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Abstract: Heavy metals are toxic substances that pose a real danger to humans and organisms, even at
low concentration. Therefore, there is an urgent need to remove heavy metals. Herein, the nanocellu-
lose (NC) was synthesized by the hydrolysis of cellulose using sulfuric acid, and then functionalized
using polypyrrole (ppy) through a polymerization reaction to produce polypyrrole/nanocellulose
(ppy/NC) nanocomposite. The synthesized nanocomposite was characterized using familiar tech-
niques including XRD, FT-IR, SEM, TEM, and TGA. The obtained results showed a well-constructed
nanocomposite with excellent thermal stability in the nano-sized scale. The adsorption experiments
showed that the ppy/NC nanocomposite was able to adsorb hexavalent chromium (Cr(VI)). The
optimum pH for the removal of the heavy metal was pH 2. The interfering ions showed minor effect
on the adsorption of Cr(VI) resulted from the competition between ions for the adsorption sites. The
adsorption kinetics were studied using pseudo 1st order and pseudo 2nd order models indicating
that the pseudo second order model showed the best fit to the experimental data, signifying that the
adsorption process is controlled by the chemisorption mechanism. Additionally, the nanocomposite
showed a maximum adsorption capacity of 560 mg/g according to Langmuir isotherm. The study
of the removal mechanism showed that Cr(VI) ions were removed via the reduction of high toxic
Cr(VI) to lower toxic Cr(III) and the electrostatic attraction between protonated ppy and Cr(VI).
Interestingly, the ppy/NC nanocomposite was reused for Cr(VI) uptake up to six cycles showing
excellent regeneration results. Subsequently, Cr(VI) ions can be effectively removed from aqueous
solution using the synthesized nanocomposite as reusable and cost-effective adsorbent.

Keywords: adsorption; cellulose; polypyrrole; nanomaterials; Cr(VI); water treatment

1. Introduction

Heavy metals pollution is becoming a serious environmental problem around the
world [1]. Various toxic metals can cause serious problems to human and marine organ-
isms [2]. Among these metals, chromium (Cr) is considered to be one of the most dangerous
metals. Cr naturally exists in two oxidation states Cr(VI) and Cr(III) [3]. The two oxidation
states have different mobilities and poisonousness. Cr(III) is stated to be 500 times less
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poisonous than Cr(VI) [4]. At low quantities, Cr(III) is less hazardous micronutrient and is
required for body metabolism [5]. In contrast, Cr(VI) exhibits a variety of toxic, mutagenic,
and carcinogenic effects to humans. It is expected to cause very dangerous chromosomal
mutations by modifying DNA transcription steps [6]. Additionally, Cr(VI) ions can cause
gastric, liver, and kidney damage as well as lung cancer [7].

Generally, photography, textile industries, fertilizers production, wood preservation,
chrome coating, leather tanning, stainless steel production, and pigment manufacturing
are the main sources of Cr(VI) ions [8]. Thus, the treatment of wastewater generated by
these industries is crucial to prevent pollution to make the environment safe and clean.
In recent years, the removal of Cr (VI) ions from wastewaters before their release into the
environment has been considered as a major challenge facing scientists. The treatment
strategy aims to reduce Cr(VI) concentrations from water/wastewater to acceptable lev-
els. According to the World Health Organization (WHO), the permitted level of Cr(VI)
ions is 50.0 µg/L for drinking water is 50.0 µg/L [9], while this level is 5.0 µg/L and
200.0 µg/L for underground water and industrial wastewater, respectively, according to
European Union [10].

