —
EN1 PAX6 — — √ — √ —
EN1 ATP13A4 — — √ — √ —
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Figure 6: GSEA analysis of the high-risk group in both TARGET cohort (a–c) and GEO cohort (d–f).
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development of neuroblastoma, and the transcription factor
EN1 may also be regulated in relation to the predicted target
gene TUT1. )is needs to be further elucidated.

4. Discussion

In this study, we showed that the TFs-based prognostic
model we constructed could predict neuroblastoma pa-
tients well. TFs have a role in gene transcription as well as a
variety of other critical biological activities [11, 12]. A third
of all human developmental diseases are linked to aberrant
TF expression [13]. Dong et al. discovered that tran-
scription factors might enhance breast cancer development
[14]. A crucial involvement for transcription factors in
hepatoblastomas was found by Zhan and colleagues [15].
TFs have also been implicated with neuroblastoma in
several investigations [16]. However, there are few studies
on the prognostic aspects of transcription factors. As ef-
fector molecules of cell signaling pathways, TFs play an
important role in tumor development, and therefore, it is

necessary to study their functions in predicting patient
prognosis. We analyzed data from TARGET and GEO
databases by bioinformatics methods to construct and
validate the role of prognostic models and analyze their
association with clinical features and immune infiltration
and also predict target genes of transcription factors. We
used the data from TARGET for model construction and
the dataset from GEO for model validation based on 8 TFs
using Cox regression and LASSO regression methods. )is
signature can well predict the prognosis of patients with
neuroblastoma.

In this study, a prognostic model consisting of eight TFs
whose roles in tumors have been partially reported was
constructed. SATB1 is capable of regulating chromatin
structure and gene expression through chromatin
remodeling enzymes. SATB1 is expressed in a diverse
population of adult progenitor cells and embryonic stem
cells. )is gene has been linked to a number of various
forms of cancers, such as laryngeal squamous-cell carci-
noma [17], endometrial cancer [18], hepatocellular
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Figure 7: Survival analysis of TUT1 and correlation between TUT1 and infiltration immune cells. (a, c) TARGETcohort. (b, d) GEO cohort.
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carcinoma [19, 20], rectal cancer [21], melanoma [22], and
gastric cancer [23, 24]. SOX14 is a member of the SOXB2
transcription factor subgroup, and Li et al. reported that
through the Wnt/-catenin pathway [25], SOXQ4 might
enhance cervical cancer cell proliferation and invasion.
EN1 plays a role in abnormal expression of EN1 is common
in colorectal cancer [26], prostate cancer [27], and astro-
cytoma [28]. IKZF2 is a member of the Ikaros family of
transcription factors and has been shown to be a tran-
scription factor essential for regulatory T-cell function
[29, 30]. Park et al. reported that IKZF2 could inhibit
myeloid differentiation by driving the self-renewal of
leukemic stem cells [31]. It has been shown by Zhao et al.
that SLC2A4RG encodes a nuclear transcription factor that
helps activate the solute carrier family two member four
gene, a gene that may have a role in the formation of GBM
[32]. In addition to being a member of the FOX family,
FOXJ2 is a new forkhead factor with dual DNA binding
specificity. Breast cancer cell migration and invasion may
be inhibited if FOXJ2 expression is increased [33]. ZNF521
is a transcription factor involved in the regulation of he-
matopoietic, neural, and mesenchymal stem cells, and
Chiarella et al. reported that ZNF521 inhibits the differ-
entiation of human adipose-derived stem cells [34]. )ese
studies suggest that these transcription factors are closely
associated with tumors. Our prognostic model can well
predict the prognosis of neuroblastoma patients.

We also used six databases to predict our eight TF target
genes and found that the TUT1 gene not only has prognostic
value but was found to be associated with immune cells by
the CIBERSORTalgorithm, which was validated in both the
TARGETdatabase and the GEO database.)is gene encodes
a nucleotidyltransferase that functions as both a terminal
uridylyltransferase and a nuclear poly(A) polymerase. )e
encoded enzyme specifically adds and removes nucleotides
from the 3′ end of small nuclear RNAs and select mRNAs
and may function in controlling gene expression and cell
proliferation. )is provides a direction for further research
in the future. Although our model was able to predict the
prognosis of neuroblastoma patients well, our study still has
some shortcomings. Our prognostic model still needs
clinical cases for further validation, not just using data on
public databases. Some of the TFs in our model has not been
studied in neuroblastoma with relevant mechanisms, which
need to be refined in our future studies.

5. Conclusion

Our study successfully constructed a prognostic model
containing eight TFs (ZNF564, SOX14, EN1, SLC2A4RG,
SATB1, IKZF2, FOXJ2, and ZNF521). Our prognostic model
can help clinicians predict OS in neuroblastoma patients, but
further studies with clinical samples are needed to validate
the accuracy of our prognostic model to improve the
management of neuroblastoma.
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