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Abstract: Erythropoietin (EPO) is a glycoprotein cytokine known for its pleiotropic effects on various
types of cells and tissues. EPO and its receptor EPOR trigger signaling cascades JAK2/STAT5,
MAPK, and PI3K/AKT that are interconnected and irreplaceable for cell survival. In this article, we
describe the role of the MAPK and PI3K/AKT signaling pathways during red blood cell formation
as well as in non-hematopoietic tissues and tumor cells. Although the central framework of these
pathways is similar for most of cell types, there are some stage-specific, tissue, and cell-lineage
differences. We summarize the current state of research in this field, highlight the novel members of
EPO-induced PI3K and MAPK signaling, and in this respect also the differences between erythroid
and non-erythroid cells.
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1. EPO and Erythropoiesis

Erythropoiesis is the process of creating mature red blood cells from pluripotent
hematopoetic progenitor cells, resulting in the production of approximately two million
erythrocytes per second [1]. Erythropoietin (EPO) leads through the erythropoiesis to an
increased number of red blood cells to provide the oxygen supply for organs and tissues.
Low-level secretion of EPO is sufficient for classical steady-state erythropoiesis but its
production is increased during hypoxia and anemia. The first site of EPO production is
considered to be neural crest cells and neuroepithelial cells that transiently secrete EPO
during the early stages of embryogenesis [2]. In the late embryogenesis, EPO distribution is
shifted to the fetal liver [3], whereas adult EPO production resides in the specialized kidney
interstitial fibroblasts called pericytes [4]. Erythrocytes in mammals are derived from
megakaryocyte-erythroid progenitors differentiating into burst-forming unit-erythroid
(BFU-Es) and then to colony-forming unit-erythroid (CFU-Es) [5]. Subsequently, arising
erythroid lineage differentiates from the proerythroblast stage, followed by basophilic,
polychromatophilic, and orthochromatic erythroblast with a gradually decreased number
of EPOR. Beginning from BFU-E stage and ending in the orthochromatic phase, EPO
accompanies differentiating cells throughout their maturation and induces transcriptional
reprogramming [6]. The final product of erythropoiesis is red blood cells with its character-
istic biconcave shape ideally adapted for transport of respiration gases. Furthermore, in
mature red cells most of organelles are lacking to ensure the biggest volume for hemoglobin
accumulation.

Production of mature red blood cells is a sophisticated multistep process located in
erythroblastic islands, a specialized niche within the bone marrow with a population of
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erythroid cells in different stages of differentiation and the central macrophage [7] that is a
source of regulatory cytokines for red blood cells’ maturation such as insulin-like growth
factor-1 (IGF-1), bone morphogenetic protein-4 (BMP-4), and ferritin [8–10]. However
essential, the main regulatory molecules for erythroid cell production are EPO and its
receptor EPOR. Numerous hormones, cytokines, and members of extracellular matrix
participate in the regulation of erythropoiesis, for example, in stem cell factor SCF, IGF-1,
corticosteroids, interleukines IL-3 and IL-6, fibronectin, hepcidin, or erythroferrone. The
effect of these molecules orchestrate intracellular transcriptome, epigenetic, and proteome
changes in differentiating erythroid cells. The major EPO activated signaling pathways
differentially influence transcriptome reprogramming of the hematopoietic stem cells and
their cell lineage commitment. In addition, regulation of erythroid proliferation strongly
depends on the protein abundance of AKT and MAPK pathway mediators [11].

As we have described the role of the STAT5 protein as a key molecule of EPO signaling
in our recent paper [12], we will now focus on the role of the PI3K and MAPK pathways in
both erythroid and non-erythroid cells in more detail.

