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Abstract   
Nuclear receptors (NRs) constitute an important class of therapeutic targets. We evaluated the performance of 3D 
structure-based and ligand-based pharmacophore models in predicting the pharmacological profile of NRs ligands 
using the NRLiSt BDB database. We could generate selective pharmacophores for agonist and antagonist ligands 
and we found that the best performances were obtained by combining the structure-based and the ligand-based 
approaches. The combination of pharmacophores that were generated allowed to cover most of the chemical space 
of the NRLiSt BDB datasets. By screening the whole NRLiSt BDB on our 3D pharmacophores, we demonstrated their 
selectivity towards their dedicated NRs ligands. The 3D pharmacophores herein presented can thus be used as a 
predictor of the pharmacological activity of NRs ligands.
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Background
Nuclear receptors (NRs) are involved in a wide range of 
physiological key functions. They are potential targets 
for numerous diseases and constitute an important class 
of therapeutic targets [1, 2]. NRs are transcription fac-
tors naturally switched on and off by small-molecule 
hormones, and artificially by synthetic ligands. Taking 
advantage of the biological potency of the NRs, a large 
amount of compounds has been proposed to modulate 
their activity and some of them are still marketed [3, 4]. 
The NRs ligands can be classified according to their phar-
macological profiles, the two main classes being agonist 
and antagonist ligands. These two classes of compounds 
act through the binding to a NR and the activation (agonist 
ligands) or the inhibition (antagonist ligands) of its activ-
ity. The drug discovery process is thus not limited to the 
search of the best ligand of a given target, but consists in 
the search of a ligand with a pharmacological profile that 

his compatible to the required activity. In this context, the 
ability to predict the agonist or antagonist behaviour of a 
NR ligand is of major importance. In recent years, virtual 
screening methods have proven their ability to predict the 
activity of small compounds [5–7] and can be used to pre-
dict the pharmacological profile of NRs ligands. Numerous 
ligand-based (LB) and structure-based (SB) virtual screen-
ing studies dedicated to NRs were conducted but only few 
focused on the agonism/antagonism issues [8–17]. Despite 
these several prediction attempts and the elucidation of 
the molecular bases of agonism and antagonism [18–21], 
discriminating agonist from antagonist ligands based on 
their sole structure remains a challenge. In this study, we 
describe a 3D pharmacophore modeling study performed 
on 27 NRs, with the aim to provide separate and selective 
agonist and antagonist pharmacophores for each NR. To 
our knowledge, this is the first large-scale study conducted 
to predict the agonist and antagonist behaviour of NRs 
ligands using a 3D pharmacophore modeling method. 3D 
pharmacophores are nowadays widely used as filters in 
virtual screening protocols and several studies success-
fully identified new NRs ligands using pharmacophore 
models [22–30]. Pharmacophore models display two main 
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advantages: reduced computational times associated to 
the simplified pharmacophoric representations and a large 
diversity of potential hits with scaffolds and functional 
groups distinct to the original ligands [31, 32]. To design 
our study, we used the 27 NRLiSt BDB datasets [33]. For 
each dataset, we created both SB and LB 3D pharmacoph-
ores and compared the ability of these two approaches to 
generate agonist selective pharmacophores and antagonist 
selective pharmacophores covering the whole NRLiSt BDB 
ligands chemical space. We also studied the performance 
obtained using a combination of SB and LB pharmaco-
phores and analyzed the composition and the selectiv-
ity against all NRs datasets of these combinations. In the 
present study, we describe our attempt to develop selec-
tive pharmacophores for agonist or antagonist ligands that 
could be used to predict the pharmacological activity of 
NRs.

Methods
Nuclear receptors ligands and structures benchmarking 
DataBase (NRLiSt BDB)
The NRLiSt BDB [33] is a freely available benchmarking 
database for both SB and LB methods evaluation and dedi-
cated to the NRs. The NRLiSt BDB presents separated ago-
nist and antagonist datasets for the 27 targets (out of the 
48 known NRs) for which more than one agonist ligand, 
one antagonist ligand, and at least one experimental struc-
ture was available. All of the ligands found to be agonist 
or antagonist in the scientific literature are provided in 
two separated datasets and all of the available human holo 
PDB structures (except for RXR_gamma, for which only 
one apo structure was available). A total of 7853 actives, 
458,981 decoys, and 339 structures are divided into 54 
datasets. The NRLiSt BDB was downloaded from the Web 
site http://nrlist.drugdesign.fr.

LigandScout
3D pharmacophores were generated using the software 
LigandScout [34] (version 4.0) in SB and LB approaches.

Structure‑based approach
3D SB pharmacophores were automatically generated 
using the PDB structures included in the NRLiSt BDB. 
This approach is only possible with holo structures, thus 
no RXR gamma 3D SB pharmacophore could be com-
puted. In this approach, the LigandScout algorithm tags 
the key features of the ligand that are interacting with the 
residues of the receptor: aromatic ring, hydrophobic area, 
hydrogen bond donor or acceptor, negative or positive 
ionisable atom and metal binding location. To complete 
the pharmacophore, an ensemble of exclusion volume 
spheres is generated to represent the shape of the active 
site.

