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This study investigated the effect of task demand transitions at multiple levels of analysis
including behavioral performance, subjective rating, and brain effective connectivity,
while comparing human data to Adaptive Control of Thought-Rational (ACT-R) simulated
data. Three stages of task demand were designed and performed sequentially (Low-
High-Low) during AF-MATB tasks, and the differences in neural connectivity during
workload transition were identified. The NASA Task Load Index (NASA-TLX) and the
Instantaneous Self-Assessment (ISA) were used to measure the subjective mental
workload that accompanies the hysteresis effect in the task demand transitions. The
results found significant hysteresis effects on performance and various brain network
measures such as outflow of the prefrontal cortex and connectivity magnitude. These
findings would assist in clarifying the direction and strength of the Granger Causality
under demand transitions. As a result, these findings involving the neural mechanisms
of hysteresis effects in multitasking environments may be utilized in applications of
neuroergonomics research. The ability to compare data derived from human participants
to data gathered by the ACT-R model allows researchers to better account for hysteresis
effects in neuro-cognitive models in the future.

Keywords: ACT-R, EEG, neural correlates, Granger causality, effective connectivity, multitasking, cognitive
modeling

INTRODUCTION

In society today, people are inundated with situations in which their cognitive capacity is tested
by the need or want to perform well in multiple tasks all at once. A common example comes in
the form of piloting an aircraft. While flying, a pilot is tasked with watching through windshield for
obstructions, weather conditions, and runway conditions while also monitoring airspeed, elevation,
weather, fuel levels, and navigation information using monitoring equipment. At the same time,
pilots must listen for auditory cues both from air traffic controllers as well as alarms such as ground
proximity warnings. Pilots are also often tasked with manually guiding the plane using a steering
mechanism as well as controlling acceleration manually. The level of automation may change
given the sophistication of the technology in individual airplanes, but within any flight system,
multitasking is required of the pilot.

Researchers have attempted to explain how behavioral and cognitive performance are impacted
in such multitasking environments, and computer models have been developed to help simulate

Frontiers in Human Neuroscience | www.frontiersin.org 1 January 2019 | Volume 12 | Article 535

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2018.00535
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2018.00535
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2018.00535&domain=pdf&date_stamp=2019-01-24
https://www.frontiersin.org/articles/10.3389/fnhum.2018.00535/full
http://loop.frontiersin.org/people/381096/overview
http://loop.frontiersin.org/people/662987/overview
http://loop.frontiersin.org/people/147737/overview
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00535 February 11, 2019 Time: 12:37 # 2

Kim et al. Neural Correlates of Workload Transition

human performance and cognitive activity as well. Recently,
increasing attention has been given to researching the impact of
sudden shifts in task-demand in such environments on human
performance and cognitive activity. The effect of a previous
condition on a current condition, or hysteresis, is often the
focus of such research. In the aforementioned aircraft pilot
example, demand transitions may occur at multiple points during
a flight depending on travel conditions as well as the need to
perform a specific maneuver or procedure such as take-off or
landing. Performing any of the given tasks poorly may have dire
consequences not only for the pilot but also for any other crew,
possible passengers, and cargo. If we understand the factors that
may impact a pilot’s performance, which may include demand
transitions, we can develop methods for counteracting such
influencing factors if the impact is negative or promoting such
factors if the impact is positive.

The main goal of the present research was to help explain
not only brain region activation during such changes in task-
demand transitions in a multitasking environment, but also
a causal flow of cognitive functioning during and after such
transitions. EEG data with performance data and subjective
responses to the multitasking environment were analyzed.
Additionally, we compared an established computer-based
model for cognitive and behavioral performance with actual
human performance. Specifically, this approach can search for
discrepancies between human data and model data that may
arise due to a lack of accounting for hysteresis effects within the
computer-based model.

Workload Transition and Hysteresis
Effect During Multitasking
A hysteresis effect is described as the impact of previous demand
conditions on current demand conditions (Morgan and Hancock,
2011). In workload transition research, this describes any impact
that a previous level of workload, or task demand, may have on
a new level of workload post transition. Previous research has
sought to investigate the impact of hysteresis using a research
design in which participants engage in a task (often a dual-
or multitasking environment) during which there are changes
in task demand. These studies often ask the participant to
engage in a task that at some point will become significantly
more or less demanding. While the order of levels of the task-
demand presented to the participants may vary between studies,
much of the existing literature currently available observes
a hysteresis effect most commonly when an operator moves
from a high to a low workload condition (Cox-Fuenzalida,
2007). Performance data is collected across time throughout the
experimental task, with the researchers placing an emphasis on
observable differences in performance between levels of task-
demand as a measure of hysteresis.

Previous studies also often gather subjective ratings of
mental workload from participants throughout the given
experimental task, and approach changes in mental workload
that correspond with changes in task demand as possible
products of hysteresis. A high-demand or low-demand baseline
is commonly used for comparison. The assumption is that

if an individual suddenly changes from a high-demand task
to a low-demand task, and the performance and/or mental
workload are significantly different than a baseline performance
and/or mental workload in the low-demand task, it is inferred
that the high-demand task that occurred before the low-
demand task had an impact on performance and mental
workload during that low-demand task. Cox-Fuenzalida (2007)
used the Bakan (1959) to observe the effects of transitions
in task demand, and found that a significant increase in
performance occurs when individuals transitioned from high
to low task demand, but not from low to high task demand.
Jansen et al. (2016) observed performance in a driving
simulation task which was manipulated to define high- and
low-demand conditions. Former research has demonstrated
that during demand transitions, changes in mental workload
often occur along with changes in performance. They also
showed that subjective mental workload can remain elevated
after switching from a high-demand task to a low-demand
task (Jansen et al., 2016).