2. EPOR/PI3K/AKT and Erythropoiesis

The EPOR/PI3K signaling cascade is crucial in mediating signals for survival, prolifer-
ation, and terminal differentiation of erythroid progenitors [5,13]. PI3K is composed of one
regulatory subunit (P85) and one catalytic subunit (P110). P85 subunit is associated with
the tyrosine residues (Y607 and Y508 sites) of EPOR and activates the PI3K pathway [14].
After binding of EPO to its receptor, the p85-α subunit has an essential role for EPOR endo-
cytosis in addition to the ubiquitination of Epsin1 and Cbl proteins [15]. Activated PI3K
phosphorylates secondary messenger molecules are known as phosphoinositide 3,4 bispho-
sphate PI(3,4)/P2 and phosphoinositide 3,4,5-trisphosphate PI(3,4,5)/P3 [16]. Activation
of phosphoinositide-dependent kinase 1 (PDK1) leads to the phosphorylation of a serine-
threonine kinase AKT (known also as protein kinase B), considered as a central mediator of
PI3K/AKT signaling. Among successful signal transduction, the nuclear translocation of
AKT is required for EPO-induced erythroid differentiation [17]. Subsequently, downstream
targets of PI3K/AKT include transcription factors FOXO3 and GATA-1 that are essential
for normal erythroid cell development [18,19], hypoxia-induced factor-1α (HIF1α) [20,21],
and the mammalian target of rapamycin (mTOR) [11]. Furthermore, negative regulators
such as phosphatase, tensin homologue (PTEN), and carboxyl-terminal modulator protein
C can block the PI3K/AKT signaling pathway [22] (Figure 1). EPO-mediated PI3K/AKT
signaling was mapped to identify EPO responsive genes in the CD34+ cells, the earli-
est detectable erythroid progenitors of human bone marrow. Gene expression profiling
identified a plethora of target genes from which the most significant were: GNG2 and
RDS20 involved in G-protein signaling, and PABPN1and CPSF5 required for progressive
and efficient polymerisation of poly(A) tails on the 3′ ends of a eukaryotic gene. More-
over, mitotic regulators ANAPC4 and SEMA3-F involved in Semaphorin signaling and
KIAA0746 in NOTCH signaling were detected in addition to the negative regulator of JAK
kinases PTPRC. Furthermore, cell cycle progression and differentiation were controlled via
EPO/PI3K hyperphosphorylation of the RB protein and upregulation of cyclin D3, E, and A
in addition to the upregulation of specific markers of immature erythroid progenitors c-KIT
and E-cadherin [23]. Interestingly, several genes associated with transcriptional repressions
such as THG-1, KLF8, and CNOT3 were represented among the downregulated genes.
Indeed, Sivertsen et al. [23] proved that most of the EPO responsive genes are regulated
by PI3K-dependent fashion apart from CISH and PIM1 that are known to be inducible by
STAT5.
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3. EPOR/MAPK and Erythropoiesis

During erythroid maturation, MAPK as activated by EPO plays an important role in
myeloid gene suppression, while the PI3K pathway is critical for erythroid gene induc-
tion [24]. Recently, a wide proteome study exhibited changes across differentiation from
early erythroid progenitors into nearly mature erythrocytes [25]. Although the MAPK
pathway is predominantly c-Kit driven and downregulated before the loss of EPOR/JAK2
activity, it is important for the early stages of erythropoiesis and for terminal maturation
delay. As the kinetic of MAPK protein expression varies across the stages of erythroid
maturation, it is assumed that its activity may be suppressed post-translationally. These
findings are supported by other earlier studies in which downregulation of MAPK signaling
promotes terminal maturation [26].

MAPKs are a family of evolutionarily conserved Ser/Thr kinases that play crucial
roles in proliferation, migration, differentiation, senescence, and apoptosis. They are also
frequently connected and/or involved in the signaling pathways of oncogenesis, tumor
progression, and drug resistance. In mammals, MAPK proteins can be divided into several
subgroups including extracellular signal-regulated kinases 1 & 2 (ERK1/2), p38 MAP
kinases, and c-Jun amino-terminal kinases (JNK), and the family of ERK5 proteins and
atypical ERK3, 4, 7, and 8 [27] (Figure 1). The activating of the EPO/MAPK signaling
pathway includes the following steps: recruitment of SH2 inositol 5-phosphatase 1 (SHIP1)
to EPOR and simultaneously binding adapter proteins such as the growth factor receptor-
bound protein 2 (GRB2), son of sevenless (SOS), and SHC Adaptor Protein 1 (SHC1) [28,29].
Subsequently, RAS and RHO GTPases are involved in the activation of downstream
MAPK members such as RAFs, MEKs, and ERKs. About 160 ERK1/2 substrates were
identified [30] and their activation depends on particular extracellular and intracellular
conditions leading to the appropriate response of the cell.

