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Backup in gene regulatory networks explains
differences between binding and knockout results
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The complementarity of gene expression and protein–DNA interaction data led to several successful
models of biological systems. However, recent studies in multiple species raise doubts about the
relationship between these two datasets. These studies show that the overwhelming majority of
genes bound by a particular transcription factor (TF) are not affected when that factor is knocked
out. Here, we show that this surprising result can be partially explained by considering the broader
cellular context in which TFs operate. Factors whose functions are not backed up by redundant
paralogs show a fourfold increase in the agreement between their bound targets and the expression
levels of those targets. In addition, we show that incorporating protein interaction networks
provides physical explanations for knockout effects. New double knockout experiments support our
conclusions. Our results highlight the robustness provided by redundant TFs and indicate that in the
context of diverse cellular systems, binding is still largely functional.
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Introduction

Many successful studies in systems biology focus on integrat-
ing complementary datasets to model systems in the cell.
Several computational methods have been developed and
applied to combine mRNA expression data and protein–DNA
interaction data (using DNA-binding motifs, ChIP-chip experi-
ments, or both) (Lee et al, 2002; Liao et al, 2003; Beer and
Tavazoie, 2004; Yeang et al, 2005; Ernst et al, 2007). These
methods assume that transcript levels are largely driven by
binding of transcription factors (TFs) to DNA leading to either
expression or repression of the bound genes. Indeed, by some
estimates close to 60% of binding sites are actively driving
expression of their bound genes (Gao et al, 2004).

This assumption was recently challenged by several studies
that compared the set of genes bound by a TF with the set of
genes affected when that factor is knocked out or knocked
down. One of the earliest reports of this phenomenon involved

the yeast cell cycle (Horak et al, 2002). Using ChIP-chip
experiments, researchers looked at the set of genes bound by
11 TFs and concluded that complementary knockout experi-
ments did not affect the same set of genes. In mouse, it was
reported that only 11% of those genes that were differentially
expressed after glucocorticoid dexamethasone injection were
also bound by the glucocorticoid receptor (Phuc Le et al,
2005). An estrogen-response study in human reported that 6%
of E2-induced genes were bound by ERa, and 13% of ERa-
bound genes were regulated by E2 (Kwon et al, 2007). A human
study in which p63 was depleted led to similar conclusions
(Yang et al, 2006).

Although the above experiments looked at only one, or few,
TFs, a recent study in yeast examined the overlap for the entire
set of TFs and surprisingly concluded that the overlap was
even smaller than the overlaps reported above for individual
factors. In a comprehensive analysis of the agreement between
binding and knockout experiments, 269 budding yeast TFs
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were knocked out one at a time (Hu et al, 2007), and the
differentially expressed gene targets were compared with the
protein–DNA binding data generated previously for 188 of
those TFs (Harbison et al, 2004). It was determined that only
3% of bound genes were affected by the knockout, and
similarly only 3% of affected genes were bound by the
corresponding TF. Although this low overlap is statistically
significant, the percentage is still very low. A possible
explanation for this small overlap, which was examined by
Hu et al, is that indirect regulatory interactions can explain at
least one side of this overlap (why genes affected by a
knockout are not directly bound by that TF). However, their
analysis of these indirect binding effects, in which pathways of
protein–DNA binding interactions were allowed as supporting
evidence for the knockout effects, resulted in negligible
improvements to the overlap and its significance.

To further examine these findings and to determine whether
the expression and TF-gene binding interaction datasets are
indeed complementary, we undertook a systems approach by
studying the dependence of their agreement on the TFs’
homology relationships and on the protein interaction net-
work context of the TF. As we show, both play a major role in
the low overlap. Accounting for these contexts increases both
the percentage overlap and its significance, indicating that the
difference may be explained by backup mechanisms used
when cells lose specific TFs.

Results and discussion

P-value threshold analysis

In both the binding and knockout studies, a P-value threshold
was used to identify significant genes. We examined
the sensitivity of the overlap to these P-value thresholds by
testing P-value cutoffs from 10�0.05 to 10�10 (see Materials and
methods). For each P-value, we calculated the overlap and its
significance using the hypergeometric distribution (Figure 1).

