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Abstract: Specialised modelling and simulation methods implementing simplified physical
models are valuable generators of insight. Template-based geometric simulation is a
specialised method for modelling flexible framework structures made up of rigid units. We
review the background, development and implementation of the method, and its applications
to the study of framework materials such as zeolites and perovskites. The “flexibility
window” property of zeolite frameworks is a particularly significant discovery made using
geometric simulation. Software implementing geometric simulation of framework materials,
“GASP”, is freely available to researchers.
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1. Introduction

Template-based geometric simulation is a specialised method for the study of flexible frameworks,
which we may define as follows: a flexible framework is a structure composed of relatively rigid subunits
connected by relatively flexible linkages. By relatively rigid and relatively flexible, we mean that the
energetic penalty for distortions of the subunits is significantly greater, e.g., by at least an order of
magnitude, than the energetic penalty for variations in the geometry of the linkage. In the context of
materials, the classic example of such a structure is a three-dimensional framework silicate, either dense
(e.g., quartz) or porous (e.g., a zeolite). Here the relatively rigid subunit is the SiO4 tetrahedron, while
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the relatively flexible linkage is the Si–O–Si bridge. A wide range of Si–O–Si angles are observed
in different framework silicate structures [1,2], indicating that the bridging angle can be varied over a
substantial range without excessive energetic penalty.

The existence of two disparate energy scales for distortions of the framework naturally suggests
an idealisation, generally known as the Rigid Unit model [3,4]. In this idealisation, the subunits are
treated as entirely rigid. Constraints on the linkages are then chosen to maintain the connectivity
of the structure while allowing free angular variation. For a framework silicate, a rigid unit model
considers each SiO4 unit as a tetrahedron, with a harmonic constraint of zero natural length connecting
the corners of linked tetrahedron. Since this model allows, at some energy penalty, for the corners of
linked tetrahedra not to be colocated, it can also be termed a “split-atom” model. This model has been
implemented in the “CRUSH” software [5] for the prediction in reciprocal space of Rigid Unit Modes or
RUMS—low-frequency collective modes, involving cooperative rotations of polyhedra, which are
significant in dynamic disorder and as soft modes for phase transitions [6].

In contrast, template-based geometric simulation combines insights from both the atomic and
polyhedral views of a structure. This method maintains two overlapping representations of the structure.
In the atomic representation, all atoms are present and have coordinates and radii for the detection
of contact steric interactions. In addition, a polyhedral template is superimposed on each polyhedral
unit; this template is sometimes referred to as a “ghost”. The interatomic bonding within the unit is
represented by harmonic constraints linking each atom to a vertex of the template [7]. These constraints
penalise deviations of the atomic geometry in the unit from the ideal geometry represented by the
“ghost” template. This use of templates to represent the bonding geometry of multiple atoms is the most
distinctive feature of template-based geometric simulation; conventional simulations using empirical
interatomic potentials would make use of multiple two-body (bond distance) and three-body (bond angle)
terms. Bridging atoms belonging to multiple polyhedral units are linked to one vertex on the template
for each unit.

The development of the rigid unit model and of template-based geometric simulation from the
polyhedral view of a framework is illustrated in Figure 1.

As we shall see, this template-based approach lends itself to both the geometric analysis of structural
models and to the generation of new structural models by geometric simulation. The method is
implemented primarily in a piece of software titled “GASP”, for “Geometric Analysis of Structural
Polyhedra”, which is freely available to researchers and can be obtained from the corresponding author.
The name “GASP” was intended as a respectful pun on the widely used and extremely comprehensive
“GULP” simulation package [8].
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Figure 1. (a) Part of a silicate mineral framework containing Si and O atoms, with the SiO4

units viewed as polyhedra; (b) a rigid-unit model of the framework for calculation of RUMs.
The polyhedra are considered as rigid units and their vertices are connected by harmonic
constraints; (c) templates and constraints for geometric simulation. A tetrahedral template is
centred on each Si atom. Vertex O atoms are tethered by harmonic constraints to template
vertices.

(a)

(b) (c)

2. Comparison to Conventional Simulation Methods

It is instructive to consider both the limitations and the advantages of such a specialised and physically
simplified method of simulation. The method is of course on an entirely different level of theory from
ab-initio electronic structure methods, and indeed from all-atom empirical-potential methods, which
seek to generate accurate structures and generate realistic energy landscapes. Geometric simulation does
not generally include any long-range forces and essentially neglects electrostatics. The production of
detailed energetics is not the goal.

