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A B S T R A C T   

Background: Preoperative radiological assessment of meningioma characteristics is of value for pre- and post- 
operative patient management, counselling, and surgical approach. 
Purpose: To investigate whether tensor-valued diffusion MRI can add to the preoperative prediction of menin-
gioma consistency, grade and type. 
Materials and methods: 30 patients with intracranial meningiomas (22 WHO grade I, 8 WHO grade II) underwent 
MRI prior to surgery. Diffusion MRI was performed with linear and spherical b-tensors with b-values up to 2000 
s/mm2. The data were used to estimate mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) 
and its components—the anisotropic and isotropic kurtoses (MKA and MKI). Meningioma consistency was esti-
mated for 16 patients during resection based on ultrasonic aspiration intensity, ease of resection with instru-
mentation or suction. Grade and type were determined by histopathological analysis. The relation between 
consistency, grade and type and dMRI parameters was analyzed inside the tumor (“whole-tumor”) and within 
brain tissue in the immediate periphery outside the tumor (“rim”) by histogram analysis. 
Results: Lower 10th percentiles of MK and MKA in the whole-tumor were associated with firm consistency 
compared with pooled soft and variable consistency (n = 7 vs 9; U test, p = 0.02 for MKA 10 and p = 0.04 for 
MK10) and lower 10th percentile of MD with variable against soft and firm (n = 5 vs 11; U test, p = 0.02). Higher 
standard deviation of MKI in the rim was associated with lower grade (n = 22 vs 8; U test, p = 0.04) and in the 
MKI maps we observed elevated rim-like structure that could be associated with grade. Higher median MKA and 
lower median MKI distinguished psammomatous type from other pooled meningioma types (n = 5 vs 25; U test; 
p = 0.03 for MKA 50 and p = 0.03 and p = 0.04 for MKI 50). 
Conclusion: Parameters from tensor-valued dMRI can facilitate prediction of consistency, grade and type.   

Abbreviations: ADC, Apparent Diffusion Coefficient; AUC, Area Under Curve; DKI, Diffusion Kurtosis Imaging; dMRI, Diffusion Magnetic Resonance Imaging; DTI, 
Diffusion Tensor Imaging; DWI, Diffusion Weighted Imaging; FA, Fractional Anisotropy; FOV, Field of View; FLAIR, Fluid-Attenuated Inversion Recovery; LTE, Linear 
Tensor Encoding; MD, Mean Diffusivity; MK, Mean Kurtosis; MKA, Anisotropic kurtosis; MKI, Isotropic kurtosis; ROC, Receiver Operating Characteristic; ROI, Region 
of Interest; STD, Standard Deviation; STE, Spherical Tensor Encoding; WHO, World Health Organization. 
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1. Introduction 

Meningiomas are the most prevalent primary intracranial tumors (34 
%) with an annual incidence rate of approximately 8 in 100,000 (Louis 
et al., 2016). They are divided into 15 different histological types, 
among which the microstructure is highly heterogeneous (Wiemels 
et al., 2010). Although meningiomas are predominately benign, they 
often necessitate neurosurgical resection and, thus, their pre- and post- 
operative assessment and radiological differential diagnosis are of 
importance. Information on the meningioma consistency, grade and 
type prior to surgery would help to establish an appropriate pre- and 
post-operative plan and facilitate the radiological differential di-
agnostics. Meningioma consistency—defined as the mechanical firm-
ness of the tumor tissue—is an important factor in the preoperative 
neurosurgical planning (Shiroishi et al., 2016; Yao et al., 2018). The 
firmness has an impact on the resection strategy and is associated with 
higher risk of recurrence (Keppler-Noreuil et al., 2016; Yesilöz et al., 
2017; Zada et al., 2017). Preoperative assessment of firm consistency 
could also favor inclusion of a more experienced surgical team with 
longer operation time scheduled and more extensive neurophysiological 
monitoring. Meningioma grade affects the decision on adjuvant therapy, 
and higher grade meningiomas are frequently associated with micro-
invasion of the brain (Louis et al., 2016). Meningioma type is also 
relevant because some mutations are associated with particular sub-
types, such as transitional and meningothelial meningiomas (Brastianos 
et al., 2013; Clark et al., 2013; Sahm et al., 2013). Furthermore, clear- 
cell subtype is associated with high recurrence rate and aggressiveness 
(Chen et al., 2011). 