The range of P-value thresholds from 0.008 to 0.001 yielded the
most significant overlaps. Thus, we looked more closely at P-
values of 0.001 and 0.005, which have been used in the past for
binding and expression data (Lee et al, 2002; Bar-Joseph et al,
2003). The P-value threshold of 0.005 generally yields slightly
better overlap than the threshold of 0.001, and all overlap
values reported hereafter are based on a P-value threshold of
0.005 unless otherwise noted.

Each of the two papers used a different method to compute
the P-values, which may contribute to their disagreement.
To test whether this influenced the results, we computed
the overlap between the two datasets based on rankings rather
than P-value cutoffs. We sorted the TF-gene interactions by
P-value in both datasets and selected the first k (where
k ranges from 1 to 1000) from each dataset. The overlap
significance peaks when the top 56 interactions per TF
are taken to be significant (P-value of 10�52, Supplementary
Figure 1). This significance value is much worse than that of
the threshold-based method (P-value 10�124), suggesting that
the rank-based method introduces substantial noise because
high-ranking interactions may still have insignificant P-values
for some factors. We also tried several other methods for
selecting lists of bound and affected genes but these did not
improve the overlap (Supplementary Tables I–III).

The above computations highlight the importance of
the results presented by Hu et al, indicating that they
cannot be explained by issues related to the analysis of the
data but are rather likely to represent specific biological
phenomena.

Cleaning the data

To lessen the extent to which experimental and biological
noise affected the disagreement between the knockout
and binding data, we cleaned the datasets in several ways
(Supplementary Tables IV–VI; Supplementary Figures 2 and 3).
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Figure 1 Change in overlap for a range of P-value thresholds. The figure plots the overlap as the percentage of the binding interactions and knockout effects (right y
axis) compared with the expected binding and knockout overlaps. The figure is overlaid with the significance of the overlap calculated using the hypergeometric
distribution (left y axis). Note the significance peak between P-values of 0.001 and 0.005 (inset). Source data is available for this figure at www.nature.com/msb.
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We first removed genes that were affected by the knockout
of a large number of TFs (see Materials and methods).
We termed these ‘general KO genes’ because they are
likely responding to the general stress of the knockout
experiments rather than the specific TF deletions, and
thus are not expected to be bound by the deleted TFs. In
addition, we restricted the set of TF-binding targets to those with
sequence motifs conserved in two other species (Harbison et al,
2004).

After these cleanup steps, the agreement between the two
datasets increases to 6.7% of binding data and 4.5% of
knockout data (P-value of 10�133 versus the original P-value of
10�114). As above, we examined different P-value cutoffs for
the cleaned dataset and found that the results did not improve
when using the stricter threshold of 0.001. Similarly, knowl-
edge regarding the function of the TFs did not improve the
overlap. Specifically, we found that TFs that are expected to be
active only in YPD had the same average overlap as the entire
set of TFs (Supplementary Table VII).

Redundancy explains binding interactions absent
from the knockout data

We next tested whether redundancy can help explain the
small overlap observed. Following Kafri et al (2005) we used
BLASTP to identify gene pairs with varying levels of
homology. We divided the set of TFs into four groups: those
with a paralogous TF with an E-value of E-20 or less, between
E-20 and E-10, between E-10 and E-3 and those with no
homolog at E-3 or less (see Materials and methods). TFs
with the most similar paralogs had no overlap between
their binding and knockout data. In contrast, those with
the least similar paralogs had an overlap of more than 12%,
nearly twofolds higher than the average overlap. The
other groups followed a similar trend in which the overlap
increased as the similarity to the closest paralog decreased
(Figure 2).

To further test our finding that redundancy impacts the
expression outcome we used Pfam, which focuses on the
binding domain only, as a measure of similarity and obtained
similar division into four groups. As with the BLASTP value,
for groups with similar paralogs, the overlap was lower than
for those with more distant homologs (4 versus 10%,
Supplementary Figures 4 and 5).