The method has some attractive computational features. It handles large system sizes well, it is robust
and it gives sensible results for framework geometry without requiring, for example, detailed knowledge
of the distribution of extra-framework content. The main advantage of a simplified simulation, however,
is in the generation of insight. Since geometric simulation includes geometric effects while excluding
charge, polarity and other long-range effect, it can indicate whether such long-range effects are required
to explain a given framework behaviour. By focussing on real-space rigid unit behaviour, the method
suggests and answers questions that other methods would not; the most important example being the
discovery of the “flexibility window” phenomenon in zeolite frameworks (Section 4.6).
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If our goal is to produce very accurate energy landscapes for a structure, then we require the highest
level of theory that is available to us. For the generation of insight, however, the most detailed model
is in a sense the least useful, since what it tells us is that a very accurate model of the real system
behaves as the real system does. The value of simplified methods lies in the deliberate inclusion of only
certain parts of the physics and the exclusion of others. If the simplified model generates a behaviour
which we wish to explain in a real system, then we have learned something about what aspects of the
physics are important in producing that behaviour. For this reason the development of simplified models
and methods will always form a parallel strand to the ongoing development of more and more accurate
ab-initio and empirical-potential methods.

3. Templates for Geometric Analysis and Simulation

A basic item of input for geometric analysis and simulation is one or more polyhedral specifications,
giving the elements to be found at the centre and at the vertices of the polyhedron, the polyhedral shape
(from a small list of defined shapes), and the ideal bond length. The combination of shape and bond
length specifies the shape of the polyhedral template to be matched to a bonded group of atoms. The
principal shapes used in geometric simulation to date have been tetrahedra and octahedra; for example
an SiO4 tetrahedron is typically specified as “TET Si O 1.61”, while a regular MnO6 octahedron would
be specified as “OCT Mn O 1.9” [9]. On the basis of these specifications every atom in a structure can
be assigned a role by element, as centre, vertex or “interstitial” if it is not part of any polyhedral type.

The structural model is provided to the simulation in .xtl format in P1 symmetry, that is, with all
atoms explicitly represented. Bonded groups of atoms in the structural model can be found either by
specifying the bond connectivity a priori or using a distance-based search centred on each central atom.
A geometrically regular polyhedron of appropriate type is then constructed over each bonded group
and each atom in the group is assigned a vertex on the polyhedron. After the construction process, the
position and orientation of the template must be aligned to the positions of the atoms in its group.

3.1. Polyhedral Alignment and Residual Mismatch

At the heart of the geometric analysis and simulation approach is a system for efficiently matching
the position and orientation of two similar polyhedra so that the total mismatch between the positions of
their vertices is minimised. The residual mismatch then represents the deformation of one polyhedron
relative to the other.

A convenient representation for rotations in three dimensions is found in the bivector algebra of
geometric or Clifford algebra, and the use of geometric algebra “rotor” operators in the alignment process
is described in [10]; hence the use of “geometric simulation” as a description of the method.

This polyhedral alignment is used to align the geometrically regular template polyhedra to the,
generally slightly irregular, polyhedra formed from the positions of atoms in a bonded group. For
frameworks we typically centre the template on the central atom and then minimize the mismatches
for the vertex atoms with respect to the orientation of the template. The residual mismatch then
represents deformations of the geometry of the bonded group away from the geometric ideal defined
by the template.
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An immediate effect of using a template is to provide a useful single measure of polyhedral
deformation, with units of length, which can be decomposed into bond-stretching and bond-bending
terms. The vector describing the mismatch between an atomic position and a template vertex can be
resolved into components parallel and perpendicular to the vector describing the centre-vertex bond in
the template. The parallel component represents bond stretching or compression, and the perpendicular
component represents deformation of the internal angles of the polyhedron. One can thus quantify the
distortion of a polyhedron in terms of the RMS bond-stretching and bond-bending mismatch among
its vertices. This is particularly valuable in making angular deformations of polyhedra immediately
understandable and comparable to variations in bond length; such deformations would otherwise have
to be reported as a list of internal (vertex-centre-vertex) angles. The decomposition of distortions into
bending and stretching components is illustrated in Figure 2.

Figure 2. The mismatch between an atom and a template vertex is decomposed into
components of bond-stretching, parallel to the bond vector in the template, and of
bond-bending, perpendicular to the bond vector in the template.