More recently, attention has been drawn to investigate
the underlying relationship between the hysteresis effect
and brain activity that is caused by the change of subjective
mental workload. Schweizer et al. (2013) used fMRI to identify
differences in brain activation by the level of workloads in
distracted driving. Deprez et al. (2013) found differences
in brain activation when single, dual, and multiple tasks
in visual and auditory domains occur. Bowers et al. (2014)
reported a presence of the hysteresis effect in gamma
activity following a high- to low-demand transition as
observed in a decreasing speed of gamma power. Several
studies have described how workload transition effects,
or hysteresis, develop over time by comparing multiple
periods of aggregated performance data (e.g., Matthews,
1986; Gluckman et al., 1993; Ungar, 2005; Cox-Fuenzalida,
2007). Various cognitive models and approaches have been
utilized to measure user performance in multitasking.
Nevertheless, studies in the area of multitasking still have
significant gaps: (1) only a limited number of the studies have
quantitatively analyzed workload with temporal dynamics; (2)
even fewer studies have shown how to predict and control
user performance and cognition through a quantitative
method including neurophysiological matrices; and (3)
without a theoretical framework for workload transition
effects, generalizing observations from one applied task to
another applied task can be difficult (McKendrick, 2016).
Therefore, it is necessary to develop a computational model
to quantitatively analyze workload transition effects and
multitasking performance.

Adaptive Control of Thought-Rational (ACT-R) is a
high-level computational simulation of human cognitive
processing and one of the cognition theories that seeks to
predict human performance in multitasking. In this study,
ACT-R was used as a theoretical framework to resolve
the discrepancies seen in previous research, help us better
understand the underlying physical and cognitive processes
that occur within workload transitions, and predict the
impacts of hysteresis effects. The ACT-R may be a useful
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tool for unifying multiple disciplines by incorporating
neurophysiological data, behavioral data, and cognitive data into
one model.

Cognitive Architecture: ACT-R
Adaptive Control of Thought-Rational is a cognitive architecture
that allows a high-level computational simulation of human
cognitive processing (Anderson, 2007). Cognitive architecture
refers to both a unified theory of cognition - the outline
of the structure for various parts of the mind - and a
computational implementation of the theory with specified
rules and associative networks. The symbiotic relationship
between cognitive modeling and cognitive neuroscience results in
palpable progress toward the shared goal of better understanding
the functional architecture of human cognition. Specifically,
cognitive architectures are frameworks that can be used to
develop computational models of human cognitive processes
(Langley et al., 2009; Taatgen and Anderson, 2010; Smart
et al., 2016). Computational cognitive models such as ACT-
R are formal theories of cognition that provide predictions of
human performance in cognitive tasks such as multitasking.
These models generally include simulated representations of
human cognitive processes such as memory, attention, visual and
motor processing, problem solving, learning, and other related
phenomena. Formal cognitive models for predicting, capturing,
and understanding multitasking as a manifestation of underlying
cognitive processes are built from these cognitive architectures.
ACT-R, principally developed at Carnegie-Mellon University by
John Anderson, was created to help mechanistically demonstrate
human reasoning and memory faculties (Whitehill, 2013). It does
so by describing how people recall “chunks” of information from
memory and how they solve problems using “production rules”
in order to break down goals into sub-goals. ACT-R is a rule-
based system that has been widely used by cognitive scientists
to model human cognitive performance. It is also one of the
few cognitive architectures that has an explicit link to research
in the neurocognitive domain: the structural elements of the
core ACT-R architecture (i.e., its buffers and modules) link with
different regions of the human brain (Anderson, 2007). This
enables cognitive modelers to predict the activity of different
brain regions at specific junctures in a cognitive task (Anderson,
2007). ACT-R is a formalized, integrated cognitive architecture
that combines the Spreading Activation Memory theory with a
production system to model the high level of cognitive tasks. Like
many successful architectures, ACT-R is a modular theory that
aims to provide an integrated account of human cognition.

Figure 1 shows an overview of ACT-R modules (Anderson
et al., 2004). It treats the mind as being composed of distinct
modules based on functionality. The ACT-R modules represent
the functions of the brain as well as how these functions are
mapped to different parts of the brain. ACT-R incorporates
both declarative knowledge (e.g., addition facts) and procedural
knowledge (e.g., rules for solving multi-column addition) into
a production system where procedural rules act on declarative
chunks (Anderson et al., 2004). In ACT-R, the structures of
declarative knowledge are called “chunks” and are held in the
Declarative module, whereas those of procedural knowledge

FIGURE 1 | Overview of ACT-R modules (revised based on Anderson et al.,
2004).

are called “rules” and are held in the Procedural module. The
rules also have access to other modules, including the Visual
module for perception, the Manual module for action, the
Imaginal module for storing visual problem representation, and
the Goal module for keeping track of current intentions. These
modules are linked to specific areas of the brain: Manual in
the motor cortex (BA 3/4), Imaginal in the parietal cortex
(BA 39/40), Declarative in the dorsolateral prefrontal cortex
(DLPFC) (BA 45/46), Goal in the anterior cingulate cortex
(ACC) (BA 24/32), Visual in the fusiform gyrus (BA 37), and
Procedural in the caudate of the basal ganglia (Matessa, 2008).
Each module of ACT-R has its own buffer that can store only
one chunk of information extracted from the corresponding
module. In ACT-R, the condition statements of all production
rules are compared with the current contents of buffers every
50 ms (Anderson, 2007).

