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Abstract: Melanoma is one of the most aggressive forms of skin cancer and is therapeutically
challenging, considering its high mutation rate. Following the development of therapies to target
BRAF, the most frequently found mutation in melanoma, promising therapeutic responses were
observed. While mono- and combination therapies to target the MAPK cascade did induce a
therapeutic response in BRAF-mutated melanomas, the development of resistance to MAPK-targeted
therapies remains a challenge for a high proportion of patients. Resistance mechanisms are varied
and can be categorised as intrinsic, acquired, and adaptive. RASSF1A is a tumour suppressor
that plays an integral role in the maintenance of cellular homeostasis as a central signalling hub.
RASSF1A tumour suppressor activity is commonly lost in melanoma, mainly by aberrant promoter
hypermethylation. RASSF1A loss could be associated with several mechanisms of resistance to
MAPK inhibition considering that most of the signalling pathways that RASSF1A controls are found
to be altered targeted therapy resistant melanomas. Herein, we discuss resistance mechanisms in
detail and the potential role for RASSF1A reactivation to re-sensitise BRAF mutant melanomas
to therapy.
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1. Introduction

Melanoma is the most common and aggressive form of skin cancer which develops
from the uncontrolled growth of melanocytes. The common mole (nevus) is not cancerous
but when this cluster of melanocytes within the epidermis changes (dysplastic nevus) or is
obviously different in appearance to the common mole, there is a potential for melanoma
to develop [1,2]. The development of a melanoma from a benign to a dysplastic nevus, as
outlined by the Clarke model, occurs in six stages of gradual expansion into the dermis and
lymph nodes, the first of which is the acquisition of a driver mutation [3–5]. The melanoma
lesion will exhibit any number of the A, B, C, D, E (asymmetry, irregular borders, change
in colour, diameter >6 mm, evolution of the tumour over time) characteristics [1].

Melanomas are commonly found on the trunk and face of male patients and the arms
and lower legs of female patients but have the potential to develop on all parts of the
body, particularly those exposed to UV radiation from the sun [4,6]. Risk factors for the
development of melanoma include exposure to UV radiation, phenotypic traits such as fair
skin, hair and eye colour, geographical location and a high number of benign nevi [7,8]. In
particular, the incidence of melanoma increases when considering the majorly fair skinned
populations of Norway, Sweden, the Netherlands, the UK and Ireland who generally have
lower levels of melanin to protect melanocytes from mutagenic UV radiation [9]. Familial
genetic predisposition is uncommon, though inherited mutations in either CDKN2A, a cell
cycle inhibitor, or the NER (nucleotide excision repair) pathway, responsible for the DNA
damage repair response, have been observed [2,10–12]. Families that carry a CDKN2A
mutation tend to have a higher number of (benign) nevi [12].
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Metastatic melanoma (MM) is a highly mutated type of cancer and can be classified
into four groups depending on the driver mutation observed—mutation in BRAF (~50%
of melanomas), NRAS (~30%), NF1 (10–15%) or triple wildtype [3,13,14]. Other somatic
driver mutations can occur in pathways that influence cell growth, metabolism, and cell
cycle progression; PTEN, KIT and TP53 [9]. The three most commonly mutated genes
converge on hyperactivation of the MAPK pathway. A mutation in BRAF (most commonly
BRAFV600E) leads to constitutively active RAF, enhancing subsequent MEK and ERK phos-
phorylation to promote proliferation and prevent cell death [15–17]. Less common BRAF
mutations also observed include V600K, V600R, V600M [3,15]. NRAS mutations (most
commonly in codon 61 but also in codon 12 and 13) result in the constitutive activation of
PI3K and MAPK pathways, promoting cell proliferation, differentiation and tumorigene-
sis [3]. Melanomas with NRAS mutations are often more aggressive and patients have a
poorer prognosis [15,18]. Under basal conditions, NF1 inhibits MAPK signalling and so in
melanomas with a loss of function mutation in NF1, uncontrolled MAPK pathway activity
can lead to tumorigenesis. UV radiation can also stimulate hyperactive MAPK signalling
and lead to tumorigenesis [19].

2. Treatment of Melanoma

In the early stages (I–III), melanoma can be successfully treated with the surgical
removal of the tumour and surrounding tissue [20]. Post-surgery chemotherapy and
immunotherapy can be used to ensure the complete eradication of the tumour [20]. In
patients who present with tumour ulceration/tumour thickness >0.8 mm, sentinel lymph
node biopsy and removal can also be carried out [10,21]. Upon entering the metastatic
stages (IV–V), surgery alone is not curative and effective treatment options rapidly de-
teriorate. The most common sites of metastasis for melanoma are the lung, brain, liver,
and intestine [22,23]. Historically, chemotherapy was used as adjunctive therapy for post-
surgery patients with MM with only a partial response and modest increase in patient
survival [9,21,24]. With the most common mutations in MM converging on the MAPK path-
way, targeted therapies have been developed to try to counteract tumorigenic signalling.
Therapies which target NRAS as a single agent or in combination with PD-1 inhibitors
are being investigated, though to date, mutant NRAS has been a poor therapeutic tar-
get [15,25,26].