It is not necessary for one of the polyhedra in the alignment to be geometrically regular and one can
also consider the alignment and residual mismatch of two irregular polyhedra from different structural
models. This provides means to quantify the relative importance of rigid-unit motion and polyhedral
distortion in the dynamic or static disorder of frameworks (Section 4.1), and to examine polyhedral
rotation in the response of a framework to pressure (Section 4.3).

This single-step alignment of polyhedra—either fitting templates to a model or comparing two
models—constitutes geometric analysis of the polyhedral framework. To proceed to a geometric
simulation we must also develop a force model based on the mismatches between atoms and templates,
as discussed in Section 3.2.

3.2. Force Models in Geometric Simulation

The force model for geometric simulation consists of harmonic constraints of zero natural length
penalising the mismatch between atoms and templates, plus harmonic (soft-sphere) constraints
penalising steric overlap of atoms, considered as spheres. Steric clashes between atoms belonging to
the same bonded group are not considered.
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As the mismatches can be resolved into bond-bending and bond-stretching components, these
components can be assigned separate harmonic constraints and need not have the same spring constant.
The simulation calls for the specification of spring constants for bond-bending and bond-stretching
for each polyhedral type. In the method’s most common application, to silicate zeolite frameworks,
we typically assign values of 5 and 20 arbitrary units as the spring constants for bond-bending and
bond-stretching distortions of the SiO4 tetrahedra, based on the relative frequencies of the corresponding
modes of vibration observed experimentally in SiO2 structures [11–13]. The simulation also requires a
steric radius for each element present, and a spring constant. We typically treat steric clashes as being as
disadvantageous as bond stretching and assign a spring constant of 20 arbitrary units to all overlaps. The
most significant radius for zeolite frameworks is that of the tetrahedral oxygen atoms, for which we use
a standard radius of 1.35Å [14]. The elements of the force model for geometric simulation are illustrated
in Figure 3.

Figure 3. Force model for geometric simulation. The oxygen atom at the centre of the
diagram is in steric contact with a nearby atom (above) and is connected to two template
vertices to right and left. The mismatch of the atom from a template position is resolved
into bond-stretching and bond bending components. Harmonic penalties apply to the
bond-bending distortions, bond-stretching distortions, and steric overlap of atomic spheres.

So long as the simulation includes only these terms—mismatch and steric overlap—the overall
energy scale can be considered arbitrary. It is, however, possible to include other interactions in the
simulation [12] using more conventional forms of interatomic potential, such as a Buckingham potential.
In this case the energy scale for the geometric simulation terms and the other potentials must be sensibly
matched (see Section 4.2).

A “geometric relaxation” of a framework attempts to minimise the penalties on mismatches and
steric clashes with respect to (i) the positions of all the atoms and (ii) the positions and orientation
of the templates. The approach taken in GASP is iterative. A polyhedral alignment step as described
in Section 3.1 is followed by an atomic relaxation step in which the templates remain fixed while the
atoms are moved by a simple steepest-descent algorithm. Polyhedral and atomic steps are repeated
alternately until the penalty is considered sufficiently small or no further improvement is possible. Since
this approach typically relaxes even large structures—supercells containing hundreds or thousands of
atoms—in a few CPU-minutes we have not found it necessary to use more sophisticated minimisation
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algorithms. An experimental version of GASP making use of the limited-memory BFGS algorithm has
been implemented by Kapko et al. [15,16].

4. Applications of Geometric Analysis and Simulation

In this section we shall briefly review the main applications so far of geometric analysis and simulation
by the current authors and others. We shall consider the analysis of dynamic disorder (Section 4.1), the
importance of framework flexibility for local motion (Section 4.2), compression mechanisms in zeolites
(Section 4.3), the generation of hypothetical zeolite frameworks (Section 4.4), studies on regular and
Jahn–Teller distorted manganite perovskites (Section 4.5), the “flexibility window” property of zeolite
frameworks (Section 4.6), pressure-induced phase transitions in zeolites (Section 4.7) and the application
of geometric simulation in biophysics for the simulation of flexible motion in protein (Section 4.8).