When there are one or more matching productions, the
matching one or the one with the highest expected value among
them, respectively, is selected to fire, and the action statement
of the selected rule then makes each module exchange chunks
of information or creates new chunks in respective modules
(Taatgen and Lee, 2003). At this time, only one chunk can be
processed through each buffer at a time, while all other modules
can be executed simultaneously. For example, the declarative
module cannot retrieve the additional memory chunk until it
has completed the previous retrieval. In contrast, the manual
module can perform the physical movement, while the visual
module looks at a new object. Moreover, there is a limit to the
number of objects and a time limit in the visual and retrieval
buffer. These are related to the working memory limitation of
human cognitive processing (Anderson et al., 2004). ACT-R has
a sub-symbolic level in which continuously varying quantities are
processed in parallel to produce much of the qualitative structure
of human cognition. These sub-symbolic mechanisms contribute
to representing neural-like activation processes that determine
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both the speed and success of access to chunks in declarative
memory as well as the conflict resolution among production rules
(Anderson et al., 2004). The core of ACT-R memory modeling
can be summarized with the following equations (see Table 1).

A(t) refers to the activation of a particular chunk and B(t)
is the base activation of the knowledge chunk at time t, and
the summation is the associative strength of the chunk, defined
as “the elements in the current goal chunk and the elements
currently being processed in the perceptual field” (Anderson,
1983, p 51). The base activation B(t) is increased whenever it is
used, either through practice (learning events) or when matched
to a production rule. If we retrieve memory and there is a
matching memory chunk, that chunk will be recalled when the
retrieval activation threshold, τ is exceeded. The probability of
retrieval depends on the expected activation, Ai, and the amount
of noise, s. The s parameter represents the sensitivity of recall to
changes in activation. When a retrieval request is made, the time
required for the chunk retrieval is available in the retrieval buffer.
A indicates the activation of the chunk which is retrieved, and F
represent the latency factor parameter. These equations provide
an integrated foundation for theory development in memory
encoding, storage, and retrieval.

ACT-R and Neuroimaging Studies
By comparing simulated human cognitive data from the ACT-R
architecture to real human data, the cognitive mechanisms
behind multitasking and the effects of changes in internal
cognitive strategies, external interface properties, and task
demands on brain networks yield important insights. Research
using Functional Magnetic Resonance Imaging (fMRI) has
identified the roles of various brain regions and assigned the
cognitive functionality of those regions to ACT-R modules
and buffers (Cassenti et al., 2011). Despite the strong
correlation between fMRI data and ACT-R, it still remains
unknown whether ACT-R also holds a strong correlation with
Electroencephalogram (EEG) data. This has recently piqued
interest among researchers who have been outlining methods
to study the neural correlates of ACT-R in electrophysiological

TABLE 1 | Sub-symbolic mechanisms in ACT-R.

Mechanism Equation Description

Activation A (t) = B (t)+
∑

j

WjSij + ε B(t): base-level activation
Sij: strength of association of
element j to chunk i
Wj: attentional weighting of
element j of chunk i
ε: Noise level

Base-level
learning

B(t) = ln
∑

k

t−d
K + B k: the number of experiences for

chunk
d: decay rate for the event k
tk: time of the event k

Retrieval
probability

pi =
x − µ

1+ e τ−Ai
S

τ: retrieval activation threshold
s: amount of noise in the system
Ai: expected activation

Time of
retrieval

Time = Fe−A A: the activation of the chunk
which is retrieved
F: the latency factor parameter

data and demonstrating how different ACT-R modules can
be associated with observable EEG data (Cassenti et al., 2011;
van Vugt, 2012, 2014). Despite initial attempts to correlate
ACT-R and EEG data, more investigation is still required. As
a result, this study aimed to extend these initial findings by
further exploring EEG correlates of ACT-R modules and discuss
the broader implications of this approach for both cognitive
neuroscience and cognitive modeling with ACT-R. Specifically,
this study developed models of multitasking behavior in a
realistically complex workspace by incorporating a wide range of
cognitive processes that are affected by task demand transitions.
Multitasking environments can often give rise to such transitions
in task demand and subjective mental workload, as the operator
is actively monitoring and engaging in several different tasks at
once. This study extended the previous findings by manipulating
task demand (Low-High-Low) and observing changes in brain
connectivity across the demands in a multitasking setting to
improve operators’ cognition by comparing ACT-R simulated
data. Surprisingly, however, little is known about causal
relationships between ACT-R modules and matched brain
areas activated during task demand transitions. In particular,
brain effective connectivity using Granger Causality (GC) has
gained a great deal of attention recently. GC is a method for
investigating whether one time-series correctly predicts another
and allows us to analyze brain circuit connections and how
they change over the course of a cognitive process (Coben
and Mohammad-Rezazadeh, 2015). This analysis provides a
means to study time-varying interactions between brain areas
and cognitive architecture components (Seth et al., 2015). After
careful systematic review, however, no prior studies have assessed
changes in GC influence in the context of demand transitions.

The purpose of this study was to investigate the changes in
neural connectivity during a hysteresis effect that may accompany
task demand transitions using GC. Two levels of task demand,
including a low-demand period and a high-demand period
were used to identify differences in neural connectivity during
transitions between the levels. The NASA Task Load Index
(NASA-TLX) and the Instantaneous Self-Assessment (ISA) were
used to measure the subjective mental workload during the
different demand levels giving us the ability to draw comparisons
between mental workload at a given level of task demand
and previous levels of task demand. In addition, based on
observed behavioral and neural data, the activation of ACT-R
modules were used to clarify the empirical correspondence
between human data and computer cognitive modeling. To better
understand this process, a computational model of multitasking
was developed, and its performance was juxtaposed against
human operators performing the same task.

MATERIALS AND METHODS

Participants
A total of twenty participants (14 male; 6 female) recruited
from a local university participated in the present study.
Participants were given monetary compensation for their
participation. All participants successfully completed the entire
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experiment and were included in the data analyses. Participant
mean age was 26.7 years (standard deviation, SD = 4.37).
Participants reported being free of any medical or neurological
disorders and had normal or corrected vision. Participants
gave their written consent after a detailed explanation of the
experimental procedure which was reviewed and approved by the
University’s Institutional Review Board. All participants had no
experience with the AF-MATB system before this training, so the
proficiency level before training was assumed to be the same for
all participants.