Another component that may impact how well one TF can
compensate for the loss of another TF is shared protein–pro-
tein interactions (PPIs) (Reguly et al, 2006). We divided each of
the homology groups defined above based on the percentage of
protein interaction partners the TF shares with another TF in
that homology group (see Materials and methods). Similar to
the trend we saw using sequence homology, within each group
the overlap decreases as the percentage of shared PPIs
increases (Figure 2; Table I). For TFs with the least similar
homologs and the fewest shared interactions, we observed an
overlap greater than 13%.

For all BLASTP E-value thresholds, TFs that shared a
larger portion of PPI with their paralog had lower binding
overlap. This indicates that putative paralogs with many
common PPI are better able to compensate for the deletion
effects (Table I).

Protein interaction networks provide physical
support for knockout effects

To help explain the other direction (why genes affected by a
knockout are not bound by the TF), we used interaction
networks. Recent studies have shown that knockout effects
can be mediated by PPI networks as well (Yeang et al, 2005;
Workman et al, 2006). Thus, we constructed a network that
includes both PPI and protein–DNA edges (Supplementary
information). We considered a gene affected by the knockout
to be explained by the network if (1) the TF directly binds the
gene or (2) there is a path leading from the TF to another TF
that directly binds the gene. For the indirect result we vary the
maximum path length (number of edges from the initial TF to
the last TF). As can be seen in Figure 3, using a path length of 2
leads to an overlap of 22% while significantly increasing the
P-value of the overlap (from 10�133 to 10�211). Path lengths
greater than 2 increased the percentage of the overlap but
reduced the P-value indicating that we are likely overfitting the
data. Randomization tests and further analysis using different
sets of PPI data confirmed the significance of the increase in
overlap due to the PPI network (Supplementary Tables VIII
and IX; Supplementary Figures 6 and 7).

As a further test, we repeated the PPI analysis using data
from expression and binding experiments in human cells
studying the TF p63 (Yang et al, 2006). A genome-wide
TF-gene binding dataset is not available for human TFs so we
used an analysis (Xie et al, 2005) to construct an approximate
binding dataset for 71 TFs. As with yeast, the overlap greatly
increased when using a network with a path length of 2
(P-values 10�15 and 10�5 compared with 10�12 and 10�2 for the
original data, Supplementary Figure 8). Randomization tests
of the human PPI network also indicated that the improvement
is significant (Supplementary Table X).

Experimental validation

To further validate our results regarding the backup mechan-
isms used in regulatory networks, we collected expression
data from three double knockout experiments involving pairs
of factors we predicted could compensate for the loss of each
other (Fkh1-Fkh2, Yhp1-Yox1, Ace2-Swi5, all from the E-20
set, Supplementary Table XI). We also carried out new
experiments for an additional pair (Pdr1-Pdr3, also in the
E-20 set). As predicted, when the paralogous partner is not
present to compensate for the effect of a single knockout, the
overlap of the knockout and binding data increases signifi-
cantly. For example, the overlap between genes affected by the
single knockout of Yhp1 and Yox1, two cell cycle TFs, and the
genes bound by these factors is 0 and 1%, respectively (both
are not significant). In contrast, the overlap for the double
knockout and the binding targets of Yhp1 and Yox1 is 8 and
9%, respectively (P-values of 10�4 and 10�7.5). Similar results
were obtained for the other two double knockouts we collected
(Supplementary Tables XII). For our Pdr1-Pdr3 double knock-
out experiment, we again observed a large increase in the
percentage of overlap for Pdr1 compared with the single
knockout experiment. The overlap increased from 1% (not
significant) to 19% (P-value of 10�5). For Pdr3 we saw a large
increase in binding percentage (from 0 to 4%) though this
overlap is still not significant (Supplementary Table XII). Thus,
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these experiments support our claim of backup provided by
these pairs of factors and can also provide clues to the
mechanisms used as we discuss below.