Ligand‑based approach
All ligands of each dataset were clustered with LigandS-
cout using default settings except for the cluster distance 
that was adjusted for each NR to obtain balanced clusters. 
For each cluster, a 3D LB pharmacophore was generated 
using the “merged feature pharmacophore approach” 
with the number of omitted features for a given merged 
pharmacophore set to 4 and optional partially matching 
features with a threshold set to 10 %. In this approach, all 
the features observed in each ligand of the training data-
sets are identified, scored and removed according to the 
threshold number of omitted features. We chose to ena-
ble the creation of exclusion volume spheres around the 
alignment of ligands. In some cases, we added manually 
exclusion volume spheres to remove decoys compounds 
since inactive compounds can map all the pharmaco-
phore require features, their inactivity being explained 
by steric clashes with the binding site [35, 36]. For each 
pharmacophore, the ligands of the cluster used to gen-
erate the pharmacophore constituted the training set 
and the test set was formed by all agonist ligands and all 
antagonist ligands of the corresponding NR. During the 
pharmacophore generation, the ligands of the training set 
were automatically aligned with the LigandScout phar-
macophore-based alignment algorithm [37].

Model optimization protocol
The generated 3D pharmacophores were used to screen 
the NRs datasets. All of the ligands provided in SMILES 
format in the NRLiSt BDB were converted in .ldb format 
using the idbgen tool provided with LigandScout with 
the omega-fast option. Two databases were used for each 
screening, a screening database of active compounds 
and a screening database of decoys. Agonist ligands were 
used as decoys for antagonist pharmacophores and recip-
rocally antagonist ligands were used as decoys for agonist 
pharmacophores. We developed an original model opti-
mization protocol for this study (Fig.  1), to sequentially 
refine the pharmacophore models according to several 
literature recommendations [32, 38, 39]. For each phar-
macophore, a first screening was made with LigandS-
cout default settings and particularly the Max. number 
of omitted features set to 0. If the hits retrieved with this 
first screening contained both agonist and antagonist 
ligands, the pharmacophore was not validated and was 
not retained. If only agonist or antagonist ligands were 
retrieved in this first screening, the pharmacophore was 
validated and a second screening was performed with 
this pharmacophore, but with the Max. number of omit-
ted features parameter set to 1. This second screening 
was carried out to identify possible non-essential phar-
macophore features, i.e. features that can be disabled to 
obtain less stringent pharmacophores able to retrieve 
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more active ligands (agonist ligands when using agonist 
datasets or antagonist ligands when using antagonists 
datasets), but no decoys (antagonists when using ago-
nist datasets and agonists when using antagonist data-
sets). When a non-essential pharmacophore feature was 
identified, a third screening was performed with the 
non-essential feature marked as disabled and the Max. 
number of omitted features parameter set to 0. If the hits 
retrieved with this third screening were both agonist and 
antagonist ligands, this second pharmacophore was not 
validated and another round of identification of non-
essential features was performed. If only active ligands 
were retrieved, the pharmacophore was validated and 
other non-essential features were studied. This protocol 
was applied to each pharmacophore until 3 pharmacoph-
ore features were retained or until no non-essential fea-
ture could be identified.

Combination of SB pharmacophores, combination of LB 
pharmacophores and combination of SBLB pharmacophores
Using the SB approach, for each NR, all the selective 
pharmacophores generated, i.e. all pharmacophores 
that retrieved only agonist ligands or antagonist ligands, 
were gathered into two groups: “SB agonist selective 
pharmacophores” and “SB antagonist selective pharma-
cophores”; redundant pharmacophores were removed. 
Similarly, all the selective pharmacophores obtained with 
the LB approach for each NR were gathered into two 
groups: “LB agonist selective pharmacophores” and “LB 
antagonist selective pharmacophores”; redundant phar-
macophores were removed. Finally, the SB and LB selec-
tive pharmacophores previously generated were gathered 
in two pharmacophore ensembles: “SBLB agonist selec-
tive pharmacophores” and “SBLB antagonist selective 

Fig. 1  Screening protocol developed to select selective pharmacophores for agonist ligands and selective pharmacophores for antagonist ligands 
using LigandScout. The example presented here started with a pharmacophore generated with agonist ligands containing 2 aromatic rings (blue 
square) and 3 hydrophobic groups (yellow square). The pharmacophore was retained if only agonist ligands were retrieved in the screening 1 (with 
the Max. number of omitted features set to 0, which means that only ligands mapping the 5 pharmacophore features are considered as hits). Then, 
we tried to identify non-essential feature in the screening 2 by setting the Max. number of omitted features to 1 (which means that the ligands 
mapping 4 of the 5 pharmacophore features are considered as hits). A second agonist pharmacophore was defined by disabling the pharmacoph‑
ore feature identified as non-essential. The agonist pharmacophore 2 was validated if the hits of the screening 3 (with the Max. number of omitted 
features set to 0) were only agonist ligands. This protocol was applied to each pharmacophore until 3 pharmacophore features were retained or 
until no non-essential feature could be identified
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pharmacophores”; redundant pharmacophores were 
removed.

Redundant pharmacophores are pharmacophores 
that could be removed without decreasing the recall of 
the set of combined pharmacophores i.e. pharmacoph-
ores that only retrieved ligands that were also retrieved 
with other pharmacophores of the set. To remove these 
redundant pharmacophores, all generated pharmacoph-
ores were ranked according to the number of hits they 
retrieved. Then, each pharmacophore was removed 
sequentially, starting from the pharmacophore associ-
ated with the smallest number of hits. For each removal, 
the impact on the recall was evaluated. If the recall was 
not affected, the pharmacophore was dismissed and in 
the opposite, if the recall decreased, the pharmacophore 
was conserved.