Considering the high incidence of BRAF-mutated MM, several immunotherapies that
target BRAF have been developed, such as vemurafenib, dabrafenib and encorafenib [9,15,21].
While BRAF inhibitors showed promising results with improved patient outcomes [27–30],
a subset of patients did not respond to treatment and the majority of responders rapidly
developed resistance and experienced recurrent disease [9,10,21,31,32]. Upon the discovery
that BRAF inhibitors alone could induce the paradoxical activation of the MAPK pathway
in BRAF wild type cells, MEK inhibitors were developed as a potential combination
therapy [32,33]. Clinical trial results indicated that combination therapy did significantly
improve patient outcome compared to monotherapy [30–32], though the development of
resistance persists [34].

Immunotherapies have emerged as a mechanism of activating and engaging the
immune system to target tumour cells. Immune checkpoint inhibitors targeting PD1
(nivolumab and pembrolizumab) and CTLA4 (ipilimumab) have been approved for the
treatment of melanoma with promising improvements in patient survival [12,35–37]. Un-
fortunately, there are a subset of patients who do not respond to immunotherapy or develop
resistance and recurrent disease [10]. The use of radiotherapy in combination with im-
munotherapy for melanoma treatment has been recently discussed as a potential strategy
to enhance immunotherapy response [38]. Moreover, BRAF inhibition seems to enhance
radiotherapy sensitivity in melanoma, though several side effects related to skin lesions
have been reported when using this combinatory approach [39,40].
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3. Resistance Mechanisms to Targeted Therapy in Melanoma

The emergence of resistance to BRAF-targeted therapy remains a significant challenge
for patients with MM (Table 1). The mechanisms which underly the development of this
resistance are varied and can be generally classified into three subtypes: intrinsic, acquired,
and adaptive resistance (Figure 1).

Table 1. Representative list of mutations contributing to resistance mechanisms to targeted therapy in melanoma. +→
resistance; +/−→ partial resistance; −→ response.

Pathway Gene Alteration Implication Intrinsic Acquired Res BRAFi Res MEKi Ref

Cell Cycle

CCND1 High copy
number

Increased
expression + + [41]

CCND1 Amplification Increased
expression + + [42]

CDK4 K22Q, R24C/L Activating
mutation + − [42]

CDK4 R24C/L Activating
mutation +/− +/− +/− +/− [43]

CDKN2A Low copy
number

Low
expression + + [41]

CDKN2A D84N, M53T,
N71fs

Inactivating
mutation + +/− + [43]

CDKN2A

deletion,
truncation,
missense
mutation

Loss of
function +/− +/− +/− +/− [44]

MAPK

NRAS Missense Activating
mutation + + [45]

NRAS Q61 Activating
mutation + + [46]

NRAS Q61K Activating
mutation + + − [47]

CRAF Increased
levels

Increased
MAPK

signalling
+ + [48]

BRAFV600E Amplification
Increased

MAPK
signalling

+/− +/− +/− [44]

BRAFV600E High copy
number

Increased
MAPK

signalling
+ + − [49]

BRAFV600E Amplification
Increased

MAPK
signalling

+ + [45]

BRAFV600E Splice variant
(p61BRAFV600E)

Increased
MAPK

signalling
+ + [50]

MAP2K1 P124SQ/S Activating
mutation + + + [51]

MAP2K1 P124S Activating
mutation +/− +/− [44]
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Table 1. Cont.

Pathway Gene Alteration Implication Intrinsic Acquired Res BRAFi Res MEKi Ref

MAPK

MAP2K1 Q56P Activating
mutation +/− +/− [44]

MAP2K1 Q56P, E203K Activating
mutation + + [46]

MAP2K1 P124L Activating
mutation + + [43]

MAP2K1 V60E, G128V,
V154I

Activating
mutation + + [45]

MAP2K1 P124S/L Activating
mutation + + [45]

MAP2K2 V35M, L46F,
C125S N126D

Activating
mutation + + [45]

MAP2K2 W251Ter,
A182V + +/− + [43]

NF1 X2441_splice Loss of
expression + + [44]

NF1 Gln282fs,
Arg440 *

Loss of
function − [52]

NF1 P195S + +/− [43]

MAP3K8
(COT)

Increased
levels

Increased ERK
signalling + + + + [53]

RTK

EGFR Amplification,
R451C

Increased
activity + +/− +/− +/− [43]

EGFR

Demethylation
of EGFR

regulatory
DNA elements

Increased
PI3K/AKT
signalling

+ + [54]

IGF-1R Increased
levels

Increased
PI3K/AKT
signalling

+ + − [55]

AXL Increased
levels + + + + [56]

KIT Amplification,
G498S

Increased
activity + +/− + + [43]

PDGFRβ Increased
levels

Independent
MAPK-pro-

survival
+ + [47]

SOX10 Low levels Increased RTK − + + [57]

T. microen-
vironment HGF Stromal

secretion
Activation of

MET + + [58]
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Table 1. Cont.