MRI is the method of choice for presurgical tumor characterization. 
Measures of meningioma consistency have been associated with pa-
rameters based on T2-weighted MRI (Yao et al., 2018), MR elastography 
(Chartrain et al., 2019) and diffusion tensor imaging (DTI) (Kashimura 
et al., 2007; Romani et al., 2014). Specifically, the fractional anisotropy 
(FA) from DTI in firm tumors was higher than in soft tumors and the 
mean diffusivity (MD) in firm tumors was of similar value to gray matter 
(Romani et al., 2014). However, not all studies found MD to be useful 
(Watanabe et al., 2016). Meningioma grade has been associated with 
tumor volume, tumor location, presence of edema on T2 FLAIR, the 
apparent diffusion coefficient (ADC), and the mean kurtosis (MK) from 
diffusion kurtosis imaging (DKI) although with limited accuracy (Gur-
kanlar et al., 2005; Hsu et al., 2010; Lin et al., 2018; Pistolesi et al., 2002; 
Santelli et al., 2010). For meningioma typing, DTI has been proposed for 
differentiation of atypical, fibroblastic and other benign meningiomas 
(Jolapara et al., 2010). In summary, no universally accepted method has 
yet been established for presurgical non-invasive estimation of menin-
gioma consistency, grade and type (Yao et al., 2018). 

Previous research on presurgical dMRI of meningiomas used con-
ventional diffusion encoding (Stejskal and Tanner, 1965). This approach 
has a fundamental limitation, however, as it conflates microscopic 
diffusion anisotropy with orientation dispersion (Szczepankiewicz et al., 
2016). One consequence is that low fractional anisotropy (FA) is found 
in both tumor tissue containing elongated cell structures that are inco-
herently oriented and in tumor tissue without elongated cell structures. 
Separation of these microstructurally different cases is not possible using 
methods based on conventional dMRI (Mitra, 1995), such as DTI (Basser 
et al., 1994) or diffusion kurtosis imaging (DKI) (Jensen et al., 2005). 
However, dMRI with tensor-valued encoding enables this separation by 
introducing a new measurement dimension—the b-tensor shape—that 
can be varied to obtain more information on the microstructure 
(Eriksson et al., 2013; Lasič et al., 2014; Westin et al., 2016). Using 
tensor-valued terminology, conventional encoding yields linear b-tensor 
encoding as it encodes for diffusion along a single direction per shot. By 
contrast, spherical b-tensor encoding sensitizes the signal to diffusion in 
all directions simultaneously (Mori and Van Zijl, 1995; Szczepankiewicz 
et al., 2020; Wong et al., 1995). Acquiring data with both linear and 
spherical encoding enables the separation of the MK from DKI into two 

components (Lasič et al., 2014); and using the terminology in (Szcze-
pankiewicz et al., 2016), we refer to these as the anisotropic and 
isotropic kurtosis (MKA and MKI, respectively). These have different 
histological correlates. High MKA is in intracranial tumors associated 
with a high presence of elongated cell structures whereas high MKI is 
associated with a high degree of intra-voxel variation in cell density 
(Szczepankiewicz et al., 2016). 

The aim of this exploratory study was to test whether parameters 
obtained with tensor-valued dMRI can improve consistency estimation 
and radiological classification (grading and typing) of meningiomas, in 
comparison to DTI and DKI. We hypothesize that firm meningioma tu-
mors are mainly comprised of anisotropic tissue with high microscopic 
diffusion anisotropy (Kashimura et al., 2007) manifesting as high MKA. 
Our second hypothesis was the measurement of MKI in the surrounding 
brain tissue could be of value in tumor grading because low and high 
grade meningiomas may have different effects on the peritumoral brain 
tissue. Our third hypothesis was that tensor-valued dMRI is useful in 
meningioma typing since a previous study that reported a correlation 
between fibroblastic meningioma type and MKA (Szczepankiewicz et al., 
2016). 

2. Materials and methods 

2.1. Patients 

This study included 30 patients with radiologically diagnosed me-
ningioma tumors scheduled for surgical treatment between 2016 and 
2018 at Skåne University Hospital, Lund, Sweden. Inclusion criteria 
were an age above 18 years, completed MRI examination prior to sur-
gery, histopathologically confirmed meningioma and a signed informed 
consent. Furthermore, a consistency report was obtained from the 
neurosurgeon for 16 patients. All 30 patients were included in the 
analysis of type and grade and all 16 patients were included in consis-
tency estimation. 