Performance metrics
All the graphs were produced with the statistical and 
graphical tool R (http://www.r-project.org/). The ggplot2 
package was used to produce the barplot of Figs. 2, 3, 4, 5 
and 6. The corrplot and RColorBrewer packages were used 
to produce the graph of pharmacophores selectivity using 
the recall (R) value (Fig. 9). For each dataset, the recall (R), 
the specificity (Sp) and the Matthew’s correlation coeffi-
cient (MCC) were computed as follows:

with TP the number of true positives (number of active 
compounds of the dataset retrieved as screening hits), 
FN the number of false negatives (number of active com-
pounds of the dataset not retrieved as screening hits), TN 
the number of true negatives (number of inactive com-
pounds of the dataset not retrieved as screening hits), FP 
(number of inactive compounds of the dataset retrieved as 
screening hits). As we chose to generate only selective ago-
nist or antagonist pharmacophores, the number of FP was 
always equal to 0 and thus the Sp value was always equal 
to 1. Similarly, in the SB approach, when the number of TP 
was equal to 0, it was not possible to compute the MCC 
value (because the denominator value is equal to 0), and 
the MCC value was qualified as not determined (ND).

Results
Structure‑based pharmacophore modeling
338 3D SB pharmacophores were generated from the 339 
PDB structures included in the NRLiSt BDB. The pro-
tein structures included in the NRLiSt BDB are classified 
according to the pharmacological profile of the ligand 

R =
TP

TP + FN
; Sp =

TN

TN + FP
;

MCC =
TP × TN − FP × FN

√
(TP + FN )(TN + FP)(TP + FP)(TN + FN )

Fig. 2  Performances of the structure-based approach for each NRLiSt BDB dataset. The amount of ligands retrieved during the virtual screening 
procedure using structure-based selective pharmacophores is shown in red whereas the number of ligands not covered by the pharmacophores is 
depicted and labelled in blue

http://www.r-project.org/
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Fig. 3  Performances of the ligand-based approach for each NRLiSt BDB dataset. The amount of ligands retrieved during the virtual screening 
procedure using ligand-based selective pharmacophores is shown in red whereas the number of ligands not covered by the pharmacophores is 
depicted and labelled in blue

Fig. 4  Performances of the combination of structure-based and ligand-based approach for each NRLiSt BDB dataset. The amount of ligands 
retrieved during the virtual screening procedure using the combination of structure-based and ligand-based selective pharmacophores is shown in 
red whereas the number of ligands not covered by the pharmacophores is depicted and labelled in blue
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Fig. 5  Number of pharmacophores necessary to cover each NRLiSt BDB dataset and included in the “SBLB agonist selective pharmacophores” (pink) 
and “SBLB antagonist selective pharmacophores” (cyan) combinations

Fig. 6  Distribution of the 718 pharmacophores generated for this study according to their number of pharmacophore features (without the num‑
ber of exclusion volume spheres)
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bound in the active site: 266 agonist-bound structures, 17 
antagonist-bound structures, 55 other-bound structures 
(partial agonists, modulators, inverse agonists etc.). Since 
only 1 apo structure was available for RXR_gamma, no 3D 
SB pharmacophore could be generated and this NR was 
excluded for this part of the study. For respectively 25 and 
10 out the 26 remaining NRs, at least one agonist-bound 
or one antagonist-bound structure was available. Using 
the screening protocol described in the “Methods” sec-
tion, we succeeded in generated at least one pharmaco-
phore that was selective for agonist ligands for 25 NRs out 
of the 26 used, and at least one pharmacophore selective 
for antagonist ligands for 9 NRs out of 26. As presented 
in the “Methods” section, all these pharmacophores were 
gathered into two groups: “SB agonist selective pharma-
cophores” and “SB antagonist selective pharmacophores”, 
and redundant pharmacophores were removed. The aver-
age recall for the “SB agonist selective pharmacophores” 
was of 55 %, ranging from 0 % for SF1 to 98 % for PPAR_
gamma whereas the average recall for “SB antagonist selec-
tive pharmacophores” was of 8  %, ranging from 0  % for 
AR, CAR, ERR_alpha, FXR_alpha, LXR_alpha, LXR_beta 
PPAR_alpha, PPAR_beta, PPAR_gamma, PXR, RAR_beta, 
RAR_gamma, RXR_beta, SF1, TR_alpha, TR_beta and 
VDR to 61 % for RAR_alpha (Fig. 2; Table 1). The average 
MCC value for the “SB agonist selective pharmacophores” 
was of 0.484, ranging from 0.088 for CAR (the SF1 MCC 
value was ND) to 0.881 for RXR_alpha whereas the average 
MCC value for “SB antagonist selective pharmacophores” 
was of 0.326, ranging from 0.097 for RXR_alpha (the MCC 
value was ND for AR, CAR, ERR_alpha, FXR_alpha, LXR_
alpha, LXR_beta PPAR_alpha, PPAR_beta, PPAR_gamma, 
PXR, RAR_beta, RAR_gamma, RXR_beta, SF1, TR_alpha, 
TR_beta and VDR) to 0.712 for RAR_alpha (Table 1).