Stimuli and Experimental Task
Participants were trained on the Air Force Multi-Attribute Task
Battery (AF-MATB, Miller, 2010; see Figure 2), a computer-
based multitasking environment designed to evaluate operator
performance and mental workload while human operators
perform a benchmark set of tasks similar to activities that
aircraft crew members perform in flight (e.g., system monitoring,
resource management, communications, and tracking tasks)
(Comstock and Arnegard, 1992).

The Multi-Attribute Task Battery (MATB) was developed by
the National Aeronautics and Space Administration (NASA) to
evaluate human performance in a multitasking environment. The
United States Air Force version of MATB (AF-MATB) operating
in information throughput (IT) mode was implemented in this
study (Bowers et al., 2014). AF-MATB requires the human
operator to simultaneously monitor and respond to four
independent tasks on one computer screen. The tasks consist of
Systems Monitoring, Communication, Targeting, and Resource
Management. For this study, each of the four tasks were equally
weighted, so no task had greater importance than another task.
The following depicts the objectives for each task: The System
Monitoring task is in the top left corner of the MATB window
and consisted of two subtasks: lights and dials. The two rectangles
at the top represent the lights. The participant is asked to keep
the left light in the on status “displaying green” and the right
light in the off status “displaying black.” If the lights switched
from these initial conditions, selecting F5 or F6 keys reset
the lights. Beneath the lights are four vertical columns which
represent dials. Throughout the task, yellow markers within the
dials continuously oscillated between one location above and
below the center of the dial. Occasionally, the yellow marker
shifted toward the top or the bottom of the dial and began
oscillating around a new location. When this event occurred,
participants were to select the corresponding F1–F4 keys to reset
the dials.

The Communication task is in the bottom left corner of
the MATB window. The objective of the communication task
was to alter the channel and frequency with audio cueing. An
audible message instructed the participants to modify a specific
communication channel to a given frequency. The participants
navigated to the appropriate channel and set the frequency by
selecting the up, down, left, and right arrow keys. For example,
the participant had to discriminate his or her callsign (e.g.,
“NGT504”) from other audio messages for different callsigns.
These extraneous, auditory cues can be thought of as distractors.

The Targeting task is in the top right corner of the MATB
window. Throughout the task, the green cursor drifted around
the window. The objective was to maintain the green cursor
within a larger yellow circle found in the center of the window by
using a joystick. The Resource Management task is in the bottom
right corner of the MATB window. The objective of the Resource
Management task was to maintain a fluid level within a specific
range in two primary tanks. This was accomplished by turning
“on” and “off” four reservoir tanks by using number keys. It is
important to note that the fluid level is continuously flowing,
and therefore must be monitored regularly. Flow is sometimes
hindered, as flow between tanks can be disrupted without input
by the participant, forcing the participant to adjust flow between
the tanks.

Experimental Procedure
Through pre-experimentation surveying, demographic
information was collected, and any previous subject experience
with AF-MATB or a similar system was noted. Following
the survey session, participants proceeded through a training
session in order to become familiarized with the experiment
tasks (AF-MATB).

To ensure that all participants had a similar level of
performance, Bowers (2013)’s recommendations was employed,
and training was repeated until they reached a criterion at a
level of approximately 65% correct response on average in the
System Monitoring and Communications tasks. In this study,
on average training lasted for 15 ± 3 min (6 ± 2 trials) on
the System Monitoring and Communications tasks. In addition
to practicing these AF-MATB trials, the participants were also
introduced to the NASA TLX and the ISA rating since both
measures were presented during data collection. Participants
read the instructions associated with each measure and practiced
filling out the forms.

No participants failed to reach this criterion or had
to repeat additional training trials. Afterward participants
performed the main experimental tasks. The main experiment
was composed of four sessions, each session having three
experimental conditions with a low-high-low demand schedule
(see Figure 3). Each condition lasted 4 min and participants were
required to perform four tasks simultaneously during each trial.
Participants completed the NASA-TLX questionnaire after each
condition. Performance in each subtask is individually scored.
All participants were tested individually in a laboratory and the
experiment took approximately 1.5 h for each participant.

ACT-R Modeling
Adaptive Control of Thought-Rational data were recorded
within a JavaScript implementation of a modified Multi-
Attribute Task Battery (mMATB-JS, Halverson et al., 2015; see
Figure 4). This web-based version of the MATB contains up
to four simultaneous tasks that are the same as the human-
operated Air Force Multi-Attribute Task Battery (AF-MATB,
Miller, 2010). In the mMATB-JS, all task parameters were
matched to AF-MATB setting. Task demands were manipulated
by increasing the event rate in each of the subtasks. Three
demand conditions were implemented in a fixed order of
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FIGURE 2 | Experimental task interface (A) mMATB (B) AF-MATB. AF-MATB is a research paradigm where participants perform a tracking task while concurrently
monitoring warning lights and dials, responding to computer-generated auditory requests to adjust radio frequencies, and managing simulated fuel flow rates using
various key presses.

FIGURE 3 | Experimental progression for one session. The main experiment was composed of four sessions, each session having three experimental conditions
with a low-high-low demand schedule. Each condition lasted 4 min, and participants were required to perform four tasks simultaneously during each trial.
Participants completed the NASA-TLX questionnaire after each condition.

