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Abstract

Background: Messenger RNA sequencing is becoming more common in studies of non-model species and is most
often used for gene expression-based investigations. However, the method holds potential for numerous other
applications as well—including analyses of alternative splicing, population structure, and signatures of selection. To
maximize the utility of mRNA data sets, distinct analyses may be combined such as by exploring dynamics between
gene expression with signatures of selection in the context of population structure. Here, we compare two
published data sets describing two populations of a minnow species endemic to the San Francisco Estuary
(Sacramento splittail, Pogonichthys macrolepidotus): a microsatellite data set showing population structure, and an
mRNA whole transcriptome data set obtained after the two populations were exposed to a salinity challenge. We
compared measures of population structure and genetic variation using single nucleotide polymorphisms (SNPs)
called from mRNA from the whole transcriptome sequencing study with those patterns determined from
microsatellites. For investigating plasticity and evolution, intra- and inter-population transcriptome plasticity was
investigated with differential gene expression, differential exon usage, and gene expression variation. Outlier SNP
analysis was also performed on the mRNA data set and signatures of selection and phenotypic plasticity were
investigated on an individual-gene basis.

Results: We found that mRNA sequencing revealed patterns of population structure consistent with those found
with microsatellites, but with lower magnitudes of genetic variation and population differentiation consistent with
widespread purifying selection expected when using mRNA. In addition, within individual genes, phenotypic
plasticity or signatures of selection were found in almost mutual exclusion (except heatr6, nfu1, slc22a6, sya, and
mmp13).

Conclusions: These results show that an mRNA sequencing data set may have multiple uses, including describing
population structure and for investigating the mechanistic interplay of evolution and plasticity in adaptation. MRNA
sequencing thus complements traditional sequencing methods used for population genetics, in addition to its
utility for describing phenotypic plasticity.

Keywords: Transcriptomics, Microsatellites, Evolution, Plasticity, Population genetics, Outlier test, Selection,
Adaptation
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Background
As the cost of sequencing continues to come down,
messenger RNA (mRNA) sequencing is becoming more
affordable for studying non-model species, while provid-
ing transcriptome sequencing data on the order of tens
of millions of reads per individual. The abundance of in-
formation in mRNA data allows investigators to pursue
a variety of gene expression and genetic variation-based
approaches. Using mRNA data, researchers may com-
bine plasticity- and selection-focused approaches in the
context of population structure; approaches which have
implications for physiology, adaptive evolution, and
conservation.
In wild, non-model species, descriptions of population

structure can guide management decisions and work in
tandem with studies on local adaptation [1, 2]. As an
expressed molecule, messenger RNA may carry import-
ant information about functional genomic variation
through cis-acting regulatory mechanisms under selec-
tion [3]. This selection may be informative for investiga-
tions on local adaptation and evolutionary patterns that
help define evolutionarily significant units or conserva-
tion units, but can interfere with other objectives such
as the delineation of management units or describing
population subdivision [1, 4]. In particular, management
units are defined by their demographic independence,
and neutral markers are necessary for representing ef-
fective population sizes and demography [1]. Targeting
synonymous single nucleotide polymorphisms (SNPs)
may yield neutral markers using mRNA, because their
non-functional nature may decrease the adaptive signifi-
cance of these SNPs. However even synonymous SNPs
may be widely under selection, such as from codon
usage bias, and purifying selection is widespread
throughout organisms’ transcriptomes [5–7]. Therefore,
validation for neutral patterns may need to be performed
with SNPs called from mRNA sequences before using
them for studying population structure or when used for
making conservation decisions.
Another challenge with using mRNA data for popula-

tion structure is that of sample size. MRNA sequencing
is expensive, partly because of the great sequencing
depth required for transcript expression quantification,
relative to DNA-based methods. In practice, sample sizes
may be low for genetic data that are otherwise appropri-
ate for physiological questions (e.g. n = 6–8 per experi-
mental treatment) in mRNA sequencing studies. Two
properties of mRNA used to study genetic variation may
mitigate the issues of low sample sizes, however. First,
SNPs called for genetic approaches may be drawn from
combined treatment groups in physiological studies, if
the overarching experimental design includes compari-
sons between populations [8, 9]. For example, in the
present study, two populations of fish are compared,

each with three experimental treatments. Because n = 14
individuals may be appropriate for estimating population
allele frequencies, low sample sizes in mRNA studies
may nevertheless yield informative population structure
estimates [10]. The second factor that may mitigate sam-
ple size issues is that of the number of markers available
in mRNA sequencing. Microsatellite-based studies often
use 10–20 markers, SNP arrays contain several hundred
to tens of thousands of markers, and reduced
representation-based studies often have 10,000–200,000
markers. MRNA sequencing data can yield hundreds of
thousands of SNP markers, similar in quantity to those
produced by reduced representation approaches, and or-
ders of magnitude above those provided by microsatel-
lites or SNP arrays [9, 11–14]. This abundance of data
allows for precise estimations of genetic variation and
population structure, such as through bootstrapping of F
statistics [4]. While several studies apply mRNA sequen-
cing to population genetic approaches, concordant issues
of widespread purifying selection in the transcriptome
and sample size concerns suggest comparisons between
mRNA- and established DNA-based methods are needed
[8, 9, 12–15].
For studying phenotypic plasticity and genetic vari-