4.1. Dynamic Disorder in Frameworks

Geometric analysis is particularly useful in the analysis of dynamic disorder in polyhedral
frameworks. Let us suppose that we have two or more structural models of a framework, representing
“snapshots” of dynamic disorder, and that the models have the same framework topology, so that each
polyhedron in one model can be matched to its equivalent in the other. Geometric analysis of a single
model, matching templates to the model polyhedra, quantifies the distortions of the polyhedra from the
geometric ideal. Geometric analysis of a pair of models, meanwhile, matches pairs of model polyhedra
and decomposes their differences into components of rotation and distortion. This allows a quantitative
assessment of the relative importance of rigid-unit motions and distortions in the dynamic disorder.

An ideal source of such structural snapshots is Reverse Monte Carlo modelling based on total neutron
scattering data [17–19]. This method generates large structural models based on both sharp (Bragg) and
diffuse scattering, so that the models represent both the average structure and the dynamic disorder about
that average. Two independent models generated by fitting to the same data set represent uncorrelated
snapshots of dynamic disorder. GASP was originally developed to analyse such structural models for
SiO2 quartz in its α and β phases [7]. This analysis revealed a substantial component of rigid-unit
motion in the dynamic disorder of quartz. This rigid-unit motion component displays strong temperature
dependence with classic tricritical phase-transition behaviour, whereas the polyhedral distortion is almost
constant with temperature and insensitive to the α–β phase transition.

Such structural modelling and analysis of framework silicates has revealed that the hexagonally
symmetric β phase of quartz is a dynamic average, and that the local structure is more similar to the
trigonally symmetric structure of α quartz. Molecular-dynamics investigations by Kimuzuka et al. have
confirmed that the elastic behaviour of β quartz cannot be accounted for on the basis of the average
structure [20].

This combination of Reverse Monte Carlo modelling and geometric analysis—RMC+GA [18]—has
been applied to the investigation of a range of materials. In the perovskites, such as SrSnO3 [21] and
SrTiO3 [22], it appears that rigid-unit motion is generally less significant than it is in the framework
silicates. This is understandable inasmuch as the octahedra in perovskites have more bonding constraints,
with each being bonded to six neighbours rather than to four in the case of tetrahedral frameworks.
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The geometric analysis still provides useful information on the prevalence of octahedral tilting in
the framework.

A particularly interesting property of framework materials is the possibility of negative coefficients of
thermal expansion (NCTE). Geometric analysis of structural models of zirconium tungstate, a cubic
mineral displaying isotropic NCTE, confirms the significance of polyhedral rotations in generating
NCTE [23]. By maximising the scope for such rotational motion in a framework, NCTE can be produced
on a “colossal” scale [24].

4.2. Framework Flexibility and Motion

A particular characteristic of flexible framework structures, visible in the geometric analysis of
dynamic disorder, is the capacity for substantial local rearrangements of the structure [25]. This
is achieved by cooperative rotational modes involving many polyhedra. As a result, interatomic
distances—for example, O–O distances defining a channel radius or pore aperture—can vary by
amounts on the order of an Ångstrom without any great energetic penalty. This flexibility must
be taken into account when considering interstitial ionic or molecular motion through a porous
flexible framework [26,27]. Geometric simulation has been applied to investigate this flexibility in
several systems.

In quartz, channels run through the structure parallel to the crystallographic c axis. While in β-quartz
the average channel profile is hexagonal, in α-quartz the hexagonal symmetry is broken. Domain walls
occur between regions of the structure in which this symmetry breaking has occurred along different
directions. In α-quartz the domain wall is a well-defined region, one channel wide, where the channels
have a highly distorted elliptical profile. Geometric simulation of very large structural models [12] has
shown how these well-defined domain walls become less distinct in an incommensurate phase just before
the transition to the β phase (see Figure 4).

Framework flexibility is particularly relevant to the calculation of activation energies for ionic motion
along channels. For the motion of Li+ ions through quartz channels, calculations based on the static
average structure give misleadingly high activation energies; it appears that the Li+ ion has a well-defined
preference for occupying certain sites along the channel and an activation energy is required to allow
hopping from one site to the next. We have investigated this system using a combination of geometric
simulation for framework relaxation with a Buckingham potential and localised electrostatic interaction
to describe the interaction of the Li+ ion with the framework [11,12]. These simulations showed that
the framework accommodates flexibly to the presence of the ion, so that motion along the channel is
possible without a large activation energy. The results of the geometric simulation were corroborated by
full potential calculations using GULP, and the resulting model of ionic motion successfully accounts
for experimental data from dielectric spectroscopy and transport measurement on Li-doped quartz.