The removal of Cr(VI) ions from aqueous solutions was achieved using different tech-
niques such as membrane separation, reverse osmosis, solvent extraction, ion exchange,
reduction, chemical and electrochemical precipitations, dialysis, and adsorption [11–16].
Among all methods, adsorption is widely used for the removal of Cr(VI) ions from aqueous
solutions due to many reasons such as ease regeneration of adsorbents, high efficiency, sim-
ple operation, and cost-effectiveness [17]. However, the using of conventional adsorbents
for the removal of Cr (VI) ions face many problems such as insufficient hydrophilic surface
and functional groups that led to secondary contamination besides the low adsorption
capacity due to the low surface area [18]. These limitations of conventional adsorbents can
be overcome by using nanomaterials (NMs) as adsorbents. NMs have exceptional proper-
ties such as high surface area providing high capacity for metal capturing, ease synthesis,
simple functionalization, and low cost [19]. However, the using of NMs as adsorbents for
the removal of metals from aqueous solutions was associated with poisonous problems [20].
So, eco-friendly NMs such as nanostructured polysaccharide have been recently examined
as friendly adsorbents for the removal of metals from aqueous solutions [21,22]. Inter-
estingly, cellulose is one of the most attractive materials useful as adsorbents to remove
organic and inorganic pollutants from wastewater. In this context, the developments of the
use of nanocellulose for various applications in environmental remediation, such as its use
as adsorbent for enhanced and selective capturing of metallic ions, are well documented in
the literature [23–25]. However, the breakdown and agglomeration of cellulose in water
limits its use as adsorbent. This limitation can be overcome by the chemical modification
of cellulose using polymeric material via the OH groups. This chemical modification of
cellulose helps in increasing the adsorption capacity of nanocellulose besides the increasing
of adsorbent mechanical strength [26]. Among various polymers, polypyrrole (ppy) has
received considerable interest because of its interesting properties (excellent chemical sta-
bility, conductivity, biocompatibility, low oxidation potential, easy synthesis, low cost, etc.)
and its good compatibility with different nanoparticles. The use of ppy to adsorb pollutants
has been reported as adsorbent for the removal of metals. Additionally, ppy was used for
the modification of magnetic Fe3O4/SiO2 nanocomposite for the enhanced adsorption of
Congo red dye and Cr(VI) ions [27]. However, its use in large scale wastewater treatment
processes is limited by its poor processability and lack of mechanical properties. Therefore,
the recorded disadvantages can be eliminated by compositing ppy with other materials
(biological materials, chemical polymers, agro-industrial wastes, etc.). Interestingly, the
ppy is very suitable for the functionalization of nanocellulose due to good ion exchange
performance and high chemical stability [28].

Herein, the nanocellulose was synthesized via the hydrolysis of cellulose using sulfuric
acid followed by the functionalization of nanocellulose by the ppy polymer to form the
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nanocomposite (ppy/NC). The ppy/NC nanocomposite was characterized using different
techniques and examined for the removal of Cr(VI) ions from water.

2. Materials and Methods
2.1. Chemicals

Cellulose with high purity was supplied from HiMedia. Sulfuric acid (H2SO4), ammo-
nium persulfate ((NH4)2S2O8), and pyrrole were supplied from Aladdin (Shanghai, China).
Hydrochloric acid (HCl) was supplied from Winlab Chemical (India). Potassium dichro-
mate (K2Cr2O7) was supplied from Sigma-Aldrich (Schnelldorf, Germany). All chemicals
were used as received without any modification. Distilled water was used for the prepara-
tion of all solutions.

2.2. Nanocellulose Synthesis

Nanocellulose (NC) was synthesized as described in the literature [29] with some
modifications. Firstly, a colloidal solution of cellulose was prepared by suspending 20.0 g
of cellulose powder in water followed by hydrolysis process in which the colloidal solution
was treated by 60 mL of 65.0% sulfuric acid with continuous stirring for 4.0 h at a tempera-
ture of 40 ◦C. Then, the suspension was centrifuged for 10 min at 8000× g rpm followed by
dialysis to remove the excess of acid. Then, the suspension was dialyzed against deionized
water using membranes of 12,000–14,000 Da molecular weight cutoff until the neutral
pH value was achieved. The obtained suspension was finally ultra-sonicated for 45 min in
an ice bath then stored at a temperature of 4 ◦C. Subsequently, the suspension was ready to
be used in the next step.