ation, a wide body of research on the topic explores
plasticity in morphological or phenological traits [16,
17]. MRNA sequencing, however, provides an opportun-
ity for researchers to study phenotypes defined by gene
expression with respect to adaptive evolution [18–20]. In
conjunction with signatures of selection across the tran-
scriptome, mRNA sequencing has great potential for ad-
dressing the different roles of plasticity on evolution
because of its dual uses in observing transcript quantifi-
cation and genetic variation [20]. For example, diver-
gence in plasticity likely contributes to adaptive
responses to environmental change, while additivity and
stability of cis-acting regulation has shown potential as a
“substrate for the early stages of adaptive evolution” [3,
21]. A mechanistic view of plasticity expressed in indi-
vidual genes may thus reveal the processes by which
plasticity and evolution can enable populations to adapt
to changing environments. The most well-characterized
method for analyzing mRNA sequencing data for this
plasticity is that of testing for differential gene expres-
sion (DGE) between groups of interest. Here, either
laboratory studies investigate possible molecular mecha-
nisms underlying some physiological parameter, such as
those associated with climate change [22], or studies on
wild-caught organisms provide evidence for environ-
mental stressors that may affect a population’s viability
[23]. Patterns of alternative splicing have been investi-
gated using mRNA as well, revealing possible variation
underlying adaptive radiations [24, 25], along with stress
responses and acclimation associated with temperature

Thorstensen et al. BMC Genomics          (2021) 22:273 Page 2 of 12



[26, 27]. These data, represented by models describing dif-
ferential exon usage (DEU), reveal patterns potentially
hidden from DGE because exons may be differentially
used under contrasting conditions, but the transcript over-
all may show little or no difference in abundance [28–30].
Recent advances in mRNA sequence alignment, such as
by the SuperTranscript pipeline, have permitted the appli-
cation of these methods to non-model species by using a
de novo reference transcriptome against which to align
data [30]. Gene expression variability (GEV) has also been
described for analyzing mRNA sequencing data [31].
Here, variation from technical and biological origins are
teased apart to investigate the role of expression variability
in affecting physiological parameters, especially in the con-
text of factors such as diet or age [31].
In the present study, we explored the potential for ap-

plying mRNA data to questions of population structure,
phenotypic plasticity and evolution in the Sacramento
splittail (Pogonichthys macrolepidotus) in the San Fran-
cisco Estuary, California, USA. There are two popula-
tions described in the species: the Central Valley
population with an overall higher effective population
size, and the San Pablo population which exists in a
more saline environment and shows greater salinity tol-
erance and phenotypic plasticity when challenged with
salinity [8, 32–34]. The role of mRNA sequencing for
population genetic questions was investigated by com-
paring patterns of population structure and genetic vari-
ation between a published data set of microsatellites [33]
and one using mRNA sequencing [8], with individuals
sampled from the same locations at approximately the
same times. Putatively neutral SNPs from mRNA were
thus compared with microsatellites to assess the extent
to which mRNA data may reflect population genetic pat-
terns, in addition to a set of overall SNPs. Each data set
contains individuals sampled from the same populations.
In addition, within the mRNA data, the relationship be-
tween evolution and phenotypic plasticity in the form of
DGE, DEU, and GEV is tested by observing signatures of
selection and phenotypic plasticity in individual genes,
as modeled by SuperTranscripts [30]. Here, we hypothe-
sized that plasticity may diverge from adaptive variation
within genes because plasticity plays a large role in the
San Pablo population’s response to salinity; local adapta-
tion may therefore have led to plastic gene expression
rather than polymorphisms within transcripts and genes.
Thus, we predicted that signatures of selection as identi-
fied by outlier SNPs would reside within genes not ex-
pressing any of DGE, DEU, or GEV.

Results
Population Structure & Genetic Variation
Between the Central Valley and San Pablo Bay popula-
tions, Weir and Cockerham’s pairwise FST was highest

for microsatellite data, and slightly higher for neutral
SNPs than overall SNPs (Table 2). Gene diversity, het-
erozygosity, and population-specific FST were all consist-
ent in relationship between the Central Valley and San
Pablo Bay populations when compared between the
three data sets, with higher values for the Central Valley
fish (Table 1). However, FIS was positive for overall SNPs
but negative for neutral SNPs. Moreover, FIS was indis-
tinguishable from zero for the San Pablo Bay fish when
using microsatellites, but was positive for the Central
Valley fish using the same data (Table 1). Principal com-
ponents analysis (PCA) was consistent in separating
populations along principal component one (Fig. 1).