During erythroblast differentiation, an upstream signaling molecule of EPOR spleen
tyrosine kinase (SYK) is constitutively associated with EPOR in the plasma membrane
and is required for STAT5 and ERK activation induced by EPO [31]. Maintenance of
human erythropoiesis is also regulated by synergic activation of EPOR and transferrin
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receptors 2 (TFR2), mediating signal via MAPK/ERK and PI3K/AKT [32]. TFR2, which
is important for sustaining both iron delivery and signaling, associates with EPOR in
the endoplasmic reticulum of erythroblasts, creating a complex transported to the cell
surface [33]. During erythroblast development, other important EPOR interacting factors
have been described such as the protein RHEX that has stage-specific expression, increases
ERK1/2 activation, and is associated with EPOR. Other downstream EPOR/MAPK signal
transducers include neurofibrin that maintains a balance during ERK1/2 signaling and
RAS/MEK mediators MASL1 and Rasa3 [34]. Once activated, ERK1/2 is shifted into to
the nucleus and phosphorylates various transcription factors such as proto-oncogenes
c-Myc, c-Fos, c-Jun, ETS domain-containing protein Elk-1, and the cyclic AMP-dependent
transcription factor ATF2. The activation of a particular set of target genes depends on
extracellular and intracellular stimuli resulting in appropriate cellular response. The family
of MAPK members is wide and may have opposite effects during signal transduction.
While activation of p38 MAPK is associated with stress-induced erythropoiesis [35], ERK1
serves as a negative regulator of the steady-state splenic erythropoiesis [36] operating not
through the EPO/EPOR signaling pathway but involving the Sonic Hedgehog/BMP4
pathway [37,38]. There are many negative regulators involved in the MAPK pathway
including the Spred 1 protein, Raf kinase inhibitor protein RKIP, p38 MAPKs and JNKs
downregulator DUSP1/MKP1 [39–41]. Cytoplasmic ERK1/2 can shape also a negative
feedback regulatory mechanism upstream of the ERK pathway by phosphorylation of
protein kinases SOS, Raf-1, and MEK [42].

4. The Interconnection between EPO Signaling Cascades

JAK2 kinase is crucial for successful EPO/EPOR activation of the PI3K and MAPK
pathways. The pair of JAK2 molecules is constitutively associated with cytoplasmic box
1 on the intracytoplasmic site of EPOR [43]. After EPO binding to the EPOR, transphos-
phorylation of JAK2 kinases occurs and this further leads to phosphorylation of tyrosine
residues of EPOR on which the STAT5, MAPK, and PI3K signaling pathways are activated.
Although JAK2 is necessary for EPO signaling [44,45], the extent to which the MAPK
and PI3K pathways are dependent on JAK2 phosphorylation has not yet been studied.
However, JAK2 mutation in patients with myeloproliferative neoplasms (polycythemia
vera) caused overactivation of the PI3K and MAPK pathways [46].

PI3K/AKT and MAPK pathways have numerous overlaps and cross-talks between
each other to support mechanisms of cell survival. Indeed, they act as reciprocal in-
hibitors [47]. It is well known that the RAS protein, a joining molecule between MAPK
and PI3K, activates RAF by triggering the MAPK/ERK pathway [48], similarly recruiting
p110 catalytic subunit of PI3K to the plasma membrane and activating the AKT signaling
pathway [49]. Signal transducers such as protein GAB1 joins PI3K-mediated EPO signals
with the MAPK pathway [50] or a second lipid messenger PIP2 also mediates both AKT and
MAPK signaling by activating protein kinase C (PKC) that mediates the signal to RAF [51].
Moreover, targeted inhibition of one pathway can manage the flow of PIP2 signals to
another. PREX1, an important guanine nucleotide exchange factor, is also an activator of
both AKT and MAPK signaling during tumorigenesis [52]. Interestingly, a compensatory
effect as an adaptation to chemotherapy in tumors was described, whereafter attenuating
MAPK signaling AKT emerged to be activated much stronger [53].