Ligand‑based pharmacophore modeling
Ligands clustering
To perform the LB pharmacophore modeling approach, 
the ligands of each NRLiSt BDB dataset were clustered 
using the Pharmacophore RDF-Code similarity. The clus-
ter distance was set to 0.4 for the majority of the data-
sets but was lowered to 0.3 for 15 datasets (AR_agonist, 
ERR_alpha_agonist, GR_agonist, LXR_alpha_agonist, 
LXR_beta_agonist, PR_agonist, RXR_alpha_agonist, 
RXR_beta_agonist, RXR_beta_antagonist, RXR_gamma_
agonist, TR_alpha_agonist, TR_alpha_antagonist, TR_
beta_agonist, TR_beta_antagonist, VDR_antagonist) and 
to 0.2 for 1 dataset (RXR_alpha_antago). From 1 cluster 
(for the ERR_alpha_agonist, ROR_gamma_antagonist, 
and RXR_gamma_antagonist datasets) to 65 clusters (for 
the ER_alpha_agonist dataset) were generated, with an 
average of 18 clusters per dataset and a mean value of 7.8 
ligands per cluster.

3D ligand‑based pharmacophores
Using the screening protocol described in the “Methods” 
section, we succeeded in generated pharmacophores 
that were selective for agonist ligands and pharmacoph-
ores selective for antagonist ligands for each of the 27 
NRs of the NRLiSt BDB. All these pharmacophores were 
gathered into two groups according to their selectivity 
for agonist or antagonist ligands, “LB agonist selective 
pharmacophores” and “LB antagonist selective pharma-
cophores”. Redundant pharmacophores were eliminated. 
The “LB agonist selective pharmacophores” were asso-
ciated with an average recall of 97  % and a mean value 
of 0.918. The lower recall and MCC value were respec-
tively of 88 % for TR_alpha and 0.253 for PPAR_gamma; 
the higher recall and MCC values respectively reached 
100 % and 1 for CAR, ERR_alpha, PPAR_beta, RAR_beta, 
ROR_alpha, ROR_gamma, RXR_gamma and SF1. The 
“LB antagonist selective pharmacophores” presented an 
average recall of 99  % and a mean  MCC value of 0.99, 
and the individual recall and MCC values were equal to 
100 % and 1 for all antagonist datasets but 5 (ER_alpha, 
ER_beta, GR, PR, RXR_alpha) (Fig. 3; Table 1).

Combination of structure‑based and ligand‑based 
pharmacophores
3D SBLB pharmacophores performance
The “SB agonist selective pharmacophores” and “LB ago-
nist selective pharmacophores” on the one hand and the 
“SB antagonist selective pharmacophores” and “LB antag-
onist selective pharmacophores” on the other hand were 
respectively concatenated into two groups: “SBLB agonist 
selective pharmacophores” and “SBLB antagonist selective 
pharmacophores”. Using these combinations of SB and LB 
pharmacophores, average recalls of 99.7 and 99.9  % and 
mean MCC values of 0.993 and 0.999 were obtained for 
agonist and antagonist datasets respectively. The “SBLB 
agonist selective pharmacophores” were able to retrieve 
all agonist ligands and no antagonist ligands (i.e. recall of 
100 % and MCC values of 1) for all NRs but 5 (LXR_alpha, 
LXR_beta, PR, RAR_alpha and RAR_gamma). Similarly, 
the “SBLB antagonist selective pharmacophores” were 
able to retrieve all antagonist ligands and no agonist 
ligands (i.e. recall of 100 % and MCC values of 1) for all 
NRs but 3 (ER_alpha, GR, PR) (Fig. 4; Table 1).

Pharmacophores composition
 The “SBLB agonist selective pharmacophores” group 
contained 413 pharmacophores (from 1 pharmacophore 
for ROR_gamma to 52 pharmacophores for PR) whereas 
the “SBLB antagonist selective pharmacophores” group 
contained 305 pharmacophores (from 1 pharmacoph-
ore for CAR, ERR_alpha, ROR_gamma and RXR_gamma 
to 64 pharmacophores for PR) (Fig.  5). The number of 
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Table 1  Recalls (R), specificity (Sp) and MCC values obtained using the SB approach, the LB approach and the combina-
tion of SB and LB approaches (SBLB) for each NRLiSt BDB dataset

SB approach LB approach SBLB approach

R Sp MCC R Sp MCC R Sp MCC

AR_agonist_ligands 0.683 1.000 0.738 0.889 1.000 0.903 1.000 1.000 1.000

AR_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

CAR_agonist_ligands 0.121 1.000 0.088 1.000 1.000 1.000 1.000 1.000 1.000

CAR_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

ER_alpha_agonist_ligands 0.695 1.000 0.595 0.972 1.000 0.945 1.000 1.000 1.000

ER_alpha_antagonist_ligands 0.412 1.000 0.589 0.890 1.000 0.927 0.993 1.000 0.995