Pathway Gene Alteration Implication Intrinsic Acquired Res BRAFi Res MEKi Ref

PI3K/AKT

PIK3CA V344G, E545K,
H1047R

Activating
mutation +/− +/− [44]

PIK3CA missense + + + [45]

PTEN mutation,
deletion

Loss of
function +/− +/− [41]

PTEN missense
mutation, indel

Loss of
function + + [45]

PTEN

missense
mutation,
non-sense
mutation,

deletion, indel

Loss of
function + + [45]

PTEN
Loss/deletion,
splice, T27C,

P244fs

Loss of
function + + +/− +/− [43]

PTEN

deletions,
truncation,
missense
mutation

Loss of
function + + + [44]

Small
GTPases

(other than
RAS)

RAC P29S Activating
mutation + + [59]

RAC P29S Activating
mutation + + [60]

RAC P29S/L Activating
mutation + + + [61]

RAC P29S Activating
mutation + + + [43]

RAC P29S Activating
mutation + [62]

RAC P29S Activating
mutation + + [45]

Metabolic
rewiring

MITF Amplification Increased
activity + + + [45]

MITF
Amplifications,

G6R, R316K,
S502F

Increased
activity + +/− +/− − [43]

3.1. Intrinsic Resistance

Considering that patients who have the BRAFV600E mutation maintain disease pro-
gression or rapidly develop resistance upon treatment with BRAF inhibitors, at least a
proportion of cells within the tumour maintain intrinsic resistance mechanisms [17,34,63].
Intrinsic resistance arises from pre-existing genetic alterations in the tumour or surround-
ing stromal cells. The molecular mechanisms responsible for the development of intrinsic
resistance include increases in proliferative PI3K/AKT and MAPK pathway signalling and
disruption to cell cycle regulation [17,34,63,64].
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Figure 1. Schematic representation of the three subtypes of resistance mechanism against targeted
therapy in melanoma: intrinsic, adaptive, and acquired. The main pathways and mutations account-
ing for each subtype are displayed.

3.1.1. PI3K/AKT Pathway Activation

Loss of phosphatase and tensin homolog (PTEN) tumour suppressor activity leads
to the hyperactivation of MAPK and PI3K/AKT signalling. PTEN is a major negative
regulator of PI3K signalling which is commonly disrupted by deletion or mutation in
melanoma [17,34,44]. In BRAF mutant melanoma, PTEN loss activates MAPK and PI3K
signalling through the suppression of BIM-mediated apoptosis, conferring resistance to
BRAF inhibitors [34,65,66].

3.1.2. MAPK Pathway Activation

Activating mutations in RAC1 and MEK1 promote the activation of ERK signalling,
downstream of BRAF [34]. RAC1 is a Rho GTPase family member which has shown
to be mutated (RACP29S) in 4% of melanomas [16,67]. MEK1/2 kinases promote ERK
phosphorylation as part of the MAPK signalling pathway and the activating mutation
MEKC121S has been shown to increase MEK kinase activity, promoting resistance to both
BRAF and MEK inhibitors [16,34,68]. Similarly, the loss of neurofibromin 1 (NF1) observed
in BRAF mutant tumour cells leads to intrinsic resistance through the loss of NF1 inhibition
of RAS and MAPK signalling [32,37,66].

3.1.3. Disruptions to the Cell Cycle

Cyclin D1 is an important regulator of the cell cycle that promotes cell cycle progres-
sion via the inhibition of the RB (retinoblastoma protein) pathway and has been identified
as a proto-oncogene [34,69]. CCND1, which encodes for the Cyclin D1, protein has been
shown to be amplified in BRAF-mutated and wild type melanomas [42]. CDK4 mutations
have been observed to increase Cyclin D1 signalling when occurring concurrently with
CCND1 amplification [70]. RB pathway activity has also been diminished in melanoma
due to inactivating mutations and the epigenetic silencing of CDKN2A [34,70].
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3.2. Adaptive Resistance

Adaptive resistance mechanisms are acquired by tumour cells to compensate for the
loss of BRAF signalling in response to BRAF inhibitors. These mechanisms enhance the
survival capacity of the tumour cells to promote proliferation. Adaptive resistance is
developed early in response to BRAF inhibition, is reversible [34,71] and generally leads
to the re-activation of ERK signalling, upregulation of receptor tyrosine kinases (RTKs),
metabolic rewiring, secretion of pro-survival factors by the tumour micro-environment
and alteration of gene transcription [34,71]. Considering the speed at which adaptive
resistance occurs, effective suppression of this mechanism could contribute to achieving a
therapeutic response.

3.2.1. ERK Signalling Reactivation

ERK signal reactivation in response to MAPK pathway inhibitors is achieved through
the loss of negative feedback signals. BRAFV600E mutant cells maintain ERK-dependent
feedback to supress RTK signalling through the inhibition of negative feedback regulators—
SPROUTY (SPRY2,4) and DUSP (DUSP4,6) proteins [34,71,72]. Upon the inhibition of
MAPK signalling, ERK suppression of these proteins is reduced, removing the negative
feedback regulation of RAS activity, reactivating ERK signalling [34,71,73–75].

3.2.2. Alteration of Gene Transcription

The alteration of gene transcription through the up/downregulation of transcription
factors is a mechanism of adaptive resistance. MITF (microphthalmia-associated transcrip-
tion factor) plays an integral role in tumour cell differentiation, invasion and survival and
has been characterised as an oncogene in 10–20% of patients with melanoma [34,71,76–79].
In BRAF inhibitor-treated melanoma cells, MITF was differentially expressed to promote
proliferation (high MITF to induce MLANA, PMEL, TYRP genes) or invasion (low MITF to
induce high AXL, WNT5A, TEAD, JUN expression) [34,80–82].