5. EPOR/PI3K/AKT and EPOR/MAPK in Non-Hematopoietic Tissues

EPO signaling cascades are activated in many non-hematopoietic tissues in order
to prevent against tissue injury and damage (Figure 2). Either endogenous EPO pro-
duction or the expression of EPOR provide an auto/paracrine loop with its protective
and anti-apoptotic effect. EPO mediated effects on the cell depend on many factors
such as cell type, the type of EPO receptor present on the cell surface, and physiolog-
ical/patophysiological conditions, among other factors. Despite the fact that erythroid and
non-erythroid EPO/EPOR signaling share many similarities, there are some important
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differences. In addition to classical full length EPO, non-erythropoietic splice variants of
human and murine EPO have been detected. Among them, EV-3 variant without exon 3
present in human serum exerted a protective effect on neuronal cells [54]. Furthermore, the
β-common receptor (βcR) known as CD131 and Cytokine receptor like-factor 3 (CRLF3) as
an alternative EPOR exists in non-erythroid tissues [55]. Signaling through these receptors
and/or receptor complexes demonstrate distinct biological outcomes, while the molecular
mechanism of such signaling is mainly unknown. For example, the study of He et al. [56]
revealed that in contrast with the active EPOR homodimer, the EPOR/βcR complex does
not utilize the cytoplasmic tyrosines for EPOR signaling.
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5.1. Mitochondria

The EPOR/PI3K pathway operating in the nucleus is well described in erythroid
progenitors, while non-hematopoietic tissues also use mitochondrial engagement. It is
well known that the protection of the mitochondrial membrane integrity and the stopping
of cytochrome c release from the mitochondria is the main mechanism by which AKT
prevents cell death [58]. Moreover, mitochondrial biogenesis is one of the cardioprotective
effects during hypoxia and it is regulated through the EPO/AKT/eNOS signaling path-
way [59]. It has been proven that either genetic or pharmacological activation of AKT by
EPO modulates mitochondrial morphology in which apparent mitochondrial elongation
was seen to be dependent on the AKT activated Mitofusin-1 [60]. EPO induces also a
complex formation of activated AKT and adenine nucleotide translocase, a major subunit
of mitochondrial permeability transition pore (ANT), leading to the elevation of the thresh-
old for its opening [61]. Interestingly, for EPO, antiapoptotic impact WNT1 and FOXO3a
proteins are required to control mitochondrial membrane depolarization, cytochrome c
release, and caspase activation [62].

5.2. Nervous System

Carelli et al. [63] discovered that increased endogenous brain EPO is associated with
preventing ischemia/reperfusion damage of brain tissue. Indeed, therapeutic use of EPO
is a promising neuroprotective medication used against hypoxia/ischemia in pre-term
babies [64]. EPO together with IGF-I exerts cooperative initiation of neuroprotection via ac-
tivation of the PI3K/AKT pathway [65]. Novel members associated with EPOR/PI3K/AKT
axis such as the FAIM2 and GRINA factors have been discovered [66,67], approving its
neuroprotective effect. Indeed, EPO acts as a guard in the nervous system via stimulation of
the PI3K/AKT/GSK-3β pathway [68,69], AKT/mTOR/p70S6K pathway [70], and through
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the activation of PI3K/AKT/FOXO3a signaling [71]. During erythropoiesis, homodimeric
EPOR is involved but in the nervous system, EPO acts upon a heteroreceptor complex
comprising both the EPOR and βcR. Experiments with an EPO derivative carbamylated
erythropoietin (CEPO) unlike EPO demonstrated that signal response did not act via JAK2
but through the AKT activated by the glial-derived neurotrophic factor (GDNF) [72,73].
For neuroprotective activity in hippocampal neurons, AKT signaling is essential regardless
of the presence of functional STAT5. Conversely, to achieve the neurotrophic effect of EPO,
the simultaneous activity of both STAT5 and AKT is required [74].