ER_beta_agonist_ligands 0.663 1.000 0.478 0.919 1.000 0.795 1.000 1.000 1.000

ER_beta_antagonist_ligands 0.074 1.000 0.251 0.868 1.000 0.921 1.000 1.000 1.000

ERR_alpha_agonist_ligands 0.308 1.000 0.277 1.000 1.000 1.000 1.000 1.000 1.000

ERR_alpha_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

FXR_alpha_agonist_ligands 0.584 1.000 0.319 0.984 1.000 0.914 1.000 1.000 1.000

FXR_alpha_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

GR_agonist_ligands 0.317 1.000 0.453 0.986 1.000 0.988 1.000 1.000 1.000

GR_antagonist_ligands 0.112 1.000 0.230 0.995 1.000 0.994 0.995 1.000 0.994

LXR_alpha_agonist_ligands 0.425 1.000 0.324 0.996 1.000 0.988 0.996 1.000 0.988

LXR_alpha_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

LXR_beta_agonist_ligands 0.682 1.000 0.406 0.992 1.000 0.972 0.995 1.000 0.986

LXR_beta_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

MR_agonist_ligands 0.556 1.000 0.735 0.889 1.000 0.940 1.000 1.000 1.000

MR_antagonist_ligands 0.152 1.000 0.102 1.000 1.000 1.000 1.000 1.000 1.000

PPAR_alpha_agonist_ligands 0.851 1.000 0.166 0.999 1.000 0.935 1.000 1.000 1.000

PPAR_alpha_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

PPAR_beta_agonist_ligands 0.634 1.000 0.137 1.000 1.000 1.000 1.000 1.000 1.000

PPAR_beta_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

PPAR_gamma_agonist_ligands 0.982 1.000 0.464 0.933 1.000 0.253 1.000 1.000 1.000

PPAR_gamma_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

PR_agonist_ligands 0.078 1.000 0.231 0.951 1.000 0.958 0.966 1.000 0.969

PR_antagonist_ligands 0.179 1.000 0.261 0.994 1.000 0.992 0.998 1.000 0.997

PXR_agonist_ligands 0.720 1.000 0.379 0.960 1.000 0.782 1.000 1.000 1.000

PXR_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

RAR_alpha_agonist_ligands 0.508 1.000 0.506 0.970 1.000 0.956 0.977 1.000 0.967

RAR_alpha_antagonist_ligands 0.606 1.000 0.712 1.000 1.000 1.000 1.000 1.000 1.000

RAR_beta_agonist_ligands 0.277 1.000 0.262 1.000 1.000 1.000 1.000 1.000 1.000

RAR_beta_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

RAR_gamma_agonist_ligands 0.705 1.000 0.647 1.000 1.000 1.000 0.992 1.000 0.988

RAR_gamma_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

ROR_alpha_agonist_ligands 0.333 1.000 0.537 1.000 1.000 1.000 1.000 1.000 1.000

ROR_alpha_antagonist_ligands 0.308 1.000 0.277 1.000 1.000 1.000 1.000 1.000 1.000

ROR_gamma_agonist_ligands 0.571 1.000 0.571 1.000 1.000 1.000 1.000 1.000 1.000

ROR_gamma_antagonist_ligands 0.250 1.000 0.418 1.000 1.000 1.000 1.000 1.000 1.000

RXR_alpha_agonist_ligands 0.900 1.000 0.881 0.948 1.000 0.935 1.000 1.000 1.000

RXR_alpha_antagonist_ligands 0.015 1.000 0.097 0.985 1.000 0.988 1.000 1.000 1.000

RXR_beta_agonist_ligands 0.923 1.000 0.734 0.985 1.000 0.928 1.000 1.000 1.000

RXR_beta_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

RXR_gamma_agonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

RXR_gamma_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

SF1_agonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000
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pharmacophores that were necessary to cover a given data-
set is significantly correlated with the number of ligands in 
the dataset (Kendall’s tau coefficient, p value = 9.55e−15, 
Additional file  1: Figure S1). These pharmacophores 
were composed of 3–16 features, with a median value of 
5 features per pharmacophore (Fig.  6; Additional file  1: 
Figure S2A−N, Additional file  1: Tables S1−S54). Phar-
macophore features were mainly hydrophobic groups and 
hydrogen bond acceptors (39.3 and 32.5 % of the total of 
all pharmacophores features of the 718 SBLB pharmaco-
phores), but aromatic rings and hydrogen bond donors 
represented also an important part of the pharmacoph-
ore features (14.0 and 9.2 % respectively) far ahead nega-
tive and positive ionisable area (Fig. 7). These proportions 
were similar when agonist and antagonist data sets were 
considered separately (Fig. 7). However, when comparing 
the SBLB agonist and antagonist pharmacophores for each 
NR (Fig.  8), some significant differences (p-value  <0.05) 
appeared in the pharmacophore features distribution 
(Additional file 1: Figure S3A−C). Thus, for respectively 9, 
5, 4, 2 and 1 NRs, the SBLB agonist selective pharmacoph-
ores included significantly less HBA, hydrophobic, AR, PI 
and NI features than the corresponding SBLB antagonist 
selective pharmacophores. Similarly, for 3NRs, the SBLB 
antagonist selective pharmacophores included signifi-
cantly less HBD features than the SBLB agonist selective 
pharmacophores. Each pharmacophore allowed to retrieve 
from 1 to 1299 ligands, with an average value of 32 ligands 
retrieved per pharmacophore (Additional file  1: Figure 
S2A−N, Additional file 1: Tables S1−S54). 