3.2.3. Alteration of RTK Signalling

The differential expression of RTKs can contribute to the development of adaptive
resistance [83]. Following FOXD3 sumoylation of SOX10, ERBB3 (aka HER3) expression
is upregulated in BRAF inhibitor-treated cells, leading to the activation of the AKT path-
way [17,84]. The expression of SOX10, which is a negative regulator of EGFR expression,
can be decreased in BRAF mutant melanoma cells, leading to enhanced EGFR signalling
upon the inhibition of BRAFV600E [17,71]. IGFR and PDGFR receptor induction of MAPK,
PI3K and SHH (Sonic Hedgehog) signalling has also been shown to contribute to RTK
mediation adaptive resistance [17,85,86].

3.2.4. Metabolic Rewiring

Metabolic rewiring is an established hallmark of cancer, and BRAF mutant melanoma
cells exhibit a high level of glycolytic activity (the Warburg effect) [34,71]. Upon treatment
with MAPK inhibitors, melanoma cells can rewire and reactivate mitochondrial respiration
through the activation of MITF oxidative phosphorylation (oxphos) signalling [34,71,87].
An increase in oxphos has also been demonstrated to be MITF-independent, with the
upregulation of JARIDB-mediated oxphos dependent on TFAM (transcription factor A,
mitochondrial) [71,88]. The metabolic rewiring of BRAF mutant cells also includes the
alteration of fatty acid oxidation. Fatty acid transporter CD36 was upregulated in response
to BRAFV600E inhibition, increasing the supply of material for the cell structure during
proliferation [32,74].

3.3. Acquired Resistance

Long term treatment with MAPK pathway inhibitors can lead to the development of
acquired resistance through the development of secondary mutations. Acquired resistance
generally results in the reactivation of downstream MAPK signalling.
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3.3.1. Secondary Mutations in the MAPK Pathway

Primary mutations in RAS and RAF are generally mutually exclusive. Secondary, ac-
tivating NRAS mutations have been observed in BRAFV600E mutant cells that are resistant to
BRAF inhibitors, leading to the reactivation of MAPK signalling through CRAF [17,34,71,89,90].
Mutant NRAS has also been shown to promote BRAFV600E dimerisation and activity, pre-
venting the activity of inhibitors that only target monomeric BRAFV600E [71,91,92]. Addi-
tionally, alterations of BRAFV600E such as amplifications and BRAFV600E splice variants
have been identified and proved to confer resistance to BRAF inhibitors [50,90].

Different mutations in MEK 1/2 have been observed in MAPK inhibitor-resistant
melanoma. Mutations in exon 3 and 6 have been most associated with the development
of acquired resistance [34,93]. MEK1 mutations in E203K, Q56P and K57E have been
associated with RAF-independent signalling [34,71]. In cells that are BRAF wild type, BRAF
inhibitors have been shown to paradoxically activate downstream MEK/ERK signalling
through BRAF/BRAF or BRAF/CRAF dimerisation and activation [71,94].

3.3.2. Activation of Non-MAPK Proliferative Signalling

The suppression of ERK signalling can result in hyperactivation of the PI3K/AKT
pathway [32,71,90]. Activating mutations in PI3K or AKT can lead to an enhanced pro-
liferative signal [34,71,89]. YAP/TAZ are transcriptional co-activators that can promote
oncogenic signalling and survival upon translocation to the nucleus [95–97]. YAP and
TAZ expression was demonstrated to be enhanced in BRAF inhibitor-treated melanoma
cells [71,98].

4. The Tumour Suppressor, RASSF1A

RASSF1A is a tumour suppressor with scaffolding ability that regulates cellular home-
ostasis by the integration of signals arising from many different pathways [99]. It belongs
to the RASSF family of proteins, composed of 10 isoforms named RASSF1-10 [100]. Among
the RASSF1 isoforms, RASSF1A is the most extensively studied, followed by RASSF1C,
which seems to have opposite effects and has been referred as an oncogene [101]. RASSF1A
contains different domains along its protein structure, through which it can bind to and
recruit different effectors: C1/DAG (diacylglycerol), ATM (ataxia telangiectasia mutated do-
main), RA domain (Ras association) and SARAH domain (Salvador-Hippo-RASSF) [99,102].
RASSF1A is found to be associated with microtubules, promoting cytoskeleton stability,
and protecting the cell from genomic instability [103,104]. Additionally, RASSF1A inter-
action with microtubules seems to be essential for its tumour suppressor activity [105].
Moreover, RASSF1A localisation is dynamic, changing throughout the cell cycle phases. It
is recruited to the centrosome during G2/M to regulate APC/C-CDC20 activity, leading
to proper mitosis timing [106–108]. RASSF1A can also regulate G1/S phase transition
by modulating Cyclin D1 and A2 levels, CDK4/2 activity and promoting p27 and p21
accumulation and p53 pathway activation [108–114]. RASSF1A induces apoptosis through
a variety of molecular mechanisms. First, ATM phosphorylates RASSF1A upon DNA
damage, leading to apoptosis [115]. Second, the activation of the death receptor-induced
apoptotic pathway leads to RASSF1A interaction with MOAP-1 and the downstream up-
regulation of anti-apoptotic BCL2 followed by apoptosis [116,117]. Additionally, RASSF1A
promotes apoptosis through the activation of the MST pro-apoptotic signalling pathway.
Briefly, RASSF1A stabilizes and activates MST kinases, leading to the downstream activa-
tion of LATS1/2 kinases which in turn can elicit apoptosis through the MDM2-p53 pathway
or the YAP/p73 pro-apoptotic transcription programme [91,118,119]. Moreover, RASSF1A
has been reported to modulate YAP oncogenic signalling in an MST-independent manner.
Finally, RASSF1A has been shown to regulate cell migration and invasion through the
regulation of RHO GTPases [120–122].