The study was approved by the Swedish Ethical Review Authority, 
and all subjects gave their written informed consent to participate in 
accordance with the Declaration of Helsinki. Table 1 provides a sum-
mary of patient demographics for the two groups and Fig. 1B flow dia-
gram of the study. 

2.2. Consistency quantification 

All patients were treated by gross total resection of the tumor within 
a week after the MR examination. Perioperative evaluation of consis-
tency during the resection was based on ultrasonic aspiration (CUSA) 
intensity, the ease of resection with instrumentation and suction and 
categorized as soft, variable, or firm. 

2.3. Histopathologic determination of grade and type 

The grade and type of the meningioma were determined by histo-
pathological examination. Surgically removed tissue was fixed in 
formaldehyde solution 4 %, cut in representative sections end, 
embedded in paraffin and, thereafter, sectioned at 4 µm. The sections 
were all stained for hematoxylin-eosin, selected sections also for pro-
liferation marker Ki-67 and glial marker GFAP to visualize grades II or III 
and/or brain invasion with reactive changes in adjacent brain tissue. 
Microstructural assessment was done according to the WHO criteria of 
2016 (Louis et al., 2016). 

2.4. MRI acquisition 

MRI was performed using a 3T scanner (MAGNETOM Prisma, 
Siemens Healthcare, Erlangen, Germany) for pre-surgical planning 
within one week prior to the surgery. A prototype b-tensor encoding 
sequence was used to perform linear and spherical b-tensor encoding 
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(LTE and STE, respectively) (Szczepankiewicz et al., 2019). The echo 
time was 80 ms, repetition time 6000 ms, in-plane acceleration factor 2 
(GRAPPA), partial Fourier factor 0.75, readout bandwidth 1200 Hz/ 

pixel, voxel size 2.3 × 2.3 × 2.3 mm3, FOV of 230 × 230 mm2 with 40 
slices positioned so that the T1-weighted enhancing tumor lesion 
(identified in previous examinations) was in the central part of the FOV. 

Table 1 
Demographics table of the patients’ for the type and grade (panels A) and consistency analysis (panels B). The patient group of the consistency analysis is the subset of 
patients from the type and grade analysis where the only exclusion criterion was absence of consistency report from the neurosurgeon. All patients are classified ac-
cording to WHO 2016 classification (Louis et al., 2016).    

A. Type and grade analysis B Consistency analysis   

Frequency Percentage Frequency Percentage 

Patient count  30 100 % 16 100 % 
Age Mean ± standard deviation 58 ± 14 years  58 ± 15 years   

Range (min – max) 29 – 86 years  29 – 77 years  
Sex Male 13 43 % 7 43 %  

Female 17 57 % 9 57 % 
Consistency Firm 7 23 % 7 23 %  

Variable 5 17 % 5 17 %  
Soft 4 13 % 4 13 %  
Unknown 14 47 % – – 

Type Fibroblastic (WHO I) 6 20 % 4 25 %  
Fibroblastic (WHO II) 2 7 % 1 6 %  
Meningothelial (WHO I) 1 3 % 1 6 %  
Meningothelial (WHO II) 2 7 % 1 6 %  
Transitional (WHO I) 8 26 % 2 13 %  
Transitional (WHO II) 1 3 % 1 6 %  
Clear-cell (WHO II) 2 7 % 2 13 %  
Microcystic/Angiomatous (WHO I) 2 7 % 2 13 %  
Chordoid (WHO II) 1 3 % 0 0 %  
Psammomatous (WHO I) 5 17 % 2 13 % 

Grade WHO I 22 73 % 11 69 %  
WHO II 8 27 % 5 31 %  
WHO III 0 0 % 0 0 % 

Location Convexity 10 33 % 8 50 %  
Parasagittal 3 10 % 2 13 %  
Falx 5 17 % 1 6 %  
Sphenoid wing 5 17 % 2 13 %  
Suprasellar 1 3 % 1 6 %  
Tentorial 1 3 % 0 0 %  
Olfactory groove / Planum sphenoidale 2 7 % 0 0 %  
Clinoid / Petroclival 1 3 % 0 0 %  
Cerebellar 2 7 % 2 13 % 