Diverse cross-talks between EPO-mediated MAPK and PI3K/AKT signaling exist
in the nervous system and their complex interaction depends on the respective cellular
process and the cell type. The synergistic effect of ERK1/2 and AKT activation by EPO
was required for neuroprotection [75] and for EPO-induced phrenic motor facilitation in
the nervous system [76]. Conversely, EPO protects neurons against apoptosis induced
by oxygen and glucose deprivation that is closely related to the activation of PI3K/AKT
and inactivation of the ERK1/2 signaling pathway [77]. Moreover, the protective effect
of EPO mediated by ERK signaling in the case of disrupted the PI3K/AKT pathway
proves a compensatory mechanism ongoing in impaired cells in which one pathway
substitutes another to prevent cell damage [78]. The EPO mediated MAPK and PI3K
pathways have an important impact on neuronal tissues, transducing the signal either to the
neuroprotective Nrf2/Are pathway resulting in the reduction of oxidative stress [79,80] or
to NF-κB axis promoting differentiation of neuronal stem cells into astrocytes [81]. Recently,
the MAPK/ERK pathway was identified as a downstream effector of the EPO signaling
pathway for migration and positioning of neurons in the developing neocortex [82,83]. On
the contrary, in Schwann cells, EPO inhibited the microglial MAPK pathway to maintain
myelin integrity [84]. Indeed, the neuroprotective effect of the ERK pathway is associated
with either its activation [85] or inhibition [86] and depends on factors such as cell lineage,
culture environment, and pathological circumstances. In this regard, short-term activation
of ERK by growth factors under a physiologic condition is associated with neuroprotection,
while prolonged and persistent ERK activation after injury may induce cell death [85].
Trophic factors such as EPO or BDNF might not even initiate transient ERK activation but
attenuate the pathological long-lasting ERK activation after hypoxic injury and improve
cell survival [87].

5.3. Bone and Bone Marrow

It is known that endogenous EPO regulates the bone environment on diverse levels.
In bone, EPOR receptors are present on osteoblasts, osteoclasts, and on bone marrow
stem cells (BMSCs) that can differentiate into osteoblasts, chondrocytes, and bone marrow
adipocytes [57]. During the process of differentiation in osteoclasts, EPOR expression
gradually decreases [88].

Regulation of the bone marrow microenvironment is associated with the EPO/MAPK
pathway activity, inhibiting the adipogenic differentiation of bone marrow mesenchymal
stem cells [89]. Interestingly, mice lacking endogenous EPO signaling have increased
marrow adipogenesis and reduced ectopic bone formation [90]. The proliferation and mi-
gration ability of bone marrow-derived mesenchymal stem cells is significantly influenced
by the EPO-regulated MAPK and PI3K/AKT signaling pathways [91] likely via the mecha-
nism of increasing SDF protein chemokine molecule, an important player in directing the
migration of stem cells. In addition, an intramuscular injection of EPO resulted in BMSCs
mobilization to bone damage, increased bone regeneration process, and improved bone
strength [92]. EPO/MAPK and EPO/PI3K signals are also involved in the protection of
bone marrow microvascular endothelial cells in which nitric oxide (NO) donor increased
the expression of EPOR through the activated MAPK under both normoxia and hypoxia
conditions. On the contrary, EPO did not increase MAPK activity while it induced AKT
phosphorylation in endothelial cells under both normoxia and hypoxia conditions [93].
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5.4. Heart

EPO’s protective effect was described in a wide variety of processes in cardiovascular
pathophysiology, particularly in ischaemia, cell proliferation, apoptosis, and platelet acti-
vation. EPO exhibited myocardial protection through the MAPK/ERK induced GATA-4
stability, reduction of caspase-3 activity, upregulation of Bcl-2 [94], and decreased my-
ocardial fibrosis via suppressing the NADPH/ERK/NF-κB pathway [95]. Paracrine EPO
accelerated the healing process in intramyocardial cardiac angiogenetic stem cells via the ac-
tivation of AKT signaling and through the upregulation of upstream signals FOS and FZD7
in addition to the activation of TGF-β/WNT signaling [96]. Moreover, anti-inflammatory
and antifibrotic activity of EPO were demonstrated acting via both PI3K/AKT signaling
and downregulating Toll-like receptor (TLR4) expression in addition to inhibiting the
release of TGF-β1, TNFα, IL-6, IL-1β, IL-17A, MMP-9, and MMP-2 factors [97].