RASSF1A expression has been reported to be lost in most solid tumours and it has been
considered one of the most frequently inactivated tumour suppressors in cancer [123,124].
The hypermethylation of RASSF1A promoter and loss of heterozygosity account for the ma-
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jor mechanisms through which RASSF1A expression is reduced [125]. Other mechanisms
that result in reduced RASSF1A activity, such as the mi-RNA-mediated downregulation of
RASSF1A, point mutations or protein destabilization due to deregulated post-translational
modifications have been reported (reviewed in [99]). RASSF1A plays a key role in pre-
venting cancer development and progression through regulating apoptosis, cell cycle
progression, genome integrity and microtubule dynamics [126]. It is therefore unsurprising
that RASSF1A promoter methylation status has emerged as a marker of poor prognosis
and aggressiveness in many forms of cancer, including melanoma [127–130]. Additionally,
RASSF1A loss correlates with a lack of response to treatment and its restoration contributes
to re-sensitization to drug response in a variety of cancers. The ability of RASSF1A to
control such broad range of cellular processes relies on the large number of proteins that
it scaffolds and therefore, RASSF1A constitutes a pivotal signalling hub on which many
different signalling networks converge (recently reviewed in [99,102]).

RASSF1A and Melanoma

Aberrant epigenetic regulation is a major mechanism involved in the initiation, devel-
opment, and progression of melanoma. The most intensively studied epigenetic alterations
is the altered methylation of promoters and histone modifications. Other, less extensively
studied events include chromatin remodelling, positioning of nucleosomes and non-coding
RNA-mediated regulation of gene expression. Several tumour suppressor genes have been
reported to be silenced in melanoma through CpG-hypermethylation, leading to dysreg-
ulation of the cell cycle, signal transduction, DNA repair processes and cell death [131].
RASSF1A is among the most frequently reported hypermethylated genes in melanoma,
alongside RAR-β2, CDKN2A and MGMT [131]. RASSF1A epigenetic silencing has been re-
ported in more than 50% of melanomas and is considered a predictor of disease progression
and patient prognosis [127,128]. RASSF1A hypermethylation is found in both melanoma
cell lines and tumours, though not in normal skin, benign nevi, or healthy donors, and cor-
relates with a lack of RASSF1A expression or reduced mRNA levels [132–134]. Moreover,
the re-expression of RASSF1A in BRAFV600E-driven melanoma cells has been reported
to enhance apoptosis and inhibit tumorigenic potential [135]. Interestingly, BRAFV600E

has been associated with CpG-hypermethylation in melanoma and some mechanisms
of BRAFV600E-mediated promoter hypermethylation have been proposed [136]. These
mechanisms include the up-regulation of DMNT1 by BRAFV600E, and the phosphorylation
and further stabilization of the transcriptional corepressor MAFG, which in turn recruits
a complex containing DNMT3 leading to CpG-hypermethylation (reviewed in [99]. Al-
though a direct mechanism involving BRAFV600E in the epigenetic silencing of RASSF1A
has never been reported, RASSF1A hypermethylation has been found alongside BRAF
(and NRAS) mutations, suggesting a synergistic effect of MAPK pathway mutations and
the loss of RASSF1A on melanoma growth [133].

5. Potential Impact of RASSF1A Loss on BRAFi Targeted Therapy Resistance

The molecular mechanisms through which RASSF1A exhibits its anti-antitumour activ-
ity by regulating different cellular processes have been recently reviewed elsewhere [99,102].
Here, we will describe the molecular pathways deregulated in melanoma, conferring resis-
tance to BRAF inhibition which could also be affected by the loss of RASSF1A. Additionally,
we will discuss how the re-expression of RASSF1A could compensate for the lack of other
tumour suppressors such as PTEN or CDKN2A and the molecular mechanisms involved.
Figure 2 shows a schematic representation of the molecular mechanism described below.
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Figure 2. Schematic representation of the molecular mechanisms conferring resistance to BRAFi-targeted therapy (upper
panel) and RASSF1A-mediated regulation of associated signalling processes (lower panel). Letters a to f in the upper panel
represent the potential impact of RASSF1A on counteracting BRAFi resistance mechanism. Subfigures a to f from lower
panel show the different biochemical mechanism regulated by RASSF1A referred to in the upper panel. (Created with
BioRender.com).

5.1. MAPK Pathway

Most of the biochemical mechanisms underlying BRAFi resistance, whether acquired
upon prolonged treatment or present at the onset of melanoma development, involve the
hyperactivation of the MAPK pathway. These alterations can occur directly, impacting the
core components of the MAPK cascade (RAS, RAF, MEK proteins), or indirectly, within up-
stream regulators of the pathway (i.e., RTKs overexpression, NF1 loss, PI3K/AKT) [83,137].
Both scenarios lead to alternative mechanisms through which melanoma cells can bypass
BRAF inhibition to promote cell survival and melanoma progression. RASSF1A senses
oncogenic signalling downstream of RAS, preventing MAPK hyperactivation and pro-
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survival activity, mainly through the MST pathway. Thus, the loss of RASS1A scaffolding
activity could potentially contribute to BRAFi resistance acquisition. Among the mecha-
nisms promoting BRAFi resistance that affect the MAPK signalling pathway, several lead
to the dysregulation of RAF1 activity: hyperactivation of RTKs, loss of NF1, mutations in
NRAS, increased expression of RAF1, RAF1-BRAF heterodimers, and loss of ERK negative
feed-back loops [34,137,138]. Therefore, being able to effectively target RAF1 in cells which
do not respond to BRAF inhibition could potentially result in a successful alternative thera-
peutic strategy. RASSF1A modulates RAF1 activity downstream of RAS [99,102]. Despite
its well-known activity as a core kinase within the MAPK pathway, RAF1 plays a key role
in preventing apoptosis in a kinase-independent fashion, which cannot be compensated by
its homologues BRAF or ARAF [139]. This ability of RAF1 to modulate apoptosis relies
on different mechanisms, including the inhibition of MST2 pro-apoptotic signalling, in
which the PI3K/AKT pathway and RASSF1A also play key roles, and the inhibition of
pro-apoptotic ASK1, an upstream regulator of JNK and p38 MAPK signalling [140].