Treatment Neurosurgery - no prior irradiation 30 100 % 16 100 %  

Fig. 1. Contrast overview (panel A), flow diagram (B) and ROI definition (C). Panel A shows an example of a WHO grade I fibroblastic meningioma with variable 
consistency. Note that FA is high in the tumor periphery and central part but lower medially from the central part. That indicates that FA and MKA reflect two 
different aspects - MKA maps the microscopic diffusion anisotropy whereas FA shows the macroscopic diffusion anisotropy, which is lower due to low orientation 
coherence (Szczepankiewicz et al., 2016). Panel B shows the flow diagram of the study where the two patient populations are characterized in Table 1, respectively. 
The consistency analysis was performed on 16 subjects while tumor grade and tumor type analysis on 30 subjects. Panel C defines two region-of-interests (ROIs) used 
in the study – a “whole-tumor ROI” characterizing inner parts of the tumor and “rim ROI” characterizing the reaction in the brain tissue surrounding the tumor. 
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LTE waveforms used monopolar trapezoids (Stejskal and Tanner, 1965), 
whereas STE was performed with numerically optimized waveforms 
using a maximal gradient slew rate of 50 mT/m, an energy dissipation 
factor of 0.5, and the max-norm constraint that inscribes the waveform 
within a cube that is 2 × 80 mT/m on each side (Sjölund et al., 2015). 
The dMRI data were acquired with b-values of 100, 700, 1400 and 2000 
s/mm2 in 6, 6, 12, and 16 directions for LTE while for STE each b-value 
was repeated 6, 6, 12, and 16 times, respectively. The scan time for LTE 
and STE together was 8 min. We also acquired T1-weighted images 
before and after injection of gadolinium and T2-weighted images with 
resolution 1 × 1 × 1 mm3. 

2.5. Parameter estimation 

The dMRI data were corrected for eddy currents and motion in 
Elastix (Klein et al., 2009) using extrapolated references (Nilsson et al., 
2015) and subsequently smoothed using a 3D Gaussian kernel with a 
standard deviation of 1.6 mm. To obtain maps of mean diffusivity (MD) 
and the two diffusional kurtosis components (MKA and MKI) we fitted 
the following model to the directionally-averaged diffusion-weighted 
signal (S) (Nilsson et al., 2020; Westin et al., 2016): 

logS(b, bΔ) = logS0 − b⋅MD + b2⋅
(
MKI + b2

Δ⋅MK2
A

)
⋅MD2/6 (1)  

where S0 is the non-diffusion weighted signal, b is the conventional b- 
value, bΔ is the shape of the b-tensor, such that bΔ = 1 for LTE and bΔ =

0 for STE (Eriksson et al., 2013). MKA and MKI were constrained to the 
interval between − 1 and 4 to avoid outlier values. We also analyzed the 
data using DTI (Basser et al., 1994) and DKI (Jensen et al., 2005) to 
estimate the conventional FA and MK. This analysis was based on the 
LTE data only since it is not adapted to use of STE data. In summary, the 
meningiomas were characterized by the following dMRI parameters: 
MD, FA, MK, MKA, MKI and for comparison S0. 

2.6. ROI definition 

All analysis took place in the image space of the dMRI data. To 
delineate the tumor, T1w and T2w images were co-registered and 
downsampled to match the dMRI resolution. Two types of region-of- 
interests (ROIs) were delineated. The first type was drawn to charac-
terize the tumor itself. J.B. (physician) drew ROIs based on T1w + Gd 
images to include the maximum extent of the tumor region—here 
referred to as a “whole-tumor ROI.” J.B. was blinded to all dMRI maps 
except the S0 map, which was used to exclude parts of the tumor with 
insufficient signal, voxels with high levels of partial volume effects or 
those that may contain a position-dependent bias due to concomitant 
gradients (Szczepankiewicz et al., 2020). The second type was drawn to 
capture brain tissue changes in the vicinity of the tumor. J.B. drew ROIs 
in the brain surrounding parenchyma adjacent to the tumor-enhancing 
region. This ROI was up to a maximum of 2 voxels (corresponding to 
maximum of 4.6 mm) wide—here termed the “rim ROI.” Meninges were 
not included in this ROI. For each ROI, we calculated six distribution 
characteristics for the dMRI parameters (10th, 25th, 50th, 75th, and 
90th percentile and standard deviation). 