Pharmacophores selectivity
To evaluate the pharmacophores selectivity for their 
dedicated NR ligands, each “SBLB agonist selective phar-
macophores” and “SBLB antagonist selective pharma-
cophores” combinations were screened against all the 
other NRLiSt BDB datasets of ligands. The correspond-
ing recalls are displayed in Fig.  9. The average recall of 
this large scale cross-screening was of 19.8 %. The “SBLB 

agonist selective pharmacophores” were associated with 
higher recalls with an average value of 28.8 versus 10.8 % 
for the “SBLB antagonist selective pharmacophores”. The 
most selective combination of pharmacophores was the 
PPAR_beta “SBLB antagonist selective pharmacophores” 
with an average recall of 0.001  %, and the less selective 
pharmacophores were the PPAR_gamma “SBLB ago-
nist selective pharmacophores” with an average recall 
of 76  %. For 29 combinations of pharmacophores, the 
average recall was below 10 %. For only 8 combinations 
of pharmacophores, the average recall was above 50  %. 
This selectivity was significantly correlated with the 
number of ligands in the dataset that was used to gen-
erate the pharmacophores (Kendall’s tau coefficient, 
p-value  =  3.476e−8, Additional file  1: Figure S4) and 
with the number of pharmacophores included in the 
combination for the considered dataset (Kendall’s tau 
coefficient, p-value  =  5.915e−5, Additional file  1: Fig-
ure S5). The selectivity could also be correlated with the 
active ligands over decoys ratio (Kendall’s tau coefficient, 
p-value = 4.461e-11, Additional file 1: Figure S6).

Discussion
Structure‑based pharmacophore modeling
In the SB pharmacophore modeling approach, phar-
macophores are intuitively derived from the analysis of 
experimentally determined (X-ray or NMR) target-ligand 
complexes [34]. The identified pharmacophore features 
represent chemical features directly involved in the 
ligand-binding site interactions [40].

The PDB structures included in the NRLiSt BDB were 
used to generate SB pharmacophores. RXR_gamma was 
excluded of this part of the study due to the absence of a 
holo PDB structure. For the remaining 26 NRs, we were 
able to create pharmacophores that were selective for ago-
nist ligands and pharmacophores that were selective for 
antagonist ligands. However this selectivity was not always 
achieved since the generated SB pharmacophores only 
covered a small part of the NRLiSt BDB ligands chemical 

When the number of true positives was equal to 0, the MCC value was qualified as not determined (ND)

Table 1  continued

SB approach LB approach SBLB approach

R Sp MCC R Sp MCC R Sp MCC

SF1_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

TR_alpha_agonist_ligands 0.913 1.000 0.821 0.884 1.000 0.775 1.000 1.000 1.000

TR_alpha_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

TR_beta_agonist_ligands 0.935 1.000 0.837 0.948 1.000 0.865 1.000 1.000 1.000

TR_beta_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000

VDR_agonist_ligands 0.562 1.000 0.508 0.992 1.000 0.985 1.000 1.000 1.000

VDR_antagonist_ligands 0.000 1.000 ND 1.000 1.000 1.000 1.000 1.000 1.000
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space. Indeed, the recalls for “SB agonist selective pharma-
cophores” and “SB antagonist selective pharmacophores” 
were respectively of 55 and 8 % and the mean MCC values 
were 0.484 and 0.326, both varied greatly with the datasets. 
Very poor performance (recall of 0 % for 1 agonist data-
set and 17 antagonist datasets), to very good performance 
(recall superior or equal to 90 % for 5 agonist datasets and 
MCC value superior to 0.8 for 3 agonist dataset) were 
obtained by screening the SB pharmacophores against the 
corresponding NRLiSt BDB datasets.

These performance variations were highly linked to the 
availability of PDB structures and to the structural diversity 
of the ligands that were co-cristallized in these structures. 
In particular, no antagonist-bound structure was available 
for 15 out of the 17 NRs for which no SB antagonist selec-
tive pharmacophore could be generated. For the 2 remaining 
NRs, PPAR_alpha and PPAR_gamma, one antagonist-bound 
structure was available but the SB pharmacophores cre-
ated with these structures were non selective for antagonist 
ligands. In the same way, two agonist-bound structures were 
available for SF1 but no selective pharmacophore could be 
obtained. Surprisingly, for ROR_alpha, no antagonist-bound 
structure was available, but we were able to obtain an antag-
onist selective SB pharmacophore. Similarly, the higher recall 
was associated with the PPAR_gamma agonist dataset, the 
larger NRLiSt BDB dataset in terms of number of PDB com-
plexes with 84 structures available.

Another interesting point was that SB pharmacoph-
ores obtained from similar NR–ligand complexes of dif-
ferent PDB structures could be different. For example, 
11 RXR_alpha PDB structures co-crystallized with 9-cis-
retinoic acid were included in the NRLiSt BDB and their 

corresponding 11 SB pharmacophores differed in the 
composition and the distribution of pharmacophore fea-
tures and in the resulting hits (Fig. 10).

Ligand‑based pharmacophore modeling
The LB pharmacophore modeling identifies the maxi-
mum common set of chemical features of an ensemble of 
ligands supposed to bind to the same active site [34]. The 
pharmacophore features are presumed to be essential 
for the ligand-binding site interactions but no structural 
experimental data of these interactions are used [40].