2.3. Synthesis of Nanocellulose/Polypyrrole Nanocomposite

Firstly, the polypyrrole was synthesized via the polymerization of pyrrole (1.35 mL
of pyrrole in 200 mL of water) by using (NH4)2S2O8 (40.0 mL of 0.15 M) with continuous
stirring until the color changed from white to black. The pyrrole was mixed with the
suspension solution of nanocellulose under sonication process for 40 min at 3 ◦C using a
tip sonicator at a fixed power of 30 W. Then, the mixture was reserved for half-hour at a
temperature of 3.0 ◦C followed by the removal of the top layer from the mixture. Finally,
the lyophilization at −80 ◦C and 20 Pa besides the solvent exchange with t-butanol was
used to get the powder of ppy/NC nanocomposite. The obtained nanocomposite was
stored at room temperature until use for characterization and application.

2.4. Adsorption Experiments

The adsorption experiments were conducted by mixing the solution of Cr(VI) with the
adsorbent at certain conditions of initial concentration, adsorbent dosage, contact time, and
pH in shaker at 200 rpm. After each adsorption experiment, the adsorbent was separated
using a 0.45 µm filter and the remaining solution was examined for the presence of Cr(VI)
ions using UV spectrophotometer (λmax = 540 nm) after a complex formation between
chromium ions and 1,5-diphenylcarbazide. To study the pH effect on the adsorption, 60 mL
of Cr(VI) solution (100 mg/L) was mixed with 15 mg of adsorbent at different pH values,
ranging from 2.0 to 8.0. Additionally, the removal efficiency of Cr(VI) ions was determined
in the presence of competing ions (NaCl, Ca2+, Zn2+, CO3

2−, PO4
3−, and SO4

2−) added at
0.1 M. To study the adsorption kinetics, 300 mL of Cr(VI) ions solutions with different initial
concentrations ranged from 100 mg/L to 200 mg/L were mixed with 75 mg of adsorbent
at a pH of 2. To study the adsorption isotherm, Cr(VI) ions solutions with different initial
concentrations ranged from 50 mg/L to 300 mg/L were mixed with the adsorbent at
pH of 2. The adsorption capacity (qe) of the adsorbent was calculated using Equation (1).

qe = ((Co − Ce)/m) × V, (1)
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where Co, Ce, m, and V denote the initial concentration (mg/L), equilibrium concentration
(mg/L), the mass of adsorbent (g), and volume of the solution, respectively. The removal
percentage (%) was calculated using Equation (2).

Removal (%) = (Co − Ce/Co) × 100 (2)

Moreover, the reusability of ppy/NC nanocomposite for the removal of Cr(VI) ions
was studied up to five successive cycles using 1 M HCl as eluent. In each cycle, 60 mL
of metallic ions solution was mixed with 15.0 mg of the adsorbent and agitated for 1 day
followed by the collection of the adsorbent. Then, the adsorbent was regenerated using the
eluent solution for 1.0 h. After that, the adsorbent was washed using water until neutral
pH and subsequently, the adsorbent was ready for the next adsorption–desorption cycle.
For errors determination, all experiments were done triplicate.

3. Results and Discussion
3.1. The Characterization of ppy/NC Nanocomposite

The synthesized materials including NC, ppy, and ppy/NC nanocomposite were
characterized using the familiar techniques (FT-IR, XRD, TGA, SEM, and TEM). For the
determination of functional groups, FT-IR spectra were shown in Figure 1a. According to
Figure 1a, the synthesized NC showed the characteristic cellulose absorption bands like
the peaks at 1058 cm−1, 2896 cm−1, and 3346 cm−1 that are attributed to the stretching
vibrations of C–O–C, CH2, and OH, respectively [30].