2.7. Statistical analysis 

We performed univariate analyses of the dMRI parameter distribu-
tion characteristics to investigate whether these metrics could distin-
guish tumors of different consistency on a group level (for each 
consistency separately against pooled other two consistencies), grade 
(grade I vs grade II) and type (each separately against all other pooled 
types) using a two-sided unpaired U test (Wilcoxon rank sum test or 
Mann-Whitney test) at significance threshold of 0.05. Non-parametric 
tests have an inferior statistical power but higher robustness to poten-
tial outliers in non-normal distributions, which in combination with 

small group sizes can otherwise skew the results. The goal was to test 
whether we can distinguish a given consistency, grade or type from the 
remaining ones. To identify which of the distribution characteristics is 
the most useful, we analyzed the effect size of each by Cohen’s d, defined 
as 

d =
mean(d1) − mean(d2)

s
(2)  

where d1 and d2 are the dMRI parameter values for given distribution 
characteristics between the measured and pooled consistency, type or 
grade (e.g. mean of the 10th percentile of the MD distribution in the 
whole-tumor ROI of variable and firm tumors pooled subtracted from 
the soft ones) and s is pooled standard deviation defined as 

s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

√

(3)  

where n1 and n2 are the number of the elements in the first and second 
distribution, respectively, and s2

1 and s2
2 are variances for these distri-

butions. The obtained effect sizes were averaged across all dMRI pa-
rameters and all combinations of characteristics and a single number 
describing average effect size for given dMRI distribution. The one with 
the highest effects size was selected for further investigation. 

In summary, the meningiomas were characterized by consistency 
(soft, variable, or firm), type (seven categories) and grade (grade I and 
II). Note that grade III and seven rare meningioma types were not pre-
sent in the patient population. Each tumor was also characterized in 
diffusion MRI by six distribution parameters (10th, 25th, 50th, 75th, 
90th percentiles and standard deviation) for each six dMRI parameters 
(MD, FA, MK, MKA, MKI and for comparison S0) in two different ROIs 
(whole-tumor, rim). Finally, we also calculated area under curve (AUC) 
of the receiver-operating characteristics (ROC) curves and estimated the 
confidence intervals based on bootstrapping (n = 5000). 

2.8. Data accessibility 

The data were processed by a software package for diffusion MRI 
available at https://github.com/markus-nilsson/md-dmri (Nilsson 
et al., 2018). Analysis code, MRI protocol, and diffusion encoding 
gradient waveforms are available at https://github. 
com/jan-brabec/tensor_valued_meningiomas_in_vivo. Other data are 
available from the corresponding author upon request. 

3. Results 

Image contrasts used in this study included two obtained from 
morphological imaging (T1w + Gd and T2w FLAIR; downsampled and 
co-registered to the dMRI space), three from DTI (S0, MD and FA), one 
from DKI (MK), and two uniquely obtained by to tensor-valued dMRI – 
anisotropic and isotropic kurtoses (MKA and MKI, respectively). The 
maps are displayed in Fig. 1A and show that FA and MKA yields com-
plementary information: FA shows high values only in the periphery and 
the core of the tumor whereas MKA is relatively homogeneous but with 
lower value towards the tumor periphery. An overview of all cases can 
be found in the supplementary material. For consistency estimation, we 
included 16 patients and for grading and typing 30 patients (see Fig. 1B 
for a study flow diagram and patient characteristics for the two groups 
are found in Table 1). Two region-of-interests were used to obtain dMRI 
parameters—whole-tumor ROI and rim ROI (Fig. 1C). 

Histogram analysis shows which distribution characteristics that best 
discriminated tumors based on consistency, grade, and type (Fig. 2A). 
Tumors of variable consistency had its MD distribution shifted towards 
lower values and displayed a wider MKA distribution. Tumors of firm 
consistency had a lower tail in MK. MKA and MKI separated the psam-
momatous type from the rest and the distribution width of MKI in the rim 
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showed a slight difference between low- and high-grade tumors. 
Quantitatively, based on mean Cohen’s d (defined according to Eq. (2)), 
the 10th percentile gave the highest effect size for the consistency, while 
the 50th percentile gave the highest effect size for type. Although the 
10th percentile gave the highest effect size for grade the only statistically 

significant parameter was based on the standard deviation and, here, we 
selected the standard deviation distribution. That is why we have further 
considered for further analyses only these distributions, although other 
distributions had also associated some statistically significant parame-
ters (complete overview in the supplementary material). 