Ligands clustering
The NRLiSt BDB datasets of ligands were too large and 
too structurally dissimilar to be represented by one 
unique pharmacophore. Thus, we performed a first step 
of ligand clustering using the LigandScout Ligand-set 
Clustering tool with default settings except for the clus-
ter distance threshold that was manually adapted for each 
NRLiSt BDB dataset. The distance, by default set to 0.4, 
was lowered for some datasets to obtain a homogeneous 
ligands distribution. The number of resulting clusters var-
ied for each dataset from 1 to 65. Some of the NRLiSt BDB 
ligands were structurally dissimilar to all the other ligands 
of their respective dataset and stood alone in their own 
cluster. Since in the LB approach two or more molecules 
are necessary to create a pharmacophore, whenever pos-
sible, these singletons were attributed to other clusters.

3D ligand‑based pharmacophores
For each cluster, a LB pharmacophore was generated and 
evaluated for its selectivity. Conversely to the outcomes 

Fig. 7  Pie chart representation of the distribution of each type of pharmacophore feature in the total composition of the 718 SBLB agonist and 
antagonist selective pharmacophores (left), of the “SBLB agonist selective pharmacophores” (middle) and of the “SBLB antagonist selective pharma‑
cophores” (right) selected for the study
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Fig. 8  Radiochart representation of the mean values of pharmacophore features composition for the SBLB agonist selective pharmacophores (blue 
line) and the SBLB antagonist selective pharmacophores (orange line) compared to the mean value of all SBLB agonist and antagonist selective 
pharmacophores (grey dashed line) for each of the 27 NRs of the NRLiSt BDB [aromatic ring (AR), hydrophobic (H), hydrogen bond acceptor (HBA), 
hydrogen bond donor (HBD), positive ionizable (PI), negative ionizable (NI)]
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obtained with the SB approach, pharmacophores that were 
selective for agonist ligands and pharmacophores that were 
selective for antagonist ligand were obtained for all of the 27 
NRs of the NRLiSt BDB. Since the ligand-based approach 
does not depend on the availability and the diversity of 
PDB structures, the recalls and the MCC values associated 
with the 3D LB pharmacophores were superior to those 
achieved with the 3D SB pharmacophores for all datasets 
but the PPAR_gamma agonist dataset. Conversely to the SB 
approach again, using the 3D LB pharmacophores, higher 

recalls and MCC values were obtained with the antagonist 
datasets. In particular, a recall of 100 % and a MCC value 
of 1 were achieved for all antagonist datasets but 5 whereas 
only 8 agonist datasets were fully covered by the pharmaco-
phores that were generated.

The LB pharmacophores included exclusion volume 
spheres that were automatically generated around the 
best alignment of the ligands used for the creation of 
the pharmacophore. In the SB pharmacophore mod-
eling approach, the exclusion volume spheres actually 

Fig. 9  Corrplot representing the recalls obtained for each “SBLB agonist selective pharmacophores” and “SBLB antagonist selective pharmacoph‑
ores” against the NRLiSt BDB
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Fig. 10  Representation of the structure-based pharmacophores generated with the 11 RXR_alpha PDB structures co-crystallized with 9-cis-retinoic 
acid with their corresponding number of hits identified in virtual screening
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represent the shape of the active site whereas in the LB 
approach, the exclusion volume spheres sterically limit 
the pharmacophore. For some LB pharmacophores, we 
manually added exclusion volume spheres to remove 
decoys compounds using the hypothesis that if inactive 
compounds map all the require features, their inactivity 
can be due to steric clashes with the binding site [35, 36].

Combination of structure‑based and ligand‑based 
pharmacophores
Virtual ligand screening protocols often combine LB and 
SB approaches since including all possible information 
for a target enhance the chance to find hits [7]. Several 
studies succeeded in identifying active compounds using 
hierarchical or parallel association of pharmacophore 
modeling with either LB and SB approaches [28, 41–49] 
and a few studies associated SB and LB pharmacophores 
[50–53]. Combinatorial use of multiple pharmacoph-
ore models for a target allowed to cover a larger chemi-
cal space of actives compared to a single model [38, 54], 
and can be used to enhance the hit identification suc-
cess rate [43, 55–57]. In this study, we decided to com-
bine SB and LB approaches by using one VLS method, 
the LigandScout pharmacophore modeling tool. The SB 
and LB selective pharmacophores previously generated 
were gathered in two pharmacophore ensembles: “SBLB 
agonist selective pharmacophores” and “SBLB antagonist 
selective pharmacophores”.

3D SBLB pharmacophores performance
The performance obtained by using a combination of SB 
and LB pharmacophores was largely superior to the one 
obtained with the SB approach alone and slightly better 
than the performance obtained with the LB approach 
alone since the LB pharmacophores were associated with 
extremely high recalls and MCC values (close to 100 and 
1 % respectively). The recalls and MCC values of SBLB 
selective pharmacophores didn’t reach 100 and 1  % 
respectively for only 8 datasets out of the 54 that were 
used for this study. For two of these datasets (the LXR_
alpha agonist and LXR_beta agonist datasets), one ligand 
could only be represented by a pharmacophore formed 
by two non-independent pharmacophore features (Addi-
tional file  1: Figure S7). This pharmacophore could not 
be used for virtual screening since no defined alignment 
may be found for a pharmacophore presenting less than 
three independent features. Thus, the ligand could not be 
retrieved by any of the LXR_alpha and LXR_beta agonist 
selective pharmacophores, which explains the resulting 
recall of 99.6 %. For the 6 remaining datasets, some active 
ligands could not be separated from decoys because of 
their high structural similarity (Additional file 1: Figures 
S8−S13).