However, the FT-IR of ppy/NC nanocomposite showed only the appearance of ppy
representative peaks like band of N–H wagging at 850 cm−1, C–H in-plane bending at
966 cm−1, and C–H out-plane bending at 1035 cm−1 [31,32]. Additionally, the peak at
1166 cm−1 is attributed to the pyrrole ring breathing while the peak at 1306 cm−1 is
attributed to C–N in-plane deformation. Additionally, the stretching vibrations of C–N and
C–C bonds were represented by the peaks at 1457 cm−1 and 1555 cm−1, respectively. It is
clear that the ppy chain vibrations were affected by the H-bond formation between NH
groups of pyrrole ring and OH groups of NC that caused blue shift of peaks compared to
the ppy peaks [33]. To study the crystallinity of the synthesized materials, XRD pattern was
performed as shown in Figure 1b. According to Figure 1b, cellulose showed the appearance
of major three peaks at angle of 2θ = 34.05, 16.45, and 22.84. From the diffractogram of ppy
and ppy/NC, there was a slight difference at 2θ= 22.84 due to the overlap of ppy peak [34].
Additionally, the cellulose crystalline order was not affected by the hydrolysis reaction
using sulfuric acid [35]. The amorphous nature of the nanocomposite was confirmed
from the amorphous region at 2θ = 22.84 that is related to ppy as indicated from XRD of
pure ppy [36]. To study the thermal stability of synthesized materials, thermogravimetric
analysis (TGA) of materials was conducted by heating the materials up to 600 ◦C in
argon gas atmosphere as shown in Figure 1c. According to Figure 1c, ppy showed a
weight loss of 6% when the temperature raised to 100 ◦C due to the evaporation of water
content. However, the ppy/NC nanocomposite showed weight loss of 4% when the
temperature raised to 200 ◦C due to the evaporation of water residues. At 225 ◦C, there
was a sharp weight loss resulting from thermal decomposition of the pyrolysis of NC.
When the temperature was raised to 350 ◦C, ppy/NC showed a small weight loss due to
the decomposition of organic matter of the nanocomposite (cellulose and polypyrrole).
Subsequently, the decomposition of organic matter was started above 225 ◦C and completed
at 600 ◦C (53% wt). The TGA results indicated the high thermal stability of the synthesized
ppy/NC nanocomposite. We can conclude that the combination between ppy and cellulose
enhances the composite thermal stability. Additionally, Figure 1d showed the zeta potential
measurement of the synthesized ppy/NC nanocomposite. According to Figure 1d, the
isoelectric point occurred at a value below 6. This point is the zero charge, below which the
protonation of nitrogen centers was achieved which eased the attraction between cations
and anions.
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Figure 1. FT-IR (a) XRD (b), TGA (c), and zeta potential at various pH (d) of the synthesized ppy, cellulose, and ppy/NC 
nanocomposite 

However, the FT-IR of ppy/NC nanocomposite showed only the appearance of ppy 
representative peaks like band of N–H wagging at 850 cm−1, C–H in-plane bending at 966 
cm−1, and C–H out-plane bending at 1035 cm−1 [31,32]. Additionally, the peak at 1166 cm−1

is attributed to the pyrrole ring breathing while the peak at 1306 cm−1 is attributed to C–N 
in-plane deformation. Additionally, the stretching vibrations of C–N and C–C bonds were 
represented by the peaks at 1457 cm−1 and 1555 cm−1, respectively. It is clear that the ppy
chain vibrations were affected by the H-bond formation between NH groups of pyrrole 
ring and OH groups of NC that caused blue shift of peaks compared to the ppy peaks [33].
To study the crystallinity of the synthesized materials, XRD pattern was performed as 
shown in Figure 1b. According to Figure 1b, cellulose showed the appearance of major 
three peaks at angle of 2θ = 34.05, 16.45, and 22.84. From the diffractogram of ppy and 
ppy/NC, there was a slight difference at 2θ= 22.84 due to the overlap of ppy peak [34]. 
Additionally, the cellulose crystalline order was not affected by the hydrolysis reaction 
using sulfuric acid [35]. The amorphous nature of the nanocomposite was confirmed from 
the amorphous region at 2θ = 22.84 that is related to ppy as indicated from XRD of pure 
ppy [36]. To study the thermal stability of synthesized materials, thermogravimetric anal-
ysis (TGA) of materials was conducted by heating the materials up to 600 °C in argon gas 
atmosphere as shown in Figure 1c. According to Figure 1c, ppy showed a weight loss of 
6% when the temperature raised to 100 °C due to the evaporation of water content. How-
ever, the ppy/NC nanocomposite showed weight loss of 4% when the temperature raised 
to 200 °C due to the evaporation of water residues. At 225 °C, there was a sharp weight 
loss resulting from thermal decomposition of the pyrolysis of NC. When the temperature
was raised to 350 °C, ppy/NC showed a small weight loss due to the decomposition of 
organic matter of the nanocomposite (cellulose and polypyrrole). Subsequently, the de-
composition of organic matter was started above 225 °C and completed at 600 °C (53% 
wt). The TGA results indicated the high thermal stability of the synthesized ppy/NC nano-
composite. We can conclude that the combination between ppy and cellulose enhances 
the composite thermal stability. Additionally, Figure 1d showed the zeta potential meas-
urement of the synthesized ppy/NC nanocomposite. According to Figure 1d, the isoelec-
tric point occurred at a value below 6. This point is the zero charge, below which the 