Low-High-Low. The output of model simulations included
behavioral data like that produced in human observations,
such as response time and error rate. Over the course
of a mMATB session, the time series data for joystick
movement on the screen and various button presses were
recorded, and the utility of multitasking behavior when
comparing human-to-model data was examined. In order
to compare the human performance data to the ACT-R
model, Independent Components (ICs) derived from EEG
data were linked to ACT-R buffer activation using dipole
fitting and brain effective connectivity analysis. Prezenski and
Russwinkel (2016) demonstrated that EEG data could be used
to validate ACT-R models. If the ICs match specific ACT-
R modules, the timing of peaks of buffer activity should
match IC-peaks. In this study, both IC-peaks timing and

brain connectivity between ICs were observed. In the ACT-
R model, the modules are designed to occur in specific areas
of the brain: Imaginal in the parietal cortex, Declarative in
the dorsal lateral prefrontal cortex (DLPFC), Goal in the
anterior cingulate cortex (ACC) and Visual in the fusiform
gyrus (Borst et al., 2010).

EEG Acquisition and Pre-processing
Electroencephalogram signals were recorded using an EEG
cap (Electro-Cap International, Inc.) embedded with 62 active
electrodes covering frontal, central, parietal and occipital
areas and were based on the modified 10–20 system of the
International Federation (Sharbrough et al., 1991). Recordings
were referenced to the left ear lobe and grounded between
AFz and Fpz. EEG signals were amplified with a g.USBamp
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FIGURE 4 | SIMCog-JS Framework: mMATB (revised based on Halverson et al., 2015). SIMCog-JS (Simplified Interfacing for Modeling Cognition – JavaScript)
allows models to interact with browser-based software, and it specifies how elements in the interface are translated into ACT-R chunks. The software allows joystick
and keyboard interaction with JavaScript code, and it sends ACT-R commands from the external software.

TABLE 2 | Rate at which events occur in each level of task difficulty.

Task demand:

event rate (per minute)

Low High

Subtasks Communications Target 0.7∼1.0 3∼4.2

Distractor 0.35∼0.5 1.0∼1.35

System Lights 4.0 ∼ 6.7 15∼17.7

monitoring Gauges 5.0∼7.0 16∼18

Resource Failures 0.7∼1.0 4.3∼5

management Shut-offs 0.7∼1.0 2∼2.3

amplifier (g.tec Medical Engineering). EEG signals were
sampled at 512 Hz, with band-pass filtered between 0.01
and 75 Hz to take out unwanted frequency bands, and
notch-filtered at 60 Hz.

To identify and remove artifacts, all trials were inspected
in three main ways. First, the reject function in EEGLAB
(Delorme et al., 2011) screened out high-noise trials based on
the kurtosis of each trial. Second, each trial was then manually
inspected to exclude trials that contained electrode drift noise
and muscle movement-related noise. Finally, independent
component analysis (ICA) was used to decompose the EEG
signal into independent components (ICs). All ICs were
visually inspected, and components that resembled EOG
activity were rejected from further analysis. An average of
three trials were rejected for each subject. Signal acquisition
and processing were all conducted using BCI2000 system
(Schalk et al., 2004), MATLAB (The MathWorks), and
EEGLAB (Delorme et al., 2011).

Experimental Design and Independent
Variables
Task demands were manipulated by increasing the event rate
in each of the subtasks (see Table 2) based on the previous
study (Bowers et al., 2014). The event rate ranges used for
our study were taken from prior work (Bowers, 2013) which
classified event rates as easy (low) or hard (high) based on
behavioral performance for various event rate settings. The
difficult levels of the tracking task, however, were set to default
settings for the following reasons. First, the level of difficulty
is predetermined by the number of directional changes of
the reticle and the speed at which the reticle moves, and
second, the current AF-MATB system does not allow to
change them.

Three experimental conditions were used with a fixed order:
LOW1 (L1), HIGH2 (H2), and LOW3 (L3). Hysteresis was
examined by comparing performance and mental workload in L3
with L1.

Dependent Variables and Data
Processing
Behavioral Data
Within the AF-MATB system, there are several performance
measures. The average correct reaction time was analyzed for the
System Monitoring task and the Root Mean square (RMS) was
analyzed for the Tracking task, as the use of these performance
measures in workload transition studies was indicated in previous
research (Bowers et al., 2014). RMS is the distance between the
moving cursor and the center point of the Tracking task. While
behavioral data was also collected for the communication task
and the resource management task, event rates for these tasks did
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not provide enough data to allow for meaningful interpretation
of a 2-min time bin.

Subjective Rating
Two measures of mental workload were taken, namely, NASA-
TLX and ISA. The NASA Task Load Index (TLX) (Hart and
Staveland, 1988) includes six components: mental demand
(MD), physical demand (PD), temporal demand (TD), the
individual’s perceived level of performance (PE), effort (EF),
and frustration (FR). The unidimensional Instantaneous Self-
Assessment (ISA) scale (Tattersall et al., 2007) was used to
assess mental workload during experimental conditions. The
ISA item (i.e., “Report how much mental workload the task
just required”) was collected verbally two times during each
condition. A 7-point Likert scale was used, where 1 corresponded
with a very low mental workload and 7 with a very high
mental workload.

Neurophysiological Data
Effective Connectivity Analysis
For effective connectivity analysis (see Figure 5), data was
down-sampled to 128 Hz. Following Independent Component
Analysis (ICA) and artifact rejection procedures, all retained
ICs were localized using DIPFIT. The Source Information Flow
Toolbox (SIFT) for EEGLAB was used to evaluate effective
connectivity, the causal flow of information between brain
sources (Delorme et al., 2011).

Given k EEG time series X (t) = [x1 (t)× x2 (t) . . . xk (t)], the
multivariate vector autoregressive (MVAR) of order p is X (t) =∑p

n=1 A (n) X (t − n)+ E (t), where A(n) is the coefficient of the
model as shown below and E(t) is the model error.