RAF1 binds MST2 and inhibits its activation by preventing MST2 homodimerization
and autophosphorylation [139]. Upon a pro-apoptotic signal, RASSF1A competes with
RAF1 for MST2 binding, leading to RAF1-MST2 disruption. RASSF1A induces MST2
autophosphorylation and activation, leading to LATS1 phosphorylation which, in turn,
activates the YAP1-p73 pro-apoptotic transcriptional programme [118]. While RAF1-MST2
binding is RAF1 kinase-independent [139], the AKT-mediated phosphorylation of MST2
regulates the RAF1-MST2-RASSF1A axis [141]. Briefly, AKT inhibits MST2 activation by a
dual mechanism involving (i) RAF1-MST2 complex formation (preventing RASSF1A-MST2
interaction) and (ii) impairing MST2 autophosphorylation and dimerization (needed for
MST2 activation). Therefore, the pro-apoptotic signalling downstream of RAF1 mediated by
RASSF1A is tightly controlled by AKT activity. Of the different RAS isoforms, KRAS seems
to be the major regulator upstream of RASSF1A that modulates apoptosis through RAF1-
MST2 interaction dynamics, while NRAS and HRAS have shown little or no impact [142].
A recent study has shown that K-RAS could be a promising target for melanoma treatment
since its inhibition enhances BRAFi-mediated cell death and remains effective upon the
development of BRAFi-acquired resistance [143]. In fact, KRAS levels were found to
be upregulated upon BRAFi resistance acquisition, leading to enhanced pro-survival
AKT and ERK signalling [143]. Considering that RASSF1A can promote apoptosis upon
sustained KRAS activation, it would be worth investigating whether melanomas that
rely on KRAS to survive could benefit from RASSF1A restoration to promote cell death.
However, whether RASSF1A signalling can occur downstream of NRAS or HRAS needs
to be further investigated, as RASSF1A activation can be cell-type-specific and context-
dependent. Additionally, despite reports that RAF1, but not BRAF, was able to interact with
and impair MST2 proapoptotic signalling [139], further studies revealed that BRAFV600E

could interact with and inhibit MST1 in thyroid carcinoma [144]. Therefore, investigating
whether BRAFV600E competes for MST binding in melanoma and the potential impact of
RASSF1A on the restoration of MST apoptotic signalling would be of great interest. On
the other hand, RASSF1A expression was found to induce apoptosis in BRAFV600E-driven
melanoma cells through a mechanism involving ASK1 and p38 MAPK activation [135].
This observation, together with the evidence showing the RAF-mediated inhibition of
ASK1 and the interplay between RASSF1A and the MAPK signalling, could suggest
another mechanism through which RASSF1A could counteract RAF1 anti-apoptotic activity
in melanoma.

5.2. PTEN Loss and PI3K/AKT Hyperactivation

The tumour suppressor PTEN, which is an essential upstream regulator of the PI3K/AKT
signalling pathway, has been found to be deregulated in many cancer types including
melanoma. Loss of PTEN activity is associated with a poor prognosis and increased
resistance to treatment. Endogenous PTEN mutations are often found in BRAF driven
melanomas and at least 10% of PTEN-null BRAF melanomas show intrinsic resistance to
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BRAF inhibitors. Additionally, mutations in PI3K and AKT which lead to an hyperactiva-
tion of the pathway have been described to contribute to resistance to targeted therapy in
BRAF melanomas [34,64,65].

The loss of PTEN promotes the activation of the MAPK and PI3K/AKT pathways,
regardless of BRAF inhibition using targeted therapy. RASSF1A integrates the crosstalk of
many signalling pathways, including MAKP and PI3K/AKT. In particular, RASSF1A
has been described to inhibit PI3K by the direct inhibition of AKT through MST ki-
nases [113,145]. First, RASSF1A interaction with MST1 prevents PP2A-mediated MST1
de-phosphorylation, leading to increased MST1 stability and activation [146,147] which
further inhibits AKT activation [148]. Next, RASSF1A-mediated MST1 phosphorylation can
result in caspase 3 activation, leading to apoptosis and enhanced MST activity by caspase
3-mediated cleavage of MST1, followed by chromosome condensation and DNA fragmen-
tation [146]. Cleaved MST1 has been shown to further constrain AKT signalling through an
independent mechanism than that of the full-length protein, by cleaved MST–AKT direct
interaction [148]. In a more recent study, the loss of RASSF1A expression correlated with
increased AKT and RAL-GEF signalling in RAS-driven lung cancer [149]. Finally, AKT can
bind and inhibit MST2 pro-apoptotic signalling upon PTEN loss. RASSF1A counteracts
this effect by competing with AKT for MST2 binding, promoting MST2-mediated apoptosis
through c-Jun and p38 kinases [141]. Thus, melanomas showing a loss of PTEN activity
which do not respond to BRAFi-based targeted therapy, or which have developed resistance
through the hyperactivation of the PI3K signalling pathway could benefit from RASSF1A
expression through its direct inhibition of the PI3K/AKT anti-apoptotic signalling.