Figure 1. FT-IR (a) XRD (b), TGA (c), and zeta potential at various pH (d) of the synthesized ppy, cellulose, and
ppy/NC nanocomposite.

To study the surface morphology of the nanocomposite, SEM images at different magnifi-
cation as well as TEM images were carried out (Figure 2). Figure S1 (Supplementary Material)
showed the SEM image of unmodified nanocellulose with smooth surface. Figure 2a,b
showed the SEM images of ppy/NC nanocomposite at different resolutions. SEM images
of ppy/NC nanocomposite indicated the homogenous and uniform appearance of the
particles with a spherical-like shape in the range of nanometer that help the capture of
more toxic metals due to the high surface area. Comparing the SEM images of NC and
ppy/NC nanocomposite, the surface of NC was greatly changed due to the introduction of
ppy indicating the successful modification of NC surface.

Figure S2 (Supplementary Material) showed the SEM image of ppy/NC nanocompos-
ite after the adsorption of Cr(VI) ions. Figure S2 showed that the surface of the nanocompos-
ite became smooth comparing to the nanocomposite surface due to the capturing of metal
ions. Figure 2c showed the TEM image of the nanocomposite. According to Figure 2d, the
nanoparticles of nanocellulose are agglomerated in some parts and separated in the others.
Additionally, there is a major uniform distribution of the nanocellulose particles in the
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nanometer range. As concluded from the TEM image, the average size of nanocellulose
particles is 40 nm to 50 nm.
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Figure 2. SEM images at different resolution (a,b) and TEM image (c) of the synthesized ppy/NC nanocomposite.

3.2. Effect of pH on Cr(VI) Adsorption

The pH value of solution is a critical factor affecting the adsorption behavior [37]
specially for Cr(VI) ions. Therefore, the pH effect on the adsorption of Cr(VI) on the surface
of ppy/NC nanocomposite was studied at pH ranging from 2 to 8 as shown in Figure 3.
According to Figure 3a, the ppy/NC nanocomposite showed the highest removal efficiency
for Cr(VI) ions at pH value of 2 (98%) while this removal efficiency was decreased gradually
by increasing pH value until reached its lowest efficiency at pH 8 (32%). These results of pH
effect on the adsorption could be interpreted according to the ionic behavior of chromium
ions at different pH as illustrated in Figure 3b.

According to Figure 3b, Cr2O7
2− and HCrO4

− are the two oxidation states of chromium
ions in the pH range of 2 to 6 while at higher pH the chromium phase becomes CrO4

2− [38].
Subsequently, at pH between 2 and 6, the adsorption of Cr(VI) ions exists from the elec-
trostatic attraction between the positively charged adsorbent and the negatively charged
chromium species. Additionally, the functionalization of nano-cellulose with polypyrrole
helps the ion exchange between the adsorbent and chromium species that increases the
adsorption efficiency. However, at the pH value > 6, there was a great competition between
the OH− ions and negatively charged chromium species for the adsorption sites on the
adsorbent surface decreasing the adsorption efficiency. From the study of the pH effect, we
can conclude that the pH increase changed the adsorption of Cr(VI) ions on the surface of
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ppy/NC nanocomposite from the electrostatic attraction to the electrostatic repulsion. In
other words, the adsorption was changed from promotion to competition which would
cause the decrease of the removal efficiency.
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Figure 3. The effect of pH on Cr(VI) adsorption on the ppy/NC surface (a) and the abundance of
Cr(VI) species in aqueous solution at pH range of 2 to 9 (b).