Fig. 2. Histograms of dMRI parame-
ters. Panel A shows distributions of 
parameter-values within the ROIs. 
Part 1 shows MD, MK and MKA dis-
tributions in the whole-tumor ROI 
among soft, variable, and firm con-
sistency (distribution differences 
indicated by yellow arrows). Part 2 
shows distributions of MKA, MKI and 
MK in psammomatous and other me-
ningioma types in the whole-tumor 
ROI. Part 3 shows the MKI distribu-
tion in grade I and II meningiomas 
within the rim ROI. The histograms 
suggest that it may be valuable to 
consider different distribution char-
acteristics—their percentiles or stan-
dard deviation—shown by yellow 
arrows. Panel B shows effect sizes for 
different distribution characteristics 
(10th, 25th, 50th, 75th, 90th and 
standard deviation) as measured by 
Cohen’s d (defined according to Eq. 
(2)) averaged across all dMRI pa-
rameters (MD, FA, MK, MKA and MKI 
and S0). For consistency, grade and 
type the highest effect size is found 
for the 10th, 10th, and 50th percen-
tile, respectively. For the case of 
grade, however, only standard devia-
tion within MKI was significantly 
different between the grades. (For 
interpretation of the references to 
colour in this figure legend, the 
reader is referred to the web version 
of this article.)   

Fig. 3. Consistency estimation. Panel A shows dMRI parameters (10th percentile within whole-tumor ROI) versus meningioma consistency. In total we included 16 
patients (with meningiomas of 7 firm, 5 variable and 4 soft). Based on MKA 10 and MK10 the firm consistency is significantly different from pooled soft and variable 
consistency (U test, p = 0.04 for MK10, p = 0.02 for MKA 10). Based on MD10, the variable consistency can be distinguished from soft and firm one (U test, p = 0.02). 
Significant parameters are marked with an asterisk (*), significant distributions with yellow arrows. Panel B shows two examples from panel A where MK10 may be 
useful on the individual level (marked by yellow markers in panel A). The top row shows a firm tumor that is considerably darker on the MK map in comparison to the 
non-firm tumor in the bottom row (yellow arrows). The images are scaled according to scale bars from Fig. 1. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Results concerning consistency utilized the 10th percentile charac-
teristic of the whole-tumor ROI and are shown in Fig. 3. MK10 and MKA 

10 were significantly different in meningiomas of firm and pooled soft 
and variable consistency (n = 7 against n = 9; two-sided U test; p = 0.04 
for MK10 and p = 0.02 for MKA 10). MD10 was significantly different in 
tumors of variable consistency compared with those of soft and firm 
consistency pooled (n = 5 against n = 11, two-sided U test; p = 0.02). An 
example of how these differences manifest in individual cases is shown 
in Fig. 3B. The upper row shows a firm meningioma with low MK10 
whereas the bottom row a non-firm (variable) meningioma with the 
lowest MK10. Stiff meningiomas are of somewhat lower intensity in the 
MK map. If MK10 alone was used to discriminate firm consistency with a 
threshold 1.0 it would in this cohort yield specificity and sensitivity of 
100 % and 75 %, respectively. We also note that the standard deviation 
of MKA from Fig. 2A in panel 1 distinguished the variable consistency (p 
= 0.04; two-sided U test). 

Concerning grade, the only parameter that showed a significant 
difference between low and high grade meningiomas was the standard 
deviation of MKI within the rim (n = 22 against n = 8; two-sided U test, 
p = 0.04) (Fig. 4). This result was corroborated by a visual finding that 
we refer to as an “MKI-rim”. This sign was preferentially present in high 
grade tumors and can be described as the presence of elevated MKI in a 
rim-like structure that partially circumscribes the tumor. Note that this 
rim is found in the brain tissue surrounding the T1w + Gd enhancing 
tumor lesion. Examples are show in Fig. 5, but all cases can be found in 
the supplementary material. 

For classification of meningiomas into fibroblastic, meningothelial, 
transitional, clear-cell, microcystic/angiomatous, chordoid, and psam-
momatous types, the median of the parameters within the ROI had the 
highest effect size and this feature is shown in Fig. 6A. The psammom-
atous subtype was significantly different from all other types pooled (n 
= 5 vs n = 25) based on MKA 50 (p = 0.03) and MKI 50 (p = 0.04) but not 
MK50 (p = 0.37). Furthermore, the microcystic/angiomatous type from 
all other types pooled (n = 2 vs n = 28) was significantly different from 
the rest in S0 50 (p = 0.02), MD50 (p = 0.03), FA50 (p = 0.02), MK50 (p =
0.02) and MKA 50 (p = 0.02). We also note that microcystic/angiomatous 
type of grade I is significantly different from other types associated with 
grade II meningiomas (p = 0.04). However, the results are inconclusive 
due to the small sample size for this type (n = 2 versus n = 8) but in line 
with other studies (Jolapara et al., 2010; Xiaoai et al., 2020). The 
characteristics of psammomatous and microcystic-angiomatous menin-
giomas may be observed visually in the individual cases, however, as 
shown in the panel B. The top row shows a case with a tumor of the 
psammomatous type and the middle row a non-psammomatous me-
ningioma with the highest MKA 50. The psammomatous type is brighter 
on the MKA map. The bottom row shows a case of microcystic/angio-
matous type that has higher MD50. We further note that consistency was 
not significantly correlated with tumor type (Table 4 and Fig. 17 in 
supplementary material). 