Signatures of selection
Using pcadapt on the overall SNPs with no prior infor-
mation, 659 SNPs showed signatures of selection along
principal component one (q < 0.05). Using Bayescan on
the same set of SNPs with population of origin provided,
155 SNPs showed signatures of selection between the
Central Valley and San Pablo populations (q < 0.05). Of
these SNPs, 98 showed significant signatures of selection
in both pcadapt and Bayescan within 75 different
transcripts.

Transcript quantification
Between-population DGE showed 0 transcripts with sig-
nificant DGE at hours 0 and 72, and 1757 significant
genes at hour 168 (q < 0.05). Intrapopulation DGE in the
Central Valley fish showed 67 genes with significant
DGE between hours 72 and 0, 12 significant genes be-
tween hours 168 and 72, and 71 significant genes be-
tween hours 168 and 0. Intrapopulation DGE in the San
Pablo fish revealed 135 genes with significant DGE be-
tween hours 72 and 0, 45 significant genes between
hours 168 and 72, and 220 significant genes between
hours 168 and 0.
Between-population DEU showed 15 genes with sig-

nificant DEU at hour 0, 2 genes at hour 72, and 189
genes at hour 168 (q < 0.05). Intrapopulation DEU in the
Central Valley fish showed 22 significant genes with
DEU between hours 72 and 0, 11 significant genes be-
tween hours 168 and 72, and 0 significant genes between
hours 168 and 0. Intrapopulation DEU in the San Pablo
fish showed 22 significant genes with DEU between
hours 72 and 0, 2697 significant genes between hours
168 and 72, and 630 significant genes between hours
168 and 0.
No genes were significant in any inter- or intra-

population comparison for GEV.

Combining Phenotypic Plasticity & Signatures of selection
Using the pcadapt and Bayescan outlier results in con-
junction with DGE, DEU, and GEV per gene, 67 genes
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Table 1 Population genetic results for microsatellites, neutral SNPs, and overall SNPs in two populations of Sacramento splittail
(Pogonichthys macrolepidotus)
Dataset Statistic Central Valley San Pablo

Microsatellites
(n = 528 and 191; 19 markers)

Pairwise FST 0.04262 (0.0296–0.0589)

HO 0.605 0.652

HS 0.622 0.653

FIS 0.0266
(0.0054–0.0542)

0.00177
(−0.0171–0.0193)

Population-specific FST 0.06475
(0.02951–0.1067)

0.01959
(− 0.009956–0.04752)

Neutral SNPs
(n = 16 per population; 69,951 SNPs)

Pairwise FST 0.0263 (0.0257–0.027)

HO 0.273 0.279

HS 0.261 0.264

FIS −0.0489
(− 0.0515 - -0.0466)

−0.0541
(− 0.0565–0.0517)

Population-specific FST 0.0324
(0.0302–0.0348)

0.0170
(0.01504–0.0190)

Overall SNPs
(n = 16 per population; 420,626 SNPs)

Pairwise FST 0.0230 (0.0227–0.0233)

HO 0.253 0.264

HS 0.287 0.290

FIS 0.120
(0.118–0.121)

0.091
(0.0893–0.0924)

Population-specific FST 0.03359
(0.03274–0.03450)

0.02213
(0.02121–0.02290)

The Central Valley population (n = 191) represents a larger, less salinity-tolerant group than the San Pablo population (n = 191). Neutral and overall single
nucleotide polymorphisms (SNPs) were generated with raw RNA sequencing data of 32 fish (n = 16 per population). There were a total of 420,626 overall
SNPs and 69,951 neutral SNPs after filtering. Pairwise FST represents Weir & Cockerham’s pairwise FST, HO represents observed heterozygosity, HS represents
gene diversity (sometimes referred to as expected heterozygosity), FIS refers to the inbreeding coefficient, and population-specific FST refers to a coalescent
approach to FST. 95% confidence intervals are provided where possible in parentheses, based on 1000 bootstrapping iterations