A (n) =


a(n)

11 · · · a(n)
1k

...
. . .

...

a(n)
k1 · · · a(n)

kk


Multivariate Granger causality between the time series can be
inferred from the model coefficients (Kamiñski et al., 2001).
The estimation of the coefficients can also be achieved in the
frequency domain. This gives rise to several metrics including
the directed transfer function and partial directed coherence (Kuś
et al., 2004). In this study, a multivariate autoregressive model
(MVAR) was fit to the ensemble-normalized ICs using the Vieira-
Morf algorithm with a 350 ms window length, 30 step size, and 16
model order. Model order was optimized from 1 to 40 such that
the Hannan-Quinn criterion for each participant was minimized
(Kim et al., 2017). Then the optimized model order values were
averaged across all participants.

To validate the MVAR model, the whiteness of the
residuals, model stability, and percent consistency were
determined for each trial. The auto-correlation function
(ACF) and the Li-McLeod Portmanteau (LMP) tests were
used as whiteness test criteria. The LMP test was used for
its improved small-sample properties and lack of variance
inflation compared to other available Portmanteau tests
(Mullen, 2010). In addition to meeting the ACF and LMP
criterion, the model stability was less than zero, and the percent

consistency was above 85% for each trial indicating sufficient
model validation.

Following model fitting and validation, SIFT was used to
evaluate connectivity. The direct Directed Transfer Function
(dDTF), a measure of frequency-domain conditional Granger
causality, was estimated from the fitted model coefficients. The
Directed Transfer Function (DTF) allows for analysis of short
epochs of EEG activity to analyze information flow between
different brain structures while also making it possible to
determine spectral content of the signal (Kamiñski et al., 2001).
However, DTF is limited by its ability to differentiate between
direct and indirect connections. By combining DTF and partial
coherence measures, dDTF quantifies conditional, directionally
specific information transfer between sources over the trial
time period at each frequency (Korzeniewska et al., 2003). In
this study, dDTF was determined over the 2–32 Hz frequency
range. A percentile threshold of 97.5% was used for each
frequency to visualize relevant directional connections between
brain sources.

Statistical Analysis
The 3 (condition; L1, H2, L3) × 6 (2 min = 1 time bin) repeated
measures ANOVAs for each performance measure were followed
up with one-way ANOVAs to compare performance and mental
workload within each 2 min interval as a variation of workload
condition. For the measures with significant main effects
in difficulty condition in this comparison, Tukey’s Honestly
Significant Difference (HSD) tests were used to determine which
conditions had significantly different means. The results also
include partial eta squared (η2

p) to measure the effect sizes as
well as the percentage of total variability associated with an effect
(Cohen, 1992).

RESULTS

Behavioral Data
Overall, the results showed significant differences between
conditions Low and High workload across the 6 time
bins (see Table 3).

A significant effect of difficulty level on correct reaction time
for the system monitoring task was found: F(2, 141) = 27.46,
p < 0.001, η2

p = 0.238. The tracking RMS error rate also showed
a significant effect in level of difficulty, F(2, 141) = 102.41,
p < 0.001, η2

p = 0.217. To further investigate those effects,
Tukey’s HSD tests were used to compare performance averages
from the six time bins. The tests evaluating system monitoring
reaction time indicated that the L3 condition had a significantly
shorter reaction time than the L1 condition (p < 0.01) despite
the absolute difficulty level being the same. Furthermore, the
reaction time between the second time bin (2–4 min) with
the L1 condition and the fifth time bin (8–10 min) with the
L3 condition were significantly different (p < 0.01). These
findings imply that there was a hysteresis effect caused by
demand transitions in performance during multitasking. Finally,
there was no significant difference between L1 and L3 on RMS
error rate.
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FIGURE 5 | Connectivity analysis procedures.

TABLE 3 | Mean and standard deviation of behavioral data by workload condition.

Level of difficulty Low1 High2 Low3

Timeline (min) 0–2 2–4 4–6 6–8 8–10 10–12

System monitoring Correct RT (s) Human 1.69 (0.46) 1.85 (0.56) 1.85 (0.54) 1.98 (0.32) 1.38 (0.18) 1.51 (0.31)

ACT-R 1.58 (0.23) 1.72 (0.22) 1.88 (0.36) 1.92 (0.42) 1.59 (0.35) 1.61 (0.22)

Tracking RMS (%) Human 45.83 (11.4) 46.92 (12.2) 77.01 (15.3) 84.32 (17.8) 43.62 (13.5) 42.78 (14.3)

ACT-R 43.72 (9.20) 45.19 (10.3) 76.23 (14.8) 80.29 (12.4) 45.29 (10.7) 44.64 (13.2)

Subjective Mental Workload
We found a significant effect for level of difficulty on ISA
rating and NASA TXL total workload score: F(2,141) = 124.95,
p < 0.001 and F(2, 141) = 53.43, p < 0.001, respectively (see
Table 4). Thus, the manipulations of AF-MATB task difficulty
proved to be reflected in performance and mental workload
across the time frame of an experimental condition (see Table 3).
Additionally, time bins had a significant effect on reaction
time and RMS error rate: F(5,138) = 12.54, p < 0.001 and
F(5,138) = 43.20, p < 0.001, respectively, and the effect of
time bins on ISA rating was also found to be significant:
F(5,138) = 50.93, p < 0.001.

Behavioral Data and ACT-R Model Data
The manipulations of AF-MATB task difficulty proved to be
reflected in human performance data. As mentioned earlier,
the Tukey’s HSD tests evaluating system monitoring reaction
time indicated that the L3 condition had a significantly shorter
reaction time than the L1 condition despite the absolute difficulty
level being the same (see Figure 6). For the ACT-R simulation
data, however, there was no significant difference between the L1
and L3 condition even though the other measures showed overall
good fits with the human data.