5.3. RAC1 Hyperactivation

The third most common mutation found in cutaneous melanoma occurs within
the small GTPase RAC1, in which the P29S mutation induces a constitutively active
form of the RAC1 protein [16,67]. The co-occurrence of RAC1P29S and BRAFV600E has
been associated with intrinsic resistance to BRAFi and with a mesenchymal-like state of
melanocytes [45,59,62]. RAC1P29S activates PAK1, AKT and an SRF/MRTF transcriptional
programme involving WAVE-mediated F-actin polymerization promoting a switch from
a melanocyte to a mesenchymal phenotype, conferring resistance to apoptosis and sur-
vival [62]. There is strong evidence for the inverse correlation between RASSF1A levels
and RAC1 activation during cancer progression. The loss of RASSF1A is observed with
increased RAC1 activity [126]. Additionally, RASSF1A can impair the activity of oncogenic
Rho A GTPase [122] while upregulating Rho-B signalling—the non-oncogenic member
of the family [120,121,150]. Although RAC1P29S is no longer regulated by upstream sig-
nalling due to its constitutively active RAC1-GTP-like state, a lack of RASSF1A could
contribute to the oncogenic potential of hyperactive RAC1 mutant by inducing the loss of
the AKT-negative regulation of RAC1 and low Rho-B signalling. As described above, the
RASSF1A-mediated activation of MST kinases inhibits AKT [113,145]. Moreover, RASSF1A
promotes Rho-B activity by the activation of GEF-H1 through the regulation of NDR kinase
and PP2A phosphatase activity [120,121]. The GEF-H1/Rho-B axis regulates epithelial–
mesenchymal transition by impairing YAP/SMAD2 nuclear accumulation which is a bona
fide hallmark of invasive phenotypes. Thus, RASSF1A could counteract RAC1P29S-mediated
mesenchymal phenotype switch by controlling AKT and YAP oncogenic activities through
different mechanisms. Studying the correlation between the loss of the expression of
RASSF1A and the mutation state of RAC1 could expose a new avenue for the restoration
of sensitivity to targeted therapy in B-RAF-driven melanomas as an alternative to RAC1
inhibitors since they have not been reported to be therapeutically beneficial.

5.4. CCND1 Amplification and CDNK2A Loss

Uncontrolled cell proliferation is one of the hallmarks of cancer and can occur via the
dysregulation of genes encoding for Cyclin-CDKs or the CDK inhibitors CKIs. CCND1
amplifications have been found in 17% of BRAF-driven melanomas (11% in melanoma)
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and have been associated with poor prognosis and intrinsic resistance to BRAFi-based
targeted therapy [34]. On the other hand, the loss of expression of the cell cycle inhibitor
CDKN2A occurs in melanoma through different mechanisms including deletions, inacti-
vating mutations and epigenetic silencing [34]. The combination of CCND1 amplification
and CDKN2A loss or CDK4/6 mutations has been associated with resistance mechanisms
and shorter progression free survival in patients with BRAF-driven melanoma treated
with BRAFi [42]. Cyclin D1 regulation by RASSF1A is of particular interest as a mecha-
nism to counteract CCND1 amplification. In fact, RASSF1A downregulation correlates
with decreased Cyclin D1 levels [151]. It has been shown that RASSF1A promotes cell
cycle arrest by impairing cyclin D1 accumulation [112] through a mechanism involving
EWS-mediated translational regulation and that seems to be dependent on proper RB-E2F
regulation [108]. Additionally, RASSF1A suppresses JNK expression induced by RAS lead-
ing to impaired c-Jun phosphorylation, further Cyclin D1 downregulation [114] and p27
accumulation [152], promoting arrested cell proliferation. Since enhanced Cyclin D activity
leads to aberrant proliferation, being able to control checkpoints throughout the cell cycle
phases could also counteract this effect. In this regard, RASSF1A is a master regulator of cell
proliferation, showing differential cell localization during different cell cycle phases [102].
RASSF1A mediates cell cycle arrest at the G1/S phase transition by regulating Cyclin A2
levels through the activation of p120E4F [109,110]. Additionally, RASSF1A plays a key role
in the proper regulation of mitotic progression. RASSF1A promotes cell cycle arrest at the
G2/M phase by increasing microtubule stability and the inhibition of the APC/CCDC20

complex [107,153] through C19ORF5-mediated RASSF1A recruitment to the centrosome in
early mitosis [154]. In a later stage, RASSF1A is phosphorylated by Aurora kinases leading
to microtubule destabilization and RASSF1A-cdc20 dissociation, promoting RASSF1A- and
Cyclin A-mediated degradation and cell cycle progression [106,155,156].