Mechanisms leading to TF redundancy

A subset of the homologous TFs we identified bind to an
overlapping group of targets, and thus it is not surprising that
knocking out one of them has small effect on the expression
of its targets. One such example is the two homologous
TFs involved in methionine metabolism, Met31 and Met32
(Blaiseau et al, 1997). These TFs have a large overlapping set
of target genes (460%), and neither has any target genes that
are differentially expressed after deletion. Another example is
the two forkhead TFs, Fkh1 and Fkh2. These only bind a
partially overlapping set of target genes. However, it has been
shown (Hollenhorst et al, 2001) that the binding of Fkh1 to
Fkh2 targets is enhanced in the absence of Fkh2 and vice versa,
suggesting that a compensation can occur beyond the common
targets as predicted by our findings.

This type of compensation may happen due to competition
between the two TFs that is resolved in the absence of one of
them. Another possibility is that the activity of one TF is
enhanced in the absence of its homolog due to a feedback
mechanism between the two TFs (Kafri et al, 2005). To check
this idea, we looked at the expression levels of the TFs believed
to be compensating for the knockout (most similar based on
BLASTP). As expected, we have not found any example in
which the expression level of the homologous TF was
significantly decreased (Supplementary Table XIII). However,
a significant increase was observed in only a few cases. Thus, it
appears that these changes are mainly driven by post-
transcriptional events, perhaps by the protein interaction
networks mentioned above.

One of the first studies looking at the overlap between
knockout and binding (Horak et al, 2002) hypothesized that
redundancy may be part of the disagreement. In that paper,
the authors conclude that ‘in some cases targets are not
significantly affected, presumably because of transcriptional
redundancy’. However, it was hard to substantiate this claim
without a comprehensive knockout and expression data. The

Table I Analysis of overlap based on paralogs and shared PPIs

Transcription factors were divided into four groups based on their most similar TF homolog as determined by the BLASTP E-values. These sets were further divided
based on the percentage of PPI a TF shared with its paralog. TFs with a putative paralog that share at least 20% PPI are more likely to be redundant and thus exhibit
lower overlap.
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recent availability of such data allowed us to show that
redundancy (both in sequence and in interactions) indeed
plays a major role in the disagreement between the two types
of data. Our results suggest that paralogs can compensate for
the loss of TFs providing backup mechanisms and robustness
for eukaryotic cells.

Materials and methods

Naming conventions and gene synonyms

Many of the overlap calculations are sensitive to the manner in which
yeast gene names are mapped from their standard name to their

systematic name (also known as the ORF name) and vice versa.
Although Harbison et al (2004) provides a list of ORF names for the
standard names used in their experiments, the gene name mapping is
constantly evolving, and their list was out-of-date at the time the
knockout experiments were run. Therefore, we relied on the SGD
(http://www.yeastgenome.org) gene name mapping with the manual
addition of 13 retired mappings that appeared in older datasets we
used. Any TF targets that could not be mapped to an SGD ORF name
were ignored, as were ORFs on the mitochondrial chromosome or the
2-mm plasmid.

Overlap calculation

For a given TF t, we define the set of genes significantly bound by t to
be GB and the set of genes significantly affected by the knockout of t as
GK. The binding overlap B and knockout overlap K are calculated in the
following manner:

B ¼ jGB \ GK j
jGBj

K ¼ jGB \ GK j
jGK j

We use the hypergeometric distribution, also known as the one-tailed
version of Fisher’s exact test, to calculate a P-value for the overlap of
the binding and knockout targets:

P-value ¼
XminðjGB j;jGK jÞ

o¼jGB\GK j

jGK j
o

� �
� jGAj � jGK j

jGBj � o

� �

jGAj
jGBj

� �
0
BB@

1
CCA

where ðnkÞ is the choose function of n and k, GA is the set of all possible
genes targets in the binding or knockout datasets, and o is the size of
the overlap. When calculating the P-value for the entire network of TFs
or a subset of TFs sharing some property, we replace GB in the above
equations by IB, the set of TF-gene binding interactions and similarly
replace GK with IK, the set of TF-gene knockout effects.