5.5. Kidney

EPO and its derivatives such as helix B surface peptide (HBSP) revealed protective
effects in transplant-related renal injuries such as ischemia-reperfusion injury (IRI) and
immunosuppressant nephrotoxicity [98]. Renoprotection of EPO was demonstrated via
modulation of the STAT6/MAPK/NF-κB pathway, ERK/p53 signaling [99,100], and via
the PI3K/AKT activated NOS/NO pathway [101,102].

5.6. Muscles

The importance of EPO in the proliferation, migration, and invasion via p38 MAPK
and ERK1/2 signaling was confirmed on vascular smooth muscle cells [103]. Furthermore,
EPO promoted proliferation, survival, and wound recovery in myoblasts via the PI3K/AKT
pathway [104]. On the contrary, a single EPO injection during exercise was not sufficient to
trigger the PI3K/AKT pathway, the main positive regulator of muscle protein synthesis
in skeletal muscles [105]. Nevertheless, EPO may be considered as an effective practical
therapeutic option for muscle-injury recovery [106,107].

5.7. Retina

The expression of EPO and EPOR in retinal tissues indicates its autocrine or paracrine
action. EPO can protect retinal tissues including microvascular endothelium, retinal ep-
ithelium, Müller cells, and retinal neurons. This effect of EPO is partly dependent on the
activation of PI3K and MAPK pathways. During diabetic retinopathy, inner blood-retinal
barrier (BRB) breakdown occurs while EPO prevents this damage via the inhibition of
microglial activation and phagocytosis mediated by the SRC/AKT/COFFILIN signaling
pathway [108]. Furthermore, BRB integrity was maintained by EPO-regulated downreg-
ulation of HIF-1α, JNK signaling, and thus by the up-regulation of ZO-1 and occludin
expression [109]. Another mechanism of retinal cytoprotection via maintaining zinc home-
ostasis by the EPOR/MAPK ERK pathway and upregulation of ZnT8 expression was also
demonstrated [110]. Therefore, EPO can be considered a therapeutic tool for the treatment
of diabetic macular oedema during diabetic retinopathy.

6. EPOR/PI3K/AKT and EPOR/MAPK in Cancer

Research progress in the area of erythropoiesis with extensive proteomics, transcrip-
tomic, and epigenetic studies on EPO signaling is currently absent regarding malignant
cells. Nevertheless, we can conclude that EPO signaling has several different features in
cancer cells compared to erythroid tissue. Firstly, cancer cells have a lower number of
receptors for EPO compared to erythroid progenitors [111]. Indeed, EPORs of cancer cells
are located either on the membrane surface or as a soluble intracellular forms [112], and
apart from the classical EPOR, ephrin-type B receptor 4 (EPHB4) as an alternative EPO
binding form was identified in malignant cells [113].

In addition, microenvironments of bone marrow and tumors differ from each other,
therefore EPO signaling may be influenced by distinct mechanisms and interactions of
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signaling molecules. In tumor tissues, autocrine or paracrine secretion of EPO is typical
compared to endocrine distribution of EPO required for erythropoiesis. Moreover, the hy-
poxic microenvironment of cancer tissues stimulates the local EPO production, supporting
viability and independent tumor growth. While EPO signaling during erythropoiesis plays
a main role in differentiation and proliferation, in cancer cells the signaling refers more to
anti-apoptotic cell survival and migration activity. Importantly, the main framework of
EPO signaling remains unchanged across all types of cells.

EPOR and its downstream signaling pathways STAT5, PI3K/AKT, and MAPK were
found as constitutively active and independent of EPO stimulation in non-small cell lung,
renal, and ovarian cancer cells but the mechanism underlying this phenomenon is not
sufficiently described [114–116]. Nevertheless, one of the mechanisms explaining the inde-
pendence of the EPO could be a mutation of the KRAS gene [117]. In addition, after the
downregulation of EPOR, both phosphorylated EPOR and STAT5 levels significantly de-
creased and either pAKT in ovarian carcinoma cells or pERK1/2 in human renal carcinoma
cells were increased as a compensatory mechanism [114,115].