Framework flexibility also appears in the framework response to defects, such as the substitution of
an aluminium for a silicon atom in an SiO2 framework. In addition to the electrostatic effects of the
substitution, the longer Al–O bond length of 1.75 Å introduces strain into the framework. However,
geometric analysis of defect simulations indicate [28] that cooperative motion in the framework allows
“strain screening”; polyhedral distortion decreases rapidly with increasing distance from the defect site,
as the framework adapts by rotations rather than distortions of the polyhedral units.
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Figure 4. Structural models of domain walls in quartz, viewed down the crystallographic
c axis (from [12]). The upper panel shows a geometrically relaxed configuration using
α-quartz cell parameters, in which the domain wall (indicated by line) shows an elliptical
channel profile. The lower panel shows a geometrically relaxed configuration using cell
parameters from the incommensurate phase near the α–β phase transition; the domain wall
is less distinct.

4.3. Compression Mechanisms in Zeolites

As geometric simulation brings out the flexibility intrinsic to the framework, it can usefully be
applied to the study of compression mechanisms in framework structures, especially the aluminosilicate
zeolites. Diffraction experiments on single-crystal or powder samples under compression (e.g., in
a diamond-anvil cell) can provide cell parameters and hence pressure-volume (P -V ) data, but may
not always provide enough detail for structural refinement. A geometric simulation using the
ambient-pressure framework topology and experimental cell parameters is a simple method to investigate
the framework response to compression. As the cell parameters are altered, the polyhedra of the
framework respond by rotation.

Studies on the edingtonite (EDI) [29] and levyne (LEV) [30] have revealed subtle connections
between compression of the unit cell and the collective response of the framework. For example, in the
levyne framework LEV, a form of “internal auxetic” effect couples compression of the cell to variations
in channel profile in a non-obvious way—a uniform contraction of a channel profile is produced by a
non-uniform compression of the cell.

4.4. Generation of Hypothetical Zeolites

Geometric analysis has been applied in a study of real and hypothetical 4-coordinated network
structures representing zeolites and AlPOs [31], identifying limits on the permissible tetrahedral
distortion if a framework is to be realisable physically. A key finding was that most hypothetical
frameworks displayed much greater distortion of tetrahedral units than frameworks which are found
experimentally to exist; this distinction had not been detected by considering the framework energy.
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A current approach to the systematic generation of hypothetical zeolite structures is
Symmetry-Constrained Intersite Bonding Search (SCIBS) [32,33]. The method proceeds from
the generation of a topologically 4-coordinated network by symmetry, through its decoration with
tetrahedral-centre T atoms and with vertex O atoms, and simulated annealing with a simple cost
function [34], in order to generate a tetrahedral network which might represent a zeolite. The inclusion
of a geometric simulation phase in the process proved to be effective in identifying at an early
stage networks that were unable to attain tetrahedral geometry—for example if the TO4 groups were
trapped in a square-planar geometry. The elimination of such unfeasible candidates saves considerable
computational effort downstream in the simulated annealing process, giving an order of magnitude
improvement in the rate of framework generation [35].

4.5. Application to Manganites: Modelling of Jahn–Teller Distortion

An interesting application of the method to an octahedral system is found in the study of the manganite
perovskites. These systems can contain both regular octahedra centred on an Mn atom in the +4

oxidation state, and Jahn–Teller (JT) distorted polyhedra centred on Mn atoms in the +3 oxidation
state. The latter contain four bonds in a square planar arrangement with a typical Mn–O length of
1.94 Å and two extended bonds perpendicular to the plane with a typical Mn–O length of 2.16 Å.
JT-distorted octahedra can be represented in the template system by defining a privileged direction or
“moment” for each octahedron and extending the bonds lying along that direction. The regular octahedra
are represented as normal, as in Section 3. This use of templates is illustrated in Figure 5.

Figure 5. Use of regular (dashed outline) and Jahn–Teller distorted (solid outline) octahedral
templates to model a manganite perovskite framework. From [36].

An investigation of LaMnO3 structures, using various user-defined patterns of moments, produced
an intriguing result. For certain combinations of supercell parameters and moment distributions, the
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geometric simulation gives rise to “stripes”, a few polyhedra wide, generated by a pattern of variations in
the polyhedral orientations [37]. Such stripe patterns, when observed experimentally, are conventionally
attributed to variations in charge or oxidation states, whereas geometric simulation results suggest that
ordered orientational variations may also be a cause.