Fig. 1 Principal component analysis of microsatellites, neutral SNPs from RNA, and overall SNPs from RNA for two populations of Sacramento
splittail (Pogonichthys macrolepidotus). The Central Valley population represents an overall larger, less salinity-tolerant group than the San Pablo
Bay population. Microsatellite data for the Central Valley population (n = 528) and the San Pablo population (n = 191) individuals, and are
comprised of 19 markers with at least 80% present data, filtered for family structure where full-siblings were removed. Neutral and overall single
nucleotide polymorphisms (SNPs) were generated with mRNA sequencing data of 32 fish (n = 16 per population). There were a total of 420,626
overall SNPs and 69,951 neutral SNPs after filtering used in the principal components analyses
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showed only selection, and no plasticity. 4880 showed
plasticity and no signatures of selection. Eight had both
signatures of selection and plasticity, and 244,021
showed neither selection or plasticity. A Χ2 test revealed
that selection or plasticity are likely to be expressed in
different genes Χ2(1, n = 248,976) = 23,265,639, p <
0.00001 (Fig. 2).
Patterns of phenotypic plasticity and selection, when

plotted with -log10 q-values, showed an independence
between the categorical variables consistent with the
Χ2 test (Fig. 2). Many genes show either signatures
selection or plasticity, but not both, whereas eight
transcripts show both signatures of selection and
phenotypic plasticity. Among the eight genes showing
both selection and plasticity, DEU contributed to
plasticity in six, whereas DGE contributed plasticity in
two. Within phenotypic plasticity, six of eight genes
presented significant DEU between the 168- and 72-h
timepoints in the San Pablo fish, with no other plasti-
city expressed by those genes. One remaining gene
showed DGE between the Central Valley and San

Pablo populations at 168 h (− 0.64 log2-fold change,
q = 0.016), and the other showed DGE within the San
Pablo population between 72 and 0 h (− 3.92 log2-fold
change, q = 0.026).
Of the eight genes that showed both phenotypic plasti-

city and signatures of selection, five had available anno-
tations. HEAT repeat-containing protein 6 (heatr6), NFU
1 iron-sulfur cluster scaffold homolog (mitochon-
drial)(nfu1), alanine-tRNA ligase (sya), and solute carrier
family 22 member 6 (slc22a6) all showed DEU between
the 168- and 72-h timepoints within the San Pablo
population of fish (Fig. 3). Collagenase 3 (mmp13) also
showed plasticity within the San Pablo population, with
− 3.92 log2-fold change (q = 0.026) between the 72- and
0-h timepoints.
Analyses of DGE and outlier SNPs separately are provided

in [8]. Functional analyses for DEU are provided in detail in
the Supplementary Materials. Briefly, two significant genes
with annotations were available for the between-population
comparison at hour-0, none were available at hour-72, and
75 genes with annotations were available at hour-168
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Fig. 2 Phenotypic plasticity and signatures of selection in genes plotted by -log10 adjusted p-values (false discovery rates (q)) < 0.05. MRNA data
consists of n = 16 individuals in each of two populations exposed to a salinity challenge over three timepoints. For visualization, the -log10 q-value
for each gene from differential gene expression (DGE) or differential exon usage (DEU) in any comparison (within or between populations) was
drawn and when multiple comparisons were significant (e.g. a gene showing DGE under multiple comparisons), the lowest -log10 q-value was
retained for visualization. Signatures of selection were identified with SNPs that were significant between populations (q < 0.05). The lowest
significant -log10 q-value was retained for visualization both between programs and in genes with multiple significant outlier SNPs. 244,089 genes
showed no selection or plasticity, 67 showed selection and no plasticity, 4812 showed plasticity and no selection, and 8 showed both plasticity
and selection. A Χ2 test of independence revealed independence between phenotypic plasticity and signatures of selection among genes Χ2(1,
n = 248,976) = 22,651,453, p < 0.00001. Of the eight genes that show both signatures of selection and phenotypic plasticity, five had available
annotations. HEAT repeat-containing protein 6 (heatr6), NFU 1 iron-sulfur cluster scaffold homolog (mitochondrial)(nfu1), alanine-tRNA ligase (sya), and
solute carrier family 22 member 6 (slc22a6) each show DEU, while collagenase 3 (mmp13) shows DGE
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(Supplementary Table S1). Within Central Valley fish be-
tween hours 72 and 0, six significant genes had annotations
available, none had annotations available between hours 168
and 72, while one had annotations available between hours
168 and 72. Within San Pablo fish, nine significant genes had
available annotations between hours 72 and 0, 298 had avail-
able annotations between hours 168 and 0 (Supplementary
Table S2). Between hours 168 and 72 in San Pablo fish, 1319
significant genes had annotations available (Supplementary
Table S3), with two significant GO terms found using the
GO Biological Process 2018 database with EnrichR: golgi
vesicle transport (GO:0048193, q= 0.014) and protein

modification by small protein conjugation (GO:0032446, q=
0.015).