TABLE 4 | Mean and standard deviation of subjective mental workload by
workload condition.

Level of difficulty Low1 High2 Low3

Timeline (min) 0–2 2–4 4–6 6–8 8–10 10–12

ISA rating 3.11 3.27 5.33 6.11 2.94 2.72

(1.07) (1.22) (0.84) (0.75) (0.85) (0.10)

NASA TLX 56.868 76.542 51.56

Total workload (12.30) (8.27) (13.20)

Neurophysiological Data
Effective Connectivity Data and ACT-R Model Data
The data was common-average referenced and zero-phase,
high-pass filtered at 0.1 Hz. The 2 min EEG epoch was
imported in EEGLAB for the further preprocessing. After
importing, the datasets were separated into maximally
independent components using Infomax ICA (Bell and
Sejnowski, 1995). These sources were localized using both
a single or dual-symmetric equivalent-current dipole model
and a four-shell spherical head model co-registered to the
subjects’ electrode locations by warping the electrode locations
to the model head sphere. Table 5 lists the cortical regions
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FIGURE 6 | Comparison between human behavioral data and ACT-R model
outcomes for reaction time of the system monitoring task (∗∗p < 0.05).

associated with Brodmann’s areas (BAs) localized across
the conditions.

In order to compare human performance and the ACT-
R model, Independent Components (ICs) derived from EEG-
data were linked to ACT-R buffer activation using dipole
fitting and brain effective connectivity analysis. This was
used to examine the utility of behavior in a multitasking
environment when comparing human data to model data. Once
the electrophysiological correlates of ACT-R were determined by
goodness of fit, the interaction between multiple modules within
the ACT-R model could be monitored by analyzing patterns of
synchronization in brain network.

Brain Network Analysis
The mean causal information flow, as measured by the dDTF,
was analyzed between the localized cortical sources at each
task difficulty level at the alpha and beta bands (7–30 Hz).
The frequency band was based on Time-Frequency causal
flow analysis.

TABLE 5 | Localized cortical sources and associated Brodmann’s area (BA) for
each condition.

Difficulty level Cortical sources (BA area)

Low 1 BA(17): visual cortex (VC)

BA(32): dorsal anterior cingulate (dACC)

BA(31): dorsal posterior cingulate (dPCC)

BA(24): ventral anterior cingulate (vACC)

High2 BA(7): parietal cortex (PC)

BA(10): prefrontal cortex (PFC)

BA(17): visual cortex (VC)

BA(32): dorsal anterior cingulate (dACC)

BA(39): parietal cortex (PC)

Low3 BA(10): prefrontal cortex (PFC)

BA(17): visual cortex (VC)

BA(24): ventral anterior cingulate (vACC)

BA(31) : dorsal posterior cingulate (dPCC)

Table 6 shows transient information flow during the AF-
MATB task at three conditions across the whole trial. The
neural network is modeled by several nodes that each represent
a single brain region and corresponding connected edges that
represent the interaction between each brain region. The color
of the edges represents connectivity strength (i.e., the amount
of information flow along that edge). A red edge represents
connectivity while green represents low connectivity. The width
of the edge represents connectivity magnitude (absolute value of
connectivity strength, [min max] = [0.001 0.1178]). The color
of the node represents the asymmetry ratio of connectivity
for that source. The asymmetry ratio indicates whether all
connectivity related to that node is inflowing or outflowing.
It ranges from −1 to 1. A red color (close to +1) indicates
that a node is causal source, blue (close to −1) means that a
node has a role of causal sink, and green (close to 0) represents
a balanced flow. The size of a node represents the amount
of information outflow ([min max] = [0.001 0.2232]) from
the source. In Table 6, figures in the second column show
the changes in causality flow over the task. For the first L1
condition, the visual cortex and ventral cingulate cortex node
are colored red and yellow, respectively. This indicates that these
two components are the causal source for the whole network.
The edge width and color between the visual cortex (VC) and
dorsal anterior cingulate cortex (dACC) coupling have a sky-
blue hue and are thicker than the others. Secondly, under
the H2 condition, the causality flow was observed between
the parietal cortex (PC) and dorsal anterior cingulate cortex
(dACC). The node color of dACC and PFC are red and yellow,
respectively, which means those nodes would be a hub node for
the high-demand condition.

DISCUSSION

This study investigated the effects of task demand transitions
and the hysteresis effect that occurs at multiple levels of
analysis (behavioral, subjective mental workload, and effective
connectivity). In the performance data, there was a significant
difference between the L1 condition and the L3 condition.
In the System Monitoring task, correct reaction time was
shorter after the High to Low demand transition. Mental
workload ratings during the L3 condition are lower than
the L1 condition which is consistent with previous findings
(Hancock et al., 1995), even though the first and third trials
were performed at an identical difficulty level. According to
results from the effective connectivity analysis, the PFC was
the hub node in the L3 condition unlike the L1 condition.
Furthermore, this study suggests that the H2 demand condition,
which represents activation of prefrontal cortex, has an impact
on the L3 condition. This study was also able to compare
hysteresis effects from human participants within a multitasking
environment to the computer-based ACT-R model. This presents
an opportunity for hysteresis effects to be incorporated in
future cognitive modeling, furthering the breadth of the
understanding for cognitive processing interpreted through
EEG data.
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Behavioral and Neural Correlates of
Hysteresis Effect
Under the low condition (L1), VC and vACC was the
source node to dACC; however, under the L3 condition,
the vACC area was a causal sink connected with the PFC.
The core functions of the ACC are mainly divided into
the error detection, task preparation, and emotion regulation
(Nieuwenhuis et al., 2001). PFC is involved in complex
cognitive behavior and decision making. This area monitors
memorization and recognition function and contributes to
the formulation of complex behavior based on collected
information as compared to ACC (Goldman-Rakic, 1996; Kim
et al., 2018). For this reason, the directional change can
be explained as a hysteresis effect. In other words, after
completing the high demand condition, the prefrontal area
remained active, so the direction and magnitude of connectivity
within the neural network might differ from the first demand
conditions (L1). This presents a potential reason why participants
reported lower mental workload during the third, low-demand
conditions (L3).