The loss of the CDKN2A locus also cooperates with Cyclin D1 in promoting resistance
to BRAF inhibitors in melanoma. This locus encodes for two different unrelated tumour
suppressor proteins, p16INK4a and p14ARF, which regulate cell cycle progression through
CDK inhibition or the p53-MDM2 pathway, respectively. Although mutations on p16INK4a

are more common in melanoma, genetic alterations affecting p14ARF often co-occur with
p16INK4a mutations [157]. p16INK4a major targets are Cyclin D-CDK4/6 complexes; there-
fore, the mechanisms through which RASSF1A could compensate p16 loss are likely to be
similar to those involving Cyclin D activity regulation. On the other hand, the regulation
of p53-MDM2 axis mediated by p14ARF could also be, at least in part, compensated by
RASSF1A restoration in those melanomas which retain wild type p53. MDM2 is a E3
ubiquitin ligase which, under normal cell conditions, inhibits p53 transcriptional activity
by its constitutive mono-ubiquitination followed by proteasome-mediated degradation.
p14ARF induces cell cycle arrest at the G2/M phase and apoptosis by antagonizing the in-
hibitory effect of MDM2 over p53 and thus, it is considered a tumour suppressor. RASSF1A
is known to regulate cell cycle progression at the level of G1/S by promoting MDM2
autoubiquitination, preventing p53 degradation [158]. Furthermore, RASSF1A promotes
MST2-LATS1 activation downstream of K-RAS in CRC, leading to LATS1 interaction with
and sequestration of MDM2, promoting p53 stabilization and apoptosis [119]. Additionally,
in CRC, RASSF1A has been found to induce p21 expression through p53 stabilization and
MDM2 degradation [111]. LATS2, which can also be activated by RASSF1A, stabilizes
p53 levels through the inhibition of MDM2 [159,160]. Finally, ANKRD1, a YAP1 target
which is involved in MDM2 destabilization and p53 activation, is upregulated by RASSF1A,
antagonizing YAP1 activity [161].

6. Restoration of RASSF1A Expression by Demethylating Agents

Genetic alterations, such as deletions, amplifications, point mutations, etc., result
in permanent changes within the DNA that are very difficult to repair. In contrast, epi-
genetic modifications such as methylation or acetylation are not permanent and can be
much more easily reversed since they do not affect the DNA sequence directly. Thus, the
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re-expression of genes which have been silenced by promoter hypermethylation by an
epigenetic alteration has been proposed as a promising anticancer strategy. DNA methyla-
tion is regulated by DNMT and TET proteins by either transferring or removing methyl
groups to CpG islands, respectively [162]. While the hypermethylation of DNA is normally
associated with the repression of gene expression, it can also lead to increased promoter
activation under specific conditions [163]. Different DNA demethylating agents have been
developed throughout the last decade to counteract the cancer-causing effects of hyperme-
thylation [164]. However, the use of DNA demethylating agents can be a double-edged
sword considering that they have also been shown to promote the expression of silent
oncogenes. Reducing the concentration of demethylating agents or combination with other
anticancer therapies are proposed mechanisms for the mitigation of this effect [165]. Of the
DNA demethylating agents currently developed, azacytidine and decitabine are approved
for the treatment of myelodysplastic syndromes and certain types of leukaemia [166].

RASSF1A promoter hypermethylation has been successfully reverted in different
cancer cell models, including melanoma, leading to arrested proliferation, sensitization
to different drugs and ultimately, cell death. For instance, RASSF1A expression was
restored in a model of lung adenocarcinoma by either treatment with azacytidine or
the silencing of DNMT1 expression, leading to reduced proliferation and migration and
increased apoptosis [167]. Similar results were observed in mouse models, where the
silencing of DNMT1 led to fewer side effects than treatment with azacytidine [167]. Second
generation compounds, which are expected to be less aggressive, have been generated and
are currently being tested in the clinic. One such compound, SGI-110 (second generation
5-aza-CdR), has been shown to promote RASSF1A expression in ovarian and testicular
cancer, promoting apoptosis by sensitizing these cells to cisplatin treatment [168,169].
Similar results have been reported in melanoma. Azacytidine treatment of melanoma cells
restored RASSF1A expression [132,133]. A later study also reported that melanomas which
had developed resistance to IFN-based treatments, showed the epigenetic silencing of genes
by DNA methylation. Moreover, they showed the demethylation of RASSF1A by DNMT1
inhibition using azacytidine-sensitized melanoma cells to IFN treatment [170]. Additionally,
a subsequent study in which RASSF1A expression was ectopically restored, revealed that
RASSF1A reduced cell viability, cell cycle progression and tumorigenic potential, enhancing
apoptosis [135]. Several natural compounds have been shown to exert DNA demethylating
activity, promoting RASSF1A re-expression in a variety of cellular models. Although their
mechanisms of action are still under investigation, these compounds show promise as
potential agents for use in combination with anticancer drugs, as it is thought they would
lead to far less toxicity than currently available demethylating agents (reviewed in [99,171]).
Altogether, since epigenetic changes can be modulated using external agents, being able to
restore the expression of RASSF1A when lost by promoter methylation in melanoma could
be considered a promising strategy to overcome resistance to targeted therapy considering
the wide range of antitumoral functions that it exhibits.

7. Concluding Remarks

Targeted therapy has been a great success for melanoma treatment and has improved
patients’ lives in a great extent. However, the main challenge still resides in the resistance
mechanism that melanoma cells develop against these treatment strategies. Since tumour
suppressors have, by nature, antitumoral activities, being able to restore their functions
can be a promising strategy to fight resistance to treatment not only in melanoma, but in
every type of cancer.
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