Discussion
Our data show that SNPs called from mRNA are con-
sistent with microsatellite data for describing population
differentiation, although the magnitude of differentiation
(i.e., FST) is lower with mRNA. Moreover, an analysis of
genes that show phenotypic plasticity and contain signa-
tures of selection revealed that a given gene is likely to
show either selection or plasticity—but rarely both. Pat-
terns of phenotypic plasticity revealed by DEU but not

Fig. 3 Map of sampling locations used for individuals analyzed in microsatellite-based analyses for Sacramento splittail (Pogonichthys
macrolepidotus) from the San Francisco Estuary, California, USA. The three western sites comprised the San Pablo Bay region of sampling, while
sites east of Fairfield comprised the Central Valley region of sampling. Population reassignment with discriminant analysis of principal
components with two clusters placed one cluster of which most individuals were caught in the San Pablo Bay region, and another cluster spread
out among both regions of sampling (see Table 2 for details). As such, for microsatellite-based analyses, the individuals placed in the region
characterized by the San Pablo Bay region are referred to as the San Pablo Bay population, and other individuals are referred to as the Central
Valley population
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DGE, especially between the 168- and 72-h timepoints
in the relatively more salinity-adapted San Pablo fish,
confirmed that mRNA is useful for different types of ex-
pression quantification-based analyses. Overall, the
consistency in signals of population differentiation and
the breadth in analyses of phenotypic plasticity possible
with mRNA sequencing support its usefulness within
the context of both population genetics and phenotypic
plasticity.

Population genetics
Measures of population differentiation and genetic vari-
ation were largely consistent between mRNA SNPs and
microsatellites, with one important difference. When
both filtered for putatively neutral markers and with the
overall SNP data, mRNA sequencing revealed pairwise
FST approximately 40% lower than FST described using
microsatellites. This lower FST described when using
mRNA is consistent with lower gene diversity (i.e., ex-
pected heterozygosity, HS) and heterozygosity relative to
microsatellites. Lower gene diversity and heterozygosity
may be a result of widespread purifying selection
throughout the Sacramento splittail’s transcriptome, a
phenomenon hypothesized to exist in mRNA across taxa
because of its functional role in organism’s life histor-
ies—as opposed to neutral microsatellites [7]. Selection
may operate even on synonymous mutations in mRNA
and it may be unlikely that any SNP in mRNA is ‘truly
neutral’ [5–7]. In addition, reduced heterozygosity and
gene diversity may be influenced by lower sample sizes
in mRNA data, where sequencing costs may preclude
sample sizes often used in microsatellite-based studies.
Nevertheless, pairwise FST found using mRNA described
two populations consistent with population structure
found in other research [32]. In addition, heterozygosity
and gene diversity within populations were consistent
between mRNA and microsatellites in their relative
magnitudes, with slightly higher values in the salinity-
tolerant San Pablo fish in each case. Population-
specific FST values were also consistent between
methods, with lower values in San Pablo Sacramento
splittail relative to individuals from the Central Valley
using both mRNA and microsatellite markers. Lower
FST in this circumstance is related to coancestry and
may imply the San Pablo fish more closely resemble
the population of origin for the Sacramento splittail
[35, 36].

Phenotypic Plasticity & Signatures of selection
Analyses of signatures of selection and phenotypic plas-
ticity expressed by genes within the context of local
adaptation and adaptive responses may elucidate some
of the mechanisms by which organisms respond to chan-
ging environments. Different perspectives exist on the

role of genetic variation on plastic responses. From one
perspective, plastic traits may be studied as a morpho-
logical or phenological trait such as flowering time or
growth rate [17]. From another perspective, plasticity
can be represented by environmentally responsive loci
[20, 21], a perspective adopted in the present study.
Here, the divergent evolution of plasticity plays a role in
adapting to environmental change (climate change in
[21]; salinity differences in the present study). Prior work
showed results consistent with the role of divergent plas-
ticity in the Sacramento splittail, with greater transcrip-
tome plasticity and salinity tolerance observed in the
San Pablo population [8, 34]. Consistent with our hy-
pothesis that phenotypic plasticity would diverge from
adaptive variation within genes, positive selection or
phenotypic plasticity were found in almost mutual exclu-
sion. That is, a gene with signatures of selection between
the two populations was unlikely to show any kind of
phenotypic plasticity, and a gene showing any intra- or
inter-population plasticity in expression was unlikely to
have signatures of selection.
The near mutual exclusion of plasticity and signatures

of selection shown in the present study is in line with
work showing an inhibitory relationship between the
two phenomena [20, 21, 37]. Nevertheless, several stud-
ies have described a co-occurrence of plasticity and se-
lection at environmentally-responsive genes, such as
salinity tolerance genes that may be the targets of adap-
tive variation in Atlantic killifish (Fundulus heteroclitus)
[38–40]. The discordance between these results on the
relationship between selection and plasticity may have
arisen from the evolutionary backgrounds of the plastic
traits under study. Killifish have adapted to wide salinity
gradients with extreme physiological plasticity [39],
whereas the Sacramento splittail is experiencing more
variable salinity in the modern day due to many an-
thropogenic and climate change-related impacts in the
system and may have evolved in a more stable saline en-
vironment. Therefore, selection may act upon plastic
genes in populations extremely tolerant to a stressor, but
plasticity may constrain evolution in populations of
moderate tolerance to a stressor. These findings are con-
sistent with the Sacramento splittail having evolved at a
fitness peak where high levels of plasticity in the San
Pablo Bay population reduce the likelihood of genetic
change with respect to salinity tolerance because plasti-
city itself has undergone selection [41]. Any mutations
in the genes that compromise the plastic response are
likely to be deleterious if the San Pablo population is at
a fitness peak, and purifying selection may be a major
force in these plastic pathways.
Among the five genes that contained signatures of se-