Fig. 7 shows ROC curves for three of these significant tests. Dis-
tinguishing firm consistency from the pooled soft and variable based on 
MK10 and MKA 10 in the whole tumor-ROI yields an AUC of 0.83 with 

95% confidence interval of [0.43; 1.00] and 0.84 with 95% confidence 
interval [0.52; 0.98], respectively (panel A). The optimal cut-point value 
yields for the MK10 a specificity of 100 % and a sensitivity of 71 %. For 
MKA 10, corresponding numbers were 78 % and 86 %, respectively. 
Furthermore, predicting grade II from grade I based on MKI std in the 
rim-ROI yields an AUC of 0.65 with 95% confidence intervals of [0.42; 
0.84] (panel B). The optimal cut-point value yields a specificity of 77 % 
and a sensitivity of 50 %. Finally, prediction of psammomatous type 
based on MK50 and MKA 50 has an AUC of 0.63 with a 95% confidence 
interval of [0.18; 1.00] and 0.81 with confidence interval [0.07; 1.00], 
respectively. The optimal cut-point values have specificity of 100 %, 
sensitivity 40 % and specificity 96 % and sensitivity 80 %, respectively. 

4. Discussion 

This pilot study aimed to explore the use of tensor-valued dMRI for 
presurgical characterization of meningioma tumors. Our results suggest 
that it may add to the characterization of tumor consistency, grade, and 
type—although it should be noted that the sample size was limited. 
Importantly, our study demonstrated examples where parameters from 
tensor-valued dMRI, but not from DTI nor DKI, were sensitive menin-
gioma type and grade (Tables 1–3 in supplementary material). For 
example, MKA,50 and MKI,50 but not its sum that is assessed in 
DKI—MK50—can distinguish the psammomatous type of meningioma. 
Furthermore, the only parameter that was different between grades was 
MKI std. Tensor-valued dMRI could thus be of interest in future studies of 
meningiomas, in particular since high-quality results could be obtained 
even in just 3-minutes using a parsimonious sampling scheme and 
reduced field of view (Nilsson et al., 2020). 

Tensor-valued dMRI is different from conventional DTI because it 
yields an index of the microscopic diffusion anisotropy (MKA), whereas 
FA from DTI yield an index of the voxel-level macroscopic diffusion 
anisotropy. In other words, FA conflates microscopic anisotropy with 
orientation dispersion (Szczepankiewicz et al., 2015). This may explain 
why MKA could distinguish firm tumors, but FA could not (Fig. 3A). An 
underlying reason may be that the tumor consistency (based on ultra-
sonic aspiration intensity, ease of resection with instrumentation and 
suction) is related to the presence of elongated (i.e. anisotropic) cellular 
structures in the tissue. For example, soft tumors had a higher standard 
deviation of FA but lower standard deviation of MKA (Table 1 in sup-
plementary material). This may suggest that the soft meningiomas 
contain environments with a mixture of orientations, which could also 
explain the different appearance of FA and MKA (Fig. 1A). Some studies 
have found that higher FA values are associated with firm consistency 
(Kashimura et al., 2007; Romani et al., 2014; Tropine et al., 2007) but 
our study as well as others did not find such an association (Ortega- 
Porcayo et al., 2015). Furthermore, we found that lower MD was asso-
ciated with variable consistency. This is in line with (Miyoshi et al., 
2020; Romani et al., 2014; Yogi et al., 2014) who also found MD to be 
useful in consistency prediction but other studies did not reproduce this 
result (Watanabe et al., 2016). Future meta-analyses may clear the pic-
ture. To facilitate this, all parameter values are reported in the 