Geometric templates also proved useful as constraints in a Reverse Monte Carlo (RMC) investigation
of LaMnO3 based on neutron time-of-flight scattering data [36]. At high temperatures there is an
apparent clash between the long-range average structure of LaMnO3, obtained from diffraction and
crystal structure refinement, and local probes, in particular Pair Distribution Function (PDF) data [38].
Local structure indicates the persistence of JT distortion at high temperatures whereas the average
structure indicates that the octahedra have become geometrically regular.

RMC modelling of a supercell structural model was attempted in order to generate structures
consistent with both the long-range and local structural information. Such modelling must include
constraints to ensure that the bonding geometry remains rational, so as not to generate unphysical
structures. However, since the distribution of JT moments was to be an output of the modelling, it
was important that the bonding constraints should not bias the presence or distribution of JT distortion.
This was achieved using geometric templates in either regular or JT-distorted forms. Which template
was applied to a given polyhedron was determined by its axial ratio in the model. Each attempted atomic
move in the RMC simulation was followed by an accept/reject decision based on the mismatch between
atoms and templates, with no such mismatch being allowed to exceed a threshold of 0.3 Å. The threshold
allowed sufficient variation in the polyhedral geometry that a group of atoms could change from being
considered JT-distorted to being considered approximately regular and back again.

This research successfully produced models for LaMnO3 which reflected both local and average
structural data. The ordering of JT-distorted polyhedra provided a quadrupolar order parameter
describing the apparent JT phase transition in LaMnO3. A matching study [9] of CaMnO3, in
which JT distortion is absent in both the local and average structure, provided a “negative control”,
demonstrating that the geometric constraints allowed the distribution of JT distortion to be driven by the
experimental data.

4.6. The Flexibility Window of Zeolites

The discovery of the “flexibility window”, a geometric property of zeolite frameworks, is perhaps the
most striking result to follow from geometric simulation to date [39,40]. A zeolite framework structure,
determined experimentally from crystallographic refinement or simulated using interatomic potentials,
always displays small variations of the atomic geometry in each tetrahedral unit away from the geometric
tetrahedral ideal. From the point of view of geometric simulation, this immediately leads to a question: is
it possible in principle for all tetrahedra to be made ideal? Or are distortions of the tetrahedral geometry
inevitable, given the framework topology and the unit cell parameters of the structure?

This question can be answered using geometric simulation. If the tetrahedra can be made ideal, the
structure can be geometrically relaxed until the residual mismatch between atom and template vertices is
reduced to less than a small tolerance (we require that neither the bond-bending nor the bond-stretching
distortion of any polyhedron should be greater than 0.001 Å). In this case we declare the structure fully
geometrically relaxed, as the tetrahedra have reached ideal geometry. If the tetrahedra cannot be made
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ideal, the geometric relaxation stops with a residual mismatch exceeding the tolerance; the structure is
not fully relaxed. We could also say that in the first case the geometric simulation produces a “stress-free”
framework while in the second case there is an intrinsic stress in the framework.

The striking result that emerges is that, for those zeolite frameworks which are known to exist in nature
(either as minerals or through chemical synthesis), the framework can be geometrically relaxed so that
the tetrahedra become geometrically ideal. Furthermore, this relaxation can be achieved over a range of
densities. This leads to the definition of the flexibility window as the range of densities over which the
tetrahedra of the framework can be made geometrically ideal. 196 of the 197 currently known zeolite
framework types display a flexibility window [15]. The window is limited on the high-density side by
collisions among oxygen atoms, and on the low-density side by tension in the T–O bonds (though not,
typically, by an T–O–T angle of 180◦), as illustrated in Figure 6. A curious feature is that the observed
densities of zeolites under ambient conditions appear to lie towards the low-density edge of the window,
indicating that zeolite frameworks are expanded structures [39].

Figure 6. Faujasite (FAU) framework during an exploration by geometric simulation of the
flexibility window, from the high-density limit at left to the low-density, expanded limit at
right. The upper half of the framework is shown in a polyhedral view while the lower half
is shown in a space-filling view to emphasise the significance of the oxygen atomic radii.
From [39].

In principle the flexibility window of a framework is defined in the six-dimensional space of the
crystallographic cell parameters (a, b, c, α, β, γ). Investigations thus far have been restricted to lower
dimensionality (1, 2 or 3) [15,16].