lection and phenotypic plasticity and were also anno-
tated, four showed DEU between the 168- and 72-h
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timepoints in the San Pablo population of Sacramento
splittail exposed to salinity (heatr6, nfu1, slc22a6, sya).
These genes may therefore exhibit differential splicing in
response to salinity and in conjunction with the signa-
tures of selection within them, may be important com-
ponents of local adaptation in the San Pablo population.
The San Pablo fish have shown a more plastic, likely
adaptive response to salinity challenge than the Central
Valley fish overall [8, 33, 34]—a response recapitulated
in the novel patterns of DEU described in the present
study. Alternative splicing, that leads to the DEU, has
been discussed in fish in evolutionary and physiological
contexts, with roles in heat stress, cold acclimation, jaw
morphology, and mate choice, with implications for
adaptive radiations [24–27]. It is therefore unsurprising
that DEU plays a role in the Sacramento splittail’s re-
sponse to salinity because of the salinity differences in
the fish’s native environment [32]. However, the novel
patterns of DEU in response to salinity in the Sacra-
mento splittail, in conjunction with the genes that
showed both DEU and selection, is consistent with adap-
tive roles for DEU in both physiological environmental
responses and functional evolutionary differences among
populations [42].

Conclusions
We described applications of mRNA sequencing for
delineating population structure and investigating dy-
namics between plasticity and selection. Our measures
of genetic variation and population differentiation
were consistent with previously hypothesized purifying
selection across organism’s transcriptomes [7]. In
practice, this purifying selection may have led to
lower gene diversity, heterozygosity, and FST estimates
found with mRNA relative to microsatellites in these
data. Population genetic measures drawn from mRNA
data must therefore be interpreted with caution (and
as conservative estimates) when used for characteriza-
tions of population structure, especially for studies
with management implications. MRNA sequencing
also provides fertile ground for studying the relation-
ship between phenotypic plasticity and selection,
within a mechanistic framework. While a wide body
of research on the question describes phenotypic plas-
ticity in non-molecular terms (e.g. bloom timing, sal-
inity tolerance), mRNA data describes phenotypes by
the expression of individual transcripts or genes. By
quantifying the expression of individual transcripts,
aligning transcripts to gene representations, and in-
vestigating outlier SNPs, researchers can use mRNA
data to find key information about molecular mecha-
nisms underlying local adaptation and adaptive re-
sponses to changing environments.

Methods
Data sets
The microsatellite data set used for the present study
was published in [33]. Briefly, n = 727 individuals col-
lected in 2011 and 2012 from six sites representing the
San Pablo Bay and Central Valley splittail populations
were analyzed [32, 33]. The San Pablo Bay population
was represented by individuals collected from the Napa
River, Petaluma River, and in San Pablo Bay itself (n =
119, 293, and 3, respectively) (Fig. 3). The Central Valley
population was represented by individuals collected from
Liberty Island, the Sacramento River, and the San Joa-
quin River (n = 49, 128, and 135, respectively) (Fig. 3).
Nineteen microsatellites previously described were used,
and individuals with 20% or greater missing data were
removed (≥3 microsatellite loci missing) [43]. Population
reassignment was performed using Adegenet version
2.1.2 with 75 principal components and two clusters [44,
45]. To address the possibility that family structure may
bias measurements of population structure, Colony ver-
sion 2.0.6.5 was run separately on each of the reassigned
clusters [46]. In Colony, allele frequencies were updated,
inbreeding was allowed, polygamy was allowed for males
and females, full sibship scaling was used, a weak sibship
prior was assumed, and full-likelihood-pair-likelihood
combined scores were used at high precision over 10
replicate runs in each cluster. Individuals were consid-
ered full-siblings for removal with an inclusive probabil-
ity > 0.80 for the pairing. Cluster 1 consisted of n = 531
individuals from all six sites with 3 individuals removed
as full-siblings of others, while Cluster 2 consisted of
n = 196 individuals with 5 individuals removed as full-
siblings of others, primarily from the San Pablo Bay
(Table 2). Hereafter, Cluster 1 will be referred to as the
Central Valley population while Cluster 2 will be re-
ferred to as the San Pablo Bay population with respect
to the microsatellite data.
The mRNA data set used for the present study was