3.3. Effect of Co-Existing Ions on Cr(VI) Removal

Different ions such as NaCl, Ca2+, Zn2+, CO3
2−, PO4

3−, and SO4
2− may exist in real

wastewater and could affect the adsorption of Cr(VI) ions [39,40]. So, the effect of different
co-existing ions on the adsorption of Cr(VI) ions on the surface of ppy/NC nanocomposite
was studied in the presence of 0.1 M of each ion as shown in Figure 4.
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According to Figure 4, the removal efficiency of Cr(VI) ions was 98% in the absence
of any interfering ions. Then, this removal efficiency was decreased on the addition of
different ions in the order of NaCl > Ca2+ > Zn2+ > CO3

2− > PO4
3− > SO4

2− with removal
efficiencies of 77%, 72%, 68%, 59%, 55%, and 54%, respectively. This decrease in the
removal efficiency of Cr(VI) ions was attributed to the competition of interfering ions with
chromium ions for the adsorption sites on the adsorbent surface. This order of removal
efficiencies is attributed to the differences in the solvated ionic radii between the co-existing
ions. Generally, small ions have the ability to reach the adsorption sites easily and compete
with toxic metals leading to the drop of the removal efficiency of this metal. According
to these results, the ppy/NC nanocomposite can be efficiently used for the removal of
hexavalent chromium ions even in the presence of interfering ions.
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3.4. Adsorption Kinetics

To study the contact time effect on the adsorption of Cr(VI) on the surface of ppy/NC
nanocomposite, the adsorption capacities were studied at different time intervals from
0 to 35 h using different initial concentrations of chromium ions as shown in Figure 5a.
According to Figure 5a, the first 3 h showed a rapid increase of the adsorption capacity
followed by a slow increase of this capacity until it reached the equilibrium. The rapid
increase of adsorption capacity during the first hours could be attributed to the availability
of large number of active sites for the uptake of toxic ions [41]. After that, there was a
slow increase in the adsorption capacity due to the repulsion between already adsorbed
ions on the adsorbent and the other ions until reach the equilibrium at which the adsor-
bent surface becomes saturated, and the time does not have a significant effect on the
adsorption capacity.
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The two kinetic models pseudo 1st order and pseudo 2nd order were used to study
the adsorption kinetics of Cr(VI) ions on the surface of ppy/NC nanocomposite. The
linear form of pseudo 1st order and pseudo 2nd order is given by Equations (3) and (4),
respectively.

ln (qe − qt) = ln qe − k1t (3)

t/qt = (1/k2qe
2) + t/qe (4)

where k1 (1/min) and k2 (g/mg·min) are the rate constants for pseudo 1st order model
and pseudo 2nd order model, respectively. The two constants can be calculated from the
slop and intercept of the Equations (3) and (4) plots as shown in Figure 5b,c. The kinetic
parameters for Cr(VI) removal on the surface of ppy/NC were listed in Table 1.

Table 1. The parameters of pseudo 1st order and pseudo 2nd order models for the removal of Cr(VI) on the surface of
ppy/NC nanocomposite.

Cr(VI) Concentration
(mg/L) Pseudo 1st Order Pseudo 2nd Order

qe(exp) (mg/g) qe(cal) (mg/g) K1 R2 qe(cal) (mg/g) K2 R2

100 379 172 0.1880 0.9388 385.1 0.0031 0.9993

150 432.1 199 0.1433 0.9499 443.2 0.0019 0.9988

200 496.2 233.2 0.1395 0.9499 508.6 0.0018 0.9979

According to data in Table 1, the correlation coefficient (R2) value indicated that the
adsorption kinetic data were more fitted with the pseudo 2nd order model than the pseudo
1st order model. This means that the pseudo 2nd order model is more suitable to describe
the adsorption mechanism of Cr(VI) ions on the surface of ppy/NC nanocomposite. These
results indicated that the chemical sorption is the essential mechanism of Cr(VI) removal
on the surface of ppy/NC nanocomposite rather than a usual mass transport [42,43]. Addi-
tionally, several previous works on the adsorption of Cr(VI) ions showed the applicability
of pseudo 2nd order as a better model for the description of the removal mechanism than
other kinetic models [44–47].