ACT-R Module Activation
For the L1 condition, strong information flows between the
visual cortex (VC) and dorsal anterior cingulate cortex (dACC)
were observed. Following the first transition of workload (Low-
High), the causality flow was observed between the parietal cortex
(PC) and dorsal anterior cingulate cortex (dACC) indicating
a connection between imaginal modules and goal modules.
Lastly, after the second workload transition (i.e., from High
to Low), we observed a causal flow from prefrontal cortex to
dACC indicating connectivity between declaratives modules and
goal modules. By monitoring the interactions between modules,
this study can improve the understanding of how different
brain regions interact within the ACT-R model and presents
a means to enhance existing cognitive models. Brain network
analysis allows for the interpretation of causal relationships and
efficiency across cognitive model components and specific brain
regions. Future work is necessary to develop this multitasking
model to account for applied workload transition effects and
conduct further real-time analysis to integrate brain network
dynamics and model development. Continued interdisciplinary
research of cognitive modeling and neuroscience will lead
to better understanding of cognitive processes of the human
brain at work.

Limitations and Future Research
Few limitations of the current research along with questions for
future research should be noted. First, the sample size (n = 20)
may not be large enough to generalize the results. It may not
reflect the different workload transition situations regarding to
different user groups’ performance and perception across diverse
contexts. Thus, this study can only be used as a reference of
Hysteresis effects on three stages of task demands performed
sequentially (i.e., Low-High-Low). A larger sample size with a
wide range of ages would increase the validity of the future
studies. In addition, as a research tool to measure one’s mental
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workload, the NASA-TLX has at least two limitations: (i) it can
be intrusive and disruptive to primary task performance, and
(ii) workload estimates are based on an opinion not an objective
measurement. This study employed the NASA-TLX to measure
workload for a few reasons: its established reliability and
validation, its proved usefulness in various multitasking contexts
such as real (e.g., Shively et al., 1987) and simulated flight tasks
(e.g., Nataupsky and Abbott, 1987; Battiste and Bortolussi, 1988;
Vidulich and Bortolussi, 1988; Corwin et al., 1989; Tsang and
Johnson, 1989), and its past use in studies of Hysteresis effects
on mental workload (e.g., Hancock et al., 1995; Morgan and
Hancock, 2011). Moreover, participants were given the NASA-
TLX after one workload condition was completed and before
the next condition began (e.g., between Low and High) which
took about 1 min to complete. For this reason, it is unlikely
that the administration of the NASA-TLX affected primary task
performance. Lastly, this study did not use control demand
transitions (e.g., Low-Low-Low; High-High-High) which could
have served as a baseline to compare other experimental
conditions. Since one of the main goals in the present study
was to, first, assess neural correlates of the Hysteresis effect that
has already identified and validated by other behavioral research
and, second, model it using ACT-R, we did not investigate
controlled demand transitions. Future research, however, may
incorporate such control groups in order to re-confirm the
hysteresis effect observed.

The limitations of this research promote a variety of future
research directions. This study offered two main research
topics that may help continue to build the strategies for
modeling cognitive function and further our understanding of
hysteresis. First, individual working memory capacity could be
taken into consideration while gathering behavioral, subjective,
and neurophysiological data. Baddeley (2012) defines Working
Memory as the systems serve as keeping things in our mind
while performing complex tasks such as reasoning, decision
making and learning. Previous research has observed individual
differences in Working Memory Capacity (e.g., Barrett et al.,
2004). Since multitasking environments require the recollection
of multiple tasks at the same time, variations in individual
Working Memory Capacity may impact performance and mental
workload during demand transitions, and such variations may be
incorporated into ACT-R for more accurate modeling. Second,
the level of automation within the multitasking environment may
be manipulated offering control for domain-general attentional
resources. A domain-general theory of selective attention posits
that the control of attention in one content domain can be
affected by memory load on another content domain (Lin and
Yeh, 2014). For example, the memory load on a primarily
visuospatial task may affect the control of attention on a primarily
auditory or phonological task. Since multitasking environments
often demand attention from multiple domains, controlling
specific domains may help to further clarify cognitive modeling
and hysteresis effects when an individual is presented with
specific types of tasks or a combination of specific types of tasks.
Future research could involve the use of a control group with
subjects randomly designed to either an experimental condition
or a control condition with a continuous level of difficulty. Such

research could also use training performance criterion to ensure
that all subjects achieved the same minimal level of competency
with the AF-MATB tasks before moving on to an experimental
or control session. Future studies should attempt to improve
and validate the ACT-R model to predict and improve human
performance and cognition for workload transition effects within
a multitasking environment.

CONCLUSION

By combining ACT-R modeling and EEG with effective
connectivity analysis, this study demonstrated how researchers
may identify and analyze the effects of workload transition.
These findings on the neural mechanisms of hysteresis effects
in multitasking environments may be applied to future
neuroergonomics research. Neuroergonomics seeks to expand
the theoretical and applied frameworks of human factors and
ergonomics. By identifying the effects of workload transitions
induced by transient events of high workload or low workload,
researchers can begin to develop cognitive training programs for
specific cognitive abilities and adaptive aiding. The combination
of ACT-R modeling and EEG paves the way toward the efficient
use of brain network patterns for cognitive state parameters and
may expedite the implementation of user-adaptive systems in
ecological settings.
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