published in [8], where n = 16 fish from each the San
Pablo Bay and Central Valley populations of Sacramento
splittail were exposed to a salinity challenge of 14 PSU.
Fish were sacrificed and gill tissue was sampled 0, 72,
and 168 h into the salinity exposure (see [8] for details).
In the present study, the raw reads were downloaded
from the National Center for Biotechnology Information
Sequence Read Archive (accession #PRJNA326543) and
the SuperTranscripts pipeline was used to align raw
reads to a published reference transcriptome because of
its capacity for describing DEU in non-model organisms
[8, 30]. Following the SuperTranscripts pipeline, Salmon
version 0.11.3 was used for quasi-mapping prior to clus-
tering transcripts using Corset version 1.07 [47, 48].
These Corset-clustered reads were used for expression
quantification-based approaches used in this study (i.e.

Thorstensen et al. BMC Genomics          (2021) 22:273 Page 8 of 12



differential gene expression, differential exon usage,
and gene expression variation). From the Corset-
clustered reads, a linear representation of the tran-
scriptome was created using Lace version 1.00 [30].
Final alignments were performed with STAR version
2.7.0a [49]. Throughout the present manuscript, the
Corset-clustered SuperTranscripts are referred to as
“genes.”
SNPs were called from STAR-aligned reads and the

Lace-reconstructed transcriptome by adding read
groups, splitting cigar ends, and merging bam files
with Picard version 2.18.9, then using FreeBayes 1.2.0
for final SNP calling [50, 51]. Here, 3,284,734 SNPs
and indels were called with FreeBayes. SNP filtering
was done using VCFtools version 0.1.14 [52]. From
the initial data set, 420,626 high-quality SNPs was
created by filtering to include only biallelic SNPs of
genotype and site qualities > 30, minor allele frequen-
cies of ≥0.05, and a maximum of 20% missing data.
Because the markers used in the microsatellite data
set described above were in HWE, another set of
SNP data was created using vcftools, with genotype
and site qualities of 30, minor allele frequency of
≥0.05, biallelic SNPs, no missing data, and within
HWE at p < 0.005. These SNPs were then pruned for
linkage disequilibrium (LD) using SNPRelate version
1.16.0 at a threshold of 0.20 [53]. SuperTranscript
clusters were coded as chromosomes for the purposes
of LD pruning [53]. After pruning for LD, 69,951
SNPs remained. Hereafter, the SNP data set filtered
for quality but not HWE or LD is referred to as
“overall SNPs”, while the SNP data set filtered for
HWE and LD is referred to as “neutral SNPs.”

Population Structure & Genetic Variation
To examine how well SNPs from mRNA recapitulate
patterns of genetic variation and population structure re-
vealed by microsatellites, Hierfstat version 0.04–22 [4]
was used to evaluate pairwise Weir and Cockerham’s
FST, along with population-specific FST, observed gene
diversity, and FIS. These tests were performed on each of
the three data sets: microsatellites, overall SNPs, and
neutral SNPs. For statistics calculated in Hierfstat, 95%
confidence intervals calculated using bootstrapping over
1000 iterations. Population structure was visualized
using principal components analysis (PCA) as imple-
mented in Adegenet version 2.1.2 [44].

Signatures of selection
Two different programs were used to analyze signatures
of selection, pcadapt and Bayescan [54, 55]. In each of
these programs, the overall SNP data set of 420,626
SNPs was used. For pcadapt version 4.3.3, two principal
components were used, and samples separated by popu-
lation along principal component 1 (PC1), which ex-
plained 25.4% of the variance in the data. P-values for all
SNPs were adjusted with a false discovery rate (q) cor-
rection for multiple tests, then SNPs with a q < 0.05 that
varied along PC1 were kept.

Transcript quantification
Three transcript quantification-based methods were
used to analyze mRNA expression data from [8]: differ-
ential gene expression (DGE), differential exon usage
(DEU), and gene expression variability (GEV). From the
transcript reads clustered with Corset, DGE was ana-
lyzed using edgeR version 3.28.1 [56]. Data were filtered
for any transcript expression within any of six groups
(i.e., a transcript was retained only if all individuals in at
least one group showed expression at that transcript);
out of 248,976 transcripts, 68,737 were kept in this way.
After estimating dispersion, generalized linear models
with quasi-likelihood tests were used to estimate DGE
between populations at each of three experimental time-
points, and within populations between the three experi-
mental timepoints. Only genes with q < 0.05 for DGE
were kept for downstream analyses.
Exon counts for DEU were estimated with the feature-

Counts function of Lace, version 1.00. These exon
counts were then analyzed for DEU with edgeR version
3.28.1 and Limma version 3.42.2 [29, 56]. Briefly,
normalization factors were calculated, observation-level
weights were computed with voom, linear models were
fit for each exon, then DEU was tested with diffSplice.
Pairwise comparisons were drawn between two popula-
tions at each of three experimental timepoints, and
within populations between each of three experimental