EPO activates the PI3K/AKT pathway in human melanoma cells [118] and both the
antiapoptotic and proliferative effect of EPO acting through the AKT and ERK pathways
in neuroblastoma cancer cells were observed [119]. Moreover, enhanced EPO and EPOR
expression with AKT signalization included resulted in the promotion of colon cancer
cell growth, proliferation, and angiogenesis, and the same applies in the EPO-promoted
proliferation of glioma cells in vitro and in vivo [120,121]. Additionally, EPO significantly
enhanced the proliferation of rat pancreatic tumor cell line AR42J via activation of ERK1/2
and JNK1/2 [122]. MAPKs together with the STAT5 and AKT signaling pathways are nec-
essary also for EPO-mediated antiapoptotic effect in differentiated neuroblastoma SH-SY5Y
cells [123]. This study elucidated that the activation of a single MAPK signaling pathway
per se was not sufficient for antiapoptotic activity, thus STAT5 and AKT axis must also
be included [123]. On the contrary, EPO-induced activation of the MAPK and PI3K/AKT
pathways were sufficient for growth support and for the protection of human breast cancer
cell lines against apoptosis [124]. While functional EPOR signaling was essential for the
breast tumor progression effect of EPO and emphasizes the importance of the EPO/EPOR
axis, tumor growth was markedly reduced after the knockdown of EPOR. Chan et al. (2017)
also confirmed that EPO-induced MYC expression was mediated through the MAPK and
PI3K/AKT pathways [124]. Furthermore, pathologically deregulated erythropoiesis (poly-
cythemia vera) is associated with an abnormal increase in the activation of the MAPK and
PI3K/AKT pathways [46] likely caused by the point mutation in JAK2 kinase.

Cell migration is considered an initial step in metastasis and may be regulated by
a variety of signaling pathways. Interestingly, the migration of human breast cancer
cells with stable overexpression of EPOR was promoted by increased activation of the
ERK1/2 pathway but not through the JAK2-STAT5 axis [125]. On the contrary, EPO
in a JAK-dependent manner enhanced cell migration and activated RhoA protein via
MAPKs an in EPOR-expressed cervical cancer cell line [126]. Co-signaling of EPO and the
stem cell factor (SCF) activated both ERK1/2 and JAK2/STAT5, and had a cooperative
effect on the migration ability of cervical cancer cells [127]. Whereas SCF and EPO/SCF
induced strong, sustained phosphorylation of ERK1/2, EPO solely induced only a modest,
transient activation of ERK1/2 in cervical cancer cells. Indeed, the results of Aguilar
et al. (2014) demonstrate the cooperative activity of EPO and SCF in cells, expressing
their cognate receptors followed by the co-signaling of two cytokine receptors, induced
migratory behavior, and anchorage-independent cell growth. It was also recorded that
constitutively activated EPOR selectively induced MEK/ERK members of the MAPK
pathway but not p38 MAPK mediators [128]. Interestingly, the EPO-induced activation
of the PI3K/AKT and MAPK/ERK pathways was reduced using the hematopoietic cell
kinase (HCK) inhibitor (iHCK-37) particularly in the cells with high HCK expression [129].
During tumorigenesis, the MAPK and PI3K pathways may interact also with many other
pathways such as NOTCH, AR, WNT/β-catenin, TGF-β, COX-2, and so on, resulting in
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an increase of cancer aggressiveness [130,131]. Nevertheless, further research must be
performed to prove the contribution of AKT, MAPK, and their cooperation regarding the
EPO/EPOR or constitutive EPOR in cancer cells.

7. Conclusions

The interaction of EPO and EPOR triggers the activation of several signaling path-
ways including PI3K/AKT and MAPK. They are known to be important regulators of
the differentiation, proliferation, and cell survival of erythroid cells. More information is
emerging about their role in the protection of non-hematopoietic tissues and cancer cells.
In this article, we have attempted to summarize recent findings on the EPO-induced PI3K
and MAPK pathways, and described their role in numerous cellular events. Currently,
while the entire process of erythroid differentiation is influenced by many different inter-
ventions, more investigations are required to uncover the diverse effects of EPO on the
erythropoiesis in addition to its well-characterized proliferative and pro-survival effects.
The future challenge in this area is to intersect detailed interactions of signaling molecules
and determine their contribution to and beyond erythropoiesis. Advances in this area of
research may be useful for improving the efficacy of EPO therapy in clinical use and to
gain a better understanding the overall processes of cellular signaling.
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