Varying P-value thresholds

Data for Figure 1 were generated by considering the set of P-value
thresholds defined by:

[200

n¼1

10ð�n�0:05Þ

At each threshold, the interactions in the binding and knockout
datasets with significance less than or equal to the threshold were
obtained, and the overlap and its significance were calculated. For each
threshold, the expected binding and knockout overlaps were
calculated using the formulas:

Eðbinding overlapÞ ¼

P
t2F

GBðth; tÞ�GK ðth; tÞ
jGA jP

t2F
GBðth; tÞ

Eðknockout overlapÞ ¼

P
t2F

GBðth; tÞ�GK ðth; tÞ
jGA jP

t2F
GKðth; tÞ

where th is the threshold, t is a TF in the set of all TFs F, GA is the set of
all genes in the binding and knockout datasets, GB(th,t) is the number
of genes bound by t at threshold th, and GK(th, t) is the number of genes
affected by the knockout of t at threshold th.

Data cleaning

To purge the knockout data of instances in which a gene was
differentially expressed due to non-specific effects instead of targeted
regulatory mechanisms, we removed genes that were affected by the
knockout of a large number of TFs. Specifically, we eliminated 161
‘general KO genes’ that were differentially expressed in 20 or more TF
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Figure 3 Influence of physical interaction networks. TFs that do not directly
bind a gene can exert influence through pathways of PPI and protein–DNA
interactions. (A) A network consisting of YHR206W (red), its knockout targets
(shades of blue), and 20% of all other yeast genes selected at random (shades of
gray). Genes are arranged around YHR206W according to the shortest number
of interaction edges needed to reach them. The black and dark blue nodes
correspond to genes that are three or more interactions away, the medium gray
and medium blue genes are two interactions away, and the light gray and light
blue genes are a single interaction from YHR206W. In all, 85% of YHR206W’s
knockout-affected genes are either directly bound by YHR206W or another TF
that can be reached through paths of length 1 or 2. (B) As longer paths in the
network are examined, a much higher percentage of the knockout-affected genes
are connected to the deleted TF. The P-value of the overlap is given above the
columns, which indicate percentage overlap. Source data is available for this
figure at www.nature.com/msb.
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knockout experiments at a P-value of 0.001, which we consider to be
genes affected by the stress of the deletions. Of the 14 427 knockout
interactions at this P-value, 4920 were removed. As any TF-gene
binding interaction involving one of the removed general KO genes is
guaranteed to no longer have a corresponding knockout effect, we
removed these same genes from the binding dataset.

The presence of a sequence motif can provide additional evidence
that a protein–DNA binding interaction is functional, especially if that
motif is conserved in other species. Therefore, to reduce noise we used
Harbison et al’s alternate version of the binding dataset in which
binding interactions not supported by a motif that is conserved in at
least two other yeast species have been removed (Harbison et al,
2004). Many of the original 203 TFs do not have a known or conserved
motif and were removed from subsequent analysis. Of the 102
remaining TFs, 97 were also knocked out by Hu et al (2007). This
version of the binding data contains interactions observed in both YPD
and non-YPD conditions.

Paralogs

To obtain a list of putative paralogs, the FASTA sequences for the 188
TFs present in both the original binding dataset and the knockout
dataset were obtained from SGD (http://www.yeastgenome.org).
Next, the NCBI netblast program (http://www.ncbi.nlm.nih.gov/
blast/download.shtml) was run on the sequences with the parameters
‘-p blastp -d refseq_protein -b 200000 -u ‘saccharomyces cerevi-
siae’[Organism]’ to use BLASTP (Altschul et al, 1997) to search the
RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq) database for up to
200 000 sequences from Saccharomyces cerevisiae proteins. The
default values were used for all other netblast parameters. The
netblast results were filtered so that only TF–TF pairs between unique
TFs remained, in which a TF was considered to be any of the 284
factors present in the either the binding or the knockout dataset. We
post-processed the pairs of putative paralogs to separate them into
distinct subsets so that pairs belonging to a set defined by a particular
threshold (e.g. E-3) did not also appear in the set of pairs defined by
a stricter threshold (e.g. E-10). Any TF that was not a member of the
E-20, E-10 or E-3 paralog set was placed in the set of TFs without
a paralog. The complete assignment of TFs to paralog sets can be found
in Supplementary Table XIV (Excel file).