Table 2 Sacramento splittail (Pogonichthys macrolepidotus)
sample sizes for individuals used in microsatellite data by
region, capture location, and population reassignment

Region Location Cluster One Cluster Two

San Pablo Bay Napa River 62 56

Petaluma River 169 117

San Pablo Bay 3 0

Central Valley Liberty Island 47 2

Sacramento River 123 5

San Joaquin River 124 11

Total 528 191

Region describes the overall region of capture, within which are rivers and
capture sites at which fish were collected described by Location. Clusters One
and Two describe population reassignment, where Cluster One is comprised of
individuals across all six capture locations, while Cluster Two is comprised of
individuals from capture locations primarily in San Pablo Bay. Throughout the
present manuscript and with respect to microsatellite data, Cluster One is
referred to as the Central Valley population and Cluster Two referred to as the
San Pablo Bay population. In Adegenet, 75 principal components and two
clusters were chosen for analysis
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timepoints. Only genes showing DEU with q < 0.05 were
kept for downstream analyses.
Code provided in [31] was modified to calculate GEV

between two populations at three experimental time-
points, and within populations at each experimental
timepoint. Normalization factors were calculated with
edgeR version 3.28.1, then offset variables were calcu-
lated as the natural log of the product of library size and
normalization factor [56]. Only genes with greater than
one count per million were included in the analysis. The
R package GAMLSS version 5.1–6 was used to estimate
GEV with the resulting data sets [57]. First, a negative
binomial model that included groups of interest and off-
set variables was fit. Then, group factors were omitted
from estimations of mean and overdispersion in expres-
sion, respectively, along with a null model fit with just
the offset variables. Estimations of non-Poisson noise
were tested with a log-likelihood ratio test in GAMLSS,
then Corset-clustered reads with inflated or near-
Poisson coefficients of variation (CV) in mRNA copy
number were removed (1 × 10− 3 < CV < 3). Last, false
discovery rate adjustments were calculated with reported
p-values for CV. Only genes with q < 0.05 were kept for
downstream analyses.

Combining Phenotypic Plasticity & Signatures of selection
A chi-square test of independence was used to explore
the relationship between signatures of selection and
phenotypic plasticity shown by individual genes. Here, a
transcript was counted as showing signatures of selec-
tion if it contained a significant outlier SNP between
populations (q < 0.05) as identified by pcadapt and
Bayescan, or counted as exhibiting phenotypic plasticity
if significant DGE, DEU, or GEV (q < 0.05) was identified
in the transcript. Transcripts showing neither selection
or plasticity were also counted.
Different types of phenotypic plasticity (all compari-

sons within DGE, DEU, and GEV) were summarized at
the gene level by first identifying the types of significant
(q < 0.05) plasticity within a gene, then identifying the
lowest -log10 q-value among the different types of plasti-
city, if more than one was present for a transcript. If
only one type of plasticity was present in a gene, the as-
sociated log-transformed q-value was associated with
overall plasticity for the gene. Similarly, −log10 q-values
were calculated for each significant outlier SNP found
using Bayescan or that varied along PC1 using pcadapt
(q < 0.05). Within a gene, the minimum significant log-
transformed q-value was identified, and that value was
associated with signatures of selection for the entire
transcript for plotting. Genes were thus represented by
four categories: those showing no signatures of selection
or plasticity, those showing only selection and no

plasticity, those showing only plasticity and no selection,
and those showing both plasticity and selection.
Functional analyses of genes under different conditions

of selection, plasticity, or both were analyzed using the
annotated transcriptome used in [8]. Because patterns of
DGE and selection were analyzed in prior research, ana-
lysis of DEU, GEV, and of genes showing overlapping
plasticity and selection are focused on, here [8]. A de-
tailed description of gene set enrichment analysis in
genes showing DEU using EnrichR [58] is provided in
the Supplementary Materials.
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org/10.1186/s12864-021-07592-4.

Additional file 1: Supplementary Table S1. Differential exon usage
(DEU) at 168-h between the Central Valley and San Pablo populations of
Sacramento splittail (Pogonichthys macrolepidotus). Only the 75 of 189
genes that showed significant DEU in this comparison and had annota-
tions are included here, sorted by ascending false discovery rate-adjusted
p-values (q value). Supplementary Table S2. Differential exon usage
(DEU) between hours 168 and 0 for the San Pablo San Pablo population
of Sacramento splittail (Pogonichthys macrolepidotus). 630 genes showed
significant DEU in this comparison, but only the 199 with annotations are
included here, sorted by ascending false discovery rate-adjusted p-values
(q value). Supplementary Table S3. Differential exon usage (DEU) be-
tween hours 168 and 72 for the San Pablo San Pablo population of Sacra-
mento splittail (Pogonichthys macrolepidotus). 1319 genes with
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