The real importance of the flexibility window is that, although it is a typical property of existing
zeolite frameworks, it is a very rare property among hypothetical zeolite frameworks, even those
calculated to have low framework energies using interatomic potentials [16,39]. It is more typical for
hypothetical frameworks to display large intrinsic distortions of the tetrahedra. This suggests that the
flexibility window may be a key criterion in the selection of hypothetical frameworks as candidates for
synthesis [40].
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Although the flexibility window is defined geometrically, it it also linked to the physics of zeolite
frameworks. We can imagine dividing the interatomic interactions in a zeolite structure into two
components, Ulocal and Unonlocal. Ulocal contains those interactions which favour ideal tetrahedral
geometry and steric exclusion, while Unonlocal contains all other interactions, including long-range
dispersion and electrostatic interactions. The geometric simulation effectively models Ulocal while
neglecting Unonlocal.

If the structure lies within its flexibility window, that is, it can be fully geometrically relaxed, then it
can reach the minimum of Ulocal. If we now introduce Unonlocal as well, there will be some distortion
of the TO4 units from the tetrahedral geometric ideal. This distortion represents variation around a
minimum and so its energy penalty in the Ulocal terms will be small and second-order in the size of
the distortion. If on the other hand the structure lies outside its flexibility window, it cannot reach the
minimum of Ulocal. Any further distortion of the framework will come at an energy penalty which is
large and first-order in the size of the distortion. We therefore expect the structure to behave differently
in, for example, the interactions between the framework and channel contents, depending on whether
it lies inside or outside its flexibility window. This insight has led to further studies identifying links
between the flexibility window and the physical properties of zeolites, especially in their response to
pressure, as we shall see in Section 4.7.

4.7. Phase Transitions in Zeolites

Since the high-density edge of the flexibility window is defined by clashes among vertex oxygen
atoms, we expect that the framework will change its behaviour under compression if it approaches
this edge of the window. We have therefore begun to investigate the occurrence of phase transitions
in zeolites under pressure, using geometric simulation and the flexibility window concept to interpret
experimental data.

Cubic analcime displays a phase transition at a relatively low pressure (∼1 GPa) from a highly
symmetric cubic form to a minimally symmetric triclinic form; this transition is also associated with
an “anomalous” softening, that is, the high-pressure form displays a lower bulk modulus than the
ambient-pressure form. Using geometric simulation we have shown that this transition occurs when
the structure reaches the edge of its cubic flexibility window [41]. This insight extends to other minerals
with the ANA framework—leucite, pollucite and wairakite [42]—and in wairakite, Al/Si ordering in the
framework is significant [43].

4.8. Application to Proteins

Template-based geometric simulation has also been applied in biophysics as a method for simulating
flexible motion in proteins [44]. The “FRODA” approach (Framework Rigidity Optimised Dynamic
Algorithm) makes use of templates to represent relatively rigid groups of atoms in a protein structure.
The flexibility of the protein can then be explored within the constraints imposed by steric exclusion
and the templates, at a significantly lower computational cost than conventional molecular dynamics.
FRODA [44] was originally implemented as a module within the “FIRST” rigidity analysis software [45]
and template-based geometric simulation is also used in the recent FRODAN [46] and NMsim [47]



Materials 2012, 5 428

methods. The combination of rigidity analysis, template-based geometric simulation and elastic network
modelling is particularly promising for rapid simulation of flexible motion [48].

There are two main differences between the use of templates for simulations of mineral frameworks
and their use for proteins. The first difference is that, in mineral frameworks, the templates represent
a central atom and its nearest-neighbour vertex atoms. In proteins, a single template can cover larger
groups of atoms, identified using rigidity analysis; the simulation therefore includes templates with a
wide range of sizes and shapes, ranging from individual methyl groups to entire domains including
multiple secondary structure units. The second difference is that, in mineral frameworks, the bridging
angles between polyhedra are treated as variable. In proteins, by contrast, flexibility is permitted by
variation of the dihedral angles. This is represented by allowing templates to overlap along bonds where
the dihedral angle is variable, as illustrated in Figure 7. Two templates are thus constrained to have a
bond vector in common.

Figure 7. Use of overlapping templates (shown as red, green and yellow sticks) as constraints
in the simulation of proteins. The tethering of atoms (grey) to these overlapping templates
constrains interatomic bond lengths and angles but allows dihedral angles to vary.

5. Availability of Geometric Simulation Codes

GASP code is available without charge on request to academic users, who should contact the
corresponding authors, and may be freely used and modified for research.
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