For the Pfam-based putative paralogs, we assigned one or more
Pfam domains to a TF by aligning each single sequence with a domain
from the Pfam database (a library of HMMs, version 22.0) (Finn et al,
2006) using the HMMER software package (2.3.2 release) (Durbin
et al, 1998). We only considered those alignments involving Pfam
domains classified as DNA-binding domains. Moreover, Pfam domains
were assigned to one of the three different E-value thresholds, E-8, E-3
and E-1, yielding three sets of putative paralogs and a fourth set of TFs
without a paralog. As with the BLASTP-based paralogs, we removed
paralogs that already belonged to a stricter set from the less strict sets
so that the subsets contain distinct TFs.

Protein interactions

For a pair of TFs T1 and T2, we define the percentage of shared
PPI to be

SðT1; T2Þ ¼ min
jPT1 \ PT2j
jPT1j

;
jPT1 \ PT2j
jPT2j

� �

where S is the percentage of shared PPI and PT is the set of PPI partners
for TF T. The min(*) function guarantees the resulting percentage of
T1’s protein interaction partners are shared by T2 and vice versa. For
each TF that did not have a putative paralog, we calculated shared PPI
using approximate paralogs, which are TF–TF pairs with a BLASTP
E-value greater than E-3 but less than 10.

For the PPI network analysis, we used two different sets of reported
PPIs. The first was a literature-curated PPI dataset (Reguly et al, 2006)
and the second is the BioGRID dataset (version 2.0.48) (Stark et al,
2006) that includes data from high throughput interaction studies. For
BioGRID, we removed all genetic interactions as well as those inferred
from co-localization. In the main text, we report the results for the

literature-curated dataset. Results for the BioGRID dataset are reported
in the Supplementary information.

RNA extraction and labeling for expression
profiling

The double KO strain YYA100 (pdr1DHKanMx6, pdr3DHHis3Mx6) was
kindly provided by Florian Zwolanek (Schuller et al, 2007). Cultures
were grown to OD600 1.0–1.5 and total RNA was extracted using
MasterPure Yeast RNA Purification Kit (Epicentre Biotechnologies).
cDNA synthesis and labeling was performed as in http://www.md.
huji.ac.il/units/tzabam/microarray/Labeling.htm. In brief, cDNAwas
generated with oligo-dt primers (2 mg) (Amersham Biosciences) from
total RNA (20 mg) using the reverse transcription enzyme superscript II
(Invitrogen). The reverse transcription reaction was carried out at 421C
for 2 h with aminoallyl-dUTP. Removal of unincorporated aa-dUTPand
free amines was carried out using Microcon YM-30 (Millipore) filters
according to the manufacturer’s recommendations. Coupling of
aminoallyl labeled cDNA to Cye dye esters was performed in 0.1 M
sodium carbonate buffer (pH 8.6) for 1 h at room temperature.
Removal of free dyes was accomplished with Qiagen PCR purification
columns (Qiagen Ltd). The labeling was then quantified using a
ND-1000 spectrophotometer (Nanodrop Ltd). Equal amounts of both
samples were mixed and concentrated by speed vacuum for 1 h.

Microarray hybridization

Double spotted microarrays containing 6240 Yeast ORFs printed as
cDNA (þ controls, total 6.4 K spots), manufactured by the Genomics
Centre, University of Toronto, were pre-hybridized in 5x SSC, 0.1%
SDS, 1% BSA for 45 min. The probes were resuspended in hybridiza-
tion buffer (25% formamide, 5x SSC, 0.1% SDS, 0.4mg/ml Yeast tRNA)
and applied to the slides. Hybridization was carried out overnight at
421C in a hybridization chamber (Corning). Arrays were scanned using
GenePix 4000B scanner (Axon Instruments) with settings adjusted to
obtain a similar green and red overall intensity. The resulting images
were analyzed using GenePix pro 4.0 (Axon Instruments). The
experiment was done in duplicates using dye swapping. Microarray
data have been deposited at the ArrayExpress database under
accession number E-MEXP-2150.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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