Fig. 4. Grade estimation. Panel A shows a grade I versus grade II comparison of the standard deviation in the rim ROI for the different dMRI parameters. Standard 
deviation within the rim ROI of MKI of grade I was significantly higher than that of grade II meningioma (n = 22 vs 8; U test; p = 0.04). All tumors were classified 
according to WHO 2016 classification (Louis et al., 2016). 
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supplementary material (Tables 5–7). 
An important finding was that the standard deviation of MKI in the 

near vicinity of the tumor may be associated with meningioma grade 
(Fig. 4). The biological underpinnings of this finding remain elusive, 
however. Since it is outside of the Gd-enhancing lesion, it may be gray 
matter that is variably compressed. It may also be related to the presence 
of peritumoral edema (Hale et al., 2018) or possibly indicate micro-
invasions, which are characteristic for higher grade meningiomas (Bi 
et al., 2018). The first and last interpretations are corroborated by our 
observation of a radiological sign that we refer to as the presence of an 
“MKI-rim”, with elevated MKI around the tumor, in the high grade me-
ningiomas. Further studies with larger cohorts are, however, needed to 
evaluate this observation. 

Radiomics analysis is another a promising approach for meningi-
omas grading, typing (Park et al., 2019; Zhu et al., 2019) and consis-
tency estimation (Zhai et al., 2021). Radiomic features for meningioma 
characterization has utilized contrasts of T2-weighted, T1-weighted 
post-contrast, and ADC maps (Cepeda et al., 2021) which is in line with 
previous reports of using T2-weighted MRI as a useful imaging modality 
for prediction of meningioma consistency (Yao et al., 2018). Analysis by 
radiomics could perhaps enhance the power of DWI or ADC maps to 
predict meningioma grade beyond what is possible simple quantitative 
ROI-based analyses (Santelli et al., 2010). Meningioma consistency has 

also been estimated by MR elastography (Chartrain et al., 2019). 
Currently, radiographic features such as tumor location and volume or 
presence of adjacent edema on conventional T2-weighted and FLAIR 
(Fluid-attenuated inversion recovery) images, or tumor necrosis are 
considered useful predictor of meningioma grade (Hale et al., 2018). 
However, until now there is no widely used method clinically for pre-
operative classification or consistency estimation. 

We identified six main limitations of this study. First, the study is 
exploratory. Multiple uncorrected hypothesis tests were performed, and 
the findings need to be validated in future studies. In total we performed 
around 400 tests (the biology of tumors characterized by 11 options and 
dMRI by 36), although not all these tests were independent. We did not 
correct for multiple comparisons, however, as we for this exploratory 
study considered false negative findings to be more problematic than 
false positive ones. Second, the sample size was limited. We estimate 
that future studies aiming at a statistical power of 0.8 need more than 15 
patients in each of the groups for consistency estimation and 70 patients 
in total for grade estimation, before accounting for patient rejection. 
Third, to facilitate inter-institutional comparisons of consistency, it 
should be estimated by a validated objective method. Such a metric was 
suggested after the initiation of this study (Itamura et al., 2018). Fourth, 
meningiomas were classified according to WHO 2016 classification 
(Louis et al., 2016) because all the patients were scheduled for surgical 

Fig. 5. MKI-rim as a radiological 
feature. We have observed a presence of 
elevated MKI values in a rim-like struc-
ture that partially circumscribes the 
tumor (panel A) or its absence (panel B). 
Yellow arrows mark the MKI-rim in 
panel A or tumor region in panel B, 
respectively. The MKI-rim is found in the 
brain tissue surrounding the T1w + Gd 
enhancing tumor lesion and it was 
preferentially present in high grade me-
ningiomas. All cases can be found in the 
supplementary material. (For interpre-
tation of the references to colour in this 
figure legend, the reader is referred to 
the web version of this article.)   
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treatment between years 2016 and 2018. However, the WHO 2021 
classification has now been published (Louis et al., 2021) and our 
findings may not be fully applicable in this new classification. Fifth, the 
gradient waveforms used to tensor-valued encoding were not compen-
sated for concomitant gradient effects (Szczepankiewicz et al., 2020), as 
such waveforms were not available when the study was initiated. 
Concomitant gradients may introduce a position-dependent bias. A vi-
sual inspection showed that some regions of the brain were indeed 
affected, however, these regions were excluded from the analysis to 
minimize the potential impact. Future studies should use waveforms 
with minimized concomitant gradient effects (Szczepankiewicz et al., 
2020). Sixth, our analysis assumes that time-dependent effects of tensor- 
valued dMRI are negligible. Future studies should investigate diffusion 

time-dependence because if this was violated, we would expect a posi-
tive bias in MKA (Lundell et al., 2019). 

5. Conclusion 

Tensor-valued dMRI corroborates findings of diffusion tensor and 
kurtosis imaging (DTI and DKI) in preoperative analysis of meningiomas 
and may facilitate consistency estimation, grading and typing. 
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