3.5. Adsorption Isotherm

The interaction between the adsorbent surface and toxic particles can be well-interpreted
by the study of the adsorption isotherms. The two isotherms models Freundlich and Lang-
muir were used to study the experimental data of Cr(VI) removal on the surface of ppy/NC
nanocomposite. Freundlich and Langmuir isotherms can be described in the linearized
form according to Equations (5) and (6), respectively.

ln qe = ln KF + 1/n ln Ce, (5)

1/qe = (1/qmkL)Ce + 1/qm, (6)

where 1/n, KF, KL, and qm denote the adsorption intensity, Freundlich constant, Lang-
muir constant, and the maximum adsorption capacity, respectively. It is well-known that
Freundlich isotherm suggests the exponential distribution of the adsorption sites as well
as the heterogeneous properties of the surface while the Langmuir isotherm suggests the
presence of finite amount of identical adsorption sites on the surface of adsorbent as well
as the formation of monolayer of adsorbates [48,49]. The fitting of experimental data to
Freundlich and Langmuir isotherm models are shown in Figure 6 and their parameters
were tabulated in Table 2. The Freundlich and Langmuir parameters were calculated by the
plot of ln qe against ln Ce and Ce/qe against Ce, respectively. According to the results, 1/n
value is less than 1 indicating the favorable adsorption of Cr(VI) on the surface of ppy/NC
nanocomposite [50,51].
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Table 2. The parameters of Freundlish and Langmuir isotherm models for the removal of Cr(VI) on
the surface of ppy/NC nanocomposite.

Langmuir Freundlich

qm (mg/g) KL R2 KF 1/n R2

560 0.2300 0.997 350.1 0.0941 0.949

The values of correlation coefficients (R2) were 0.948 for Freundlich isotherm and 0.997
for Langmuir isotherm indicated that the adsorption of Cr(VI) can be better defined by
the Langmuir isotherm model. The isotherm results indicated that the capture of Cr(VI)
ions on the surface of ppy/NC nanocomposite was reached via a monolayer adsorption by
identical adsorption active sites [52,53]. Moreover, the maximum adsorption capacity of
the nanocomposite was reached 560 mg/L toward Cr(VI) ions that is considered excellent
results when compared to other adsorbents as discussed in the comparative study section.

3.6. Discussion on the Mechanism of Removal

To understand the mechanism of the removal of Cr(VI) ions on the surface of ppy/NC
nanocomposite very well, XPS spectra of the nanocomposite before and after adsorption are
reported in Figure 7. Figure 7a shows the scan survey of the nanocomposite. According to
Figure 7a, the C 1s, N1s, and O 1s peaks appeared at binding energies of 285.0 eV, 400.0 eV,
and 532.4, respectively [54]. A peak related to Cr 2p was appeared after the capturing
process indicated the uptake of the metal. This peak appeared as a twin attributed to
Cr 2p3/2 and Cr 2p1/2 at 577.0 and 586.9 eV, respectively. The oxygen content of the
adsorbed chromium ions made the C/O ratio of the composite increased considerably
after the adsorption as shown in the O 1s peak. Additionally, the N 1s spectra of the
nanocomposite were completed before and after the metal uptake as shown in Figure 7b.

According to Figure 7b, N+, NH-, and N- peaks were observed with molar ratios
equal to 13.8, 28.5, and 57.7%, respectively. These ratios by the action of strong oxidation of
Cr(VI) were increased to 30.4, 24.4, and 45.2%, respectively. Moreover, the Cr 2p spectra
of the nanocomposite were performed to explain the mechanism of metal removal deeply
as shown in Figure 7c. After the adsorption, the nanocomposite showed the appearance
of Cr (III) and Cr (VI) peaks with molar ratios of 59.7% and 40.3%, respectively, meaning
that the ppy electrons reduces the hexavalent chromium to the trivalent chromium and the
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adsorption process included both ions. This removal mechanism was described by many
previous studies [55–58].
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3.7. Reusability Study

For the large-scale application of any adsorbent, its reusability and regeneration must
be studied as it is very important economically, and a good reusability may reduce the
overall cost of treatment [59]. Subsequently, the reusability of ppy/NC nanocomposite for
the removal of Cr(VI) ions was studied for six successive cycles as shown in Figure 8. Each
cycle is consisting of adsorption process followed by desorption process. The adsorbent
was agitated with the metallic ion solution followed by the treatment of the adsorbent
surface with 1 M of HCl as eluent. Finally, the adsorbent became ready for the next cycle.
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According to Figure 8, the ppy/NC nanocomposite showed good reusability results
for the removal of Cr(VI) ions up to six cycles. The first cycle showed the highest removal
efficiency due to the existence of fresh unused adsorption sites on the surface of adsorbent.
After that, the removal efficiency was decreased gradually due to the destroyed non-
renewable sites during each cycle. The last cycle showed a removal efficiency of 70%
indicated the excellent stability of the nanocomposite toward the removal of Cr(VI) ions.
These results indicated the effective regeneration of adsorption sites during the adsorption
process which reduces the overall cost of process and encourages the application of the
nanocomposite for large scale treatment.

3.8. Comparative Study

To assess the performance of ppy/NC as an adsorbent for the removal of Cr(VI)
from aqueous solution, the adsorption capacities of previously reported adsorbents were
compared with the present study as listed in Table 3. According to Table 3, the ppy/NC
showed an excellent adsorption capacity toward Cr(VI) ions. This good capacity encourages
its use as adsorbent for real samples treatment. Additionally, this adsorbent could be
examined for the removal of many other pollutants.

Table 3. The comparison between the removal of Cr(VI) ions on the surface of ppy/NC nanocomposite and reported studies.

Adsorbent Adsorption Capacity (mg/g) Ref.

ppy/NC 560.0 This study

Chitosan-crosslinked-poly(alginic acid) nanohydrogel 26.42 [60]

Activated carbon from peanut shell 16.27 [61]

Polyaniline-coated electrospun adsorbent membrane 15.09 [62]

Biochar modified with Mg/Al-layered double hydroxide intercalated with EDTA 38.0 [63]

Sulfuric acid modified leaves 107.55 [64]

Graphene/SiO2@PPy nanocomposites 429.0 [65]

PA6@Mg(OH)2 electrospun nanofibers 296.0 [66]

PAN-NH2 nanofibers 138.0 [67]

PAN/polypyrrole core/shell nanofiber mat 75.0 [68]

Ammonium-functionalized cellulose nanofibers 18.0 [69]
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4. Conclusions

In the present study, cellulose was hydrolyzed using sulfuric acid to produce the
nanocellulose, and then functionalized using polypyrrole through a polymerization reac-
tion to fabricate a nanocomposite of polypyrrole/nanocellulose (ppy/NC). The familiar
techniques were used for the characterization of the nanocomposite. The crystalline nature
of the synthesized NC was approved using XRD. Additionally, the nanosized cellulose was
approved through SEM images. Thermal analysis study showed the excellent stability of
the nanocomposite with a decomposition point at 225 ◦C. The synthesized nanocomposite
was examined for the adsorption of Cr(VI) ions. The pH effect on the adsorption of metallic
ions was studied showing an optimum at pH 2.0. Additionally, the effect of interfering
ions on the removal efficiency (%) was studied with minor decrease in the Cr(VI) removal
due to the competition between ions for the adsorption sites. The nanocomposite showed
a maximum adsorption capacity of 560 mg/g according to Langmuir isotherm model. The
study of the removal mechanism showed that the hexavalent chromium was removed via
two ways of adsorption and reduction which enhanced the performance of the adsorbent.
Additionally, the ppy/NC adsorbent was reused for the removal of Cr(VI) ions up to six
cycles with excellent regeneration results. The comparative study of ppy/NC nanocom-
posite with other reported adsorbents confirmed its higher performance for Cr(VI) uptake.
Hopefully, this nanocomposite is an excellent choice for water treatment and should be
investigated toward additional pollutants in the near future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13213691/s1, Figure S1: SEM image of nanocellulose, Figure S2: SEM image of ppy/NC
nanocomposite after Cr(VI) ions adsorption.
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