Pharmacophores composition
To discriminate agonist and antagonist ligands of the NRs 
and cover the chemical space of the NRLiSt BDB data-
sets, 718 pharmacophores were necessary, with a mean 
value of 13 pharmacophores per dataset. The number of 
pharmacophores per data set was significantly correlated 
with the number of ligands in the respective datasets 
(Kendall’s tau coefficient, p-value = 9.55e−15). Since the 
agonist datasets are in majority larger than the antago-
nist datasets, the average number of pharmacophores 
per dataset was higher for agonist datasets compared to 
antagonist datasets (mean values of 15 and 11 pharma-
cophores per dataset respectively). Consequently, in a 
large majority, the number of generated selective SBLB 
pharmacophores was superior for agonist datasets and 4 
out the 5 NRs for which the antagonist SBLB pharmaco-
phores outnumbered the agonist ones presented datasets 
with more antagonist ligands than agonist ligands.

These pharmacophores were composed of 3–16 fea-
tures, their majority being composed of 4 or 5 features. 
This finding is of great interest since it shows that phar-
macophores with a limited number of features can be 
used to discriminate agonist and antagonist ligands of 
the NRs. However, it is important to note that the count 
of pharmacophore features did not include the num-
ber of exclusion volume spheres. The most represented 
pharmacophore features were hydrophobic groups and 
hydrogen bond acceptors, and the less represented phar-
macophore features were negative and positive ionizable 
areas. However, some significant differences between 
SBLB agonist selective pharmacophores and SBLB antag-
onist selective pharmacophores could be observed, the 
main trend being that for 9 NRs, the SBLB agonist selec-
tive pharmacophores included less HBA features than 
the SBLB antagonist selective pharmacophores. Interest-
ingly, some overlap exists between SB and LB pharma-
cophores. For example, the ER_alpha agonist selective 
pharmacophores include 5 SB pharmacophores and 34 
LB pharmacophores. The 5 SB pharmacophores could 
be aligned with 5, 19, 20, 23 and 25 LB pharmacophores, 
with a mean of respectively 90, 78, 64, 89 and 87  % of 
SB features overlapped by LB features (Additional file 1: 
Table S55; Additional file 1: Figure S14). Similarly, the 6 
SB ER_alpha antagonist selective pharmacophores could 
be aligned with respectively 10, 10, 10, 12, 13 and 15 out 
of the 17 LB ER_alpha antagonist selective pharmacoph-
ores with a mean of respectively 55, 75, 75, 78, 72, 54 and 
77 % of SB features overlapped by LB features (Additional 
file  1: Table S56). For 7  % of the pharmacophores, one 
or more pharmacophore features were set as optional, 
which means the ligands mapping all pharmacophore 
features and the ligands mapping all pharmacophore fea-
tures but the optional one were considered as hits.
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These pharmacophores are able to retrieve a wide 
range of ligands, from 1 ligand for the most stringent 
pharmacophores to 1299 for the most powerful one. We 
could not identify any significant correlation between 
the number of pharmacophore features and the number 
of ligands retrieved by each pharmacophore (Additional 
file 1: Figure S15). Hence, the pharmacophores present-
ing a small number of features didn’t necessarily retrieve 
more ligands than the pharmacophores with a larger 
number of features.

Pharmacophores selectivity
Each SBLB combination of agonist selective pharmaco-
phores and antagonist selective pharmacophores was 
tested for its selectivity for their dedicated NRs ligands on 
all NRLiSt BDB datasets. We observed that the pharma-
cophores generated for this study were selective for the 
NRs activity for which they have been created, the “SBLB 
antagonist selective pharmacophores” being more selec-
tive than the “SBLB antagonist selective pharmacophores”. 
Particularly, 6 out of the 8 combinations of pharmacoph-
ores for which the average recall of the cross-screening 
study was above 50 % were “SBLB agonist selective phar-
macophores”. In addition, 16 out of the 17 combinations 
of pharmacophores for which the average recall of the 
cross-screening study was below 5 %, were “SBLB antago-
nist selective pharmacophores”. This selectivity is associ-
ated to three features: the number of ligands in the dataset 
used to generate the pharmacophores (Kendall’s tau coef-
ficient, p-value =  3.476e−8), the number of pharmaco-
phores included in the combination for the considered 
dataset (Kendall’s tau coefficient, p-value  =  5.915e−5) 
and the active ligands over decoys ratio (Kendall’s tau 
coefficient, p-value  =  4.461e−11). Hence, the selectiv-
ity of the combination of pharmacophores against its 
dedicated NRs activity decreased for datasets with a large 
number of ligands (and consequently with a large num-
ber of pharmacophores included in the combination) or 
with a number of active ligands largely outnumbering the 
number of decoys. This last point was particularly true for 
the PPAR_alpha, PPAR_beta and PPAR_gamma agonist 
datasets that encompassed more than 800 active ligands, 
and for which not even 10 antagonist decoys were availa-
ble. A larger number of PPAR antagonist ligands would be 
necessary to obtain a pharmacophore that would be more 
selective for their agonist ligands.

Finally, the selectivity of the combination of pharma-
cophores also depended on the selectivity of the NRs 
ligands. Indeed, NRs ligands presented cross-reactivity, 
which means that one ligand can bind to several NRs, 
and this cross-reactivity is particularly true between NRs 
isoforms. This cross-reactivity is reflected in the NRL-
iSt BDB (NRLiSt BDB Supplementary Information [33]) 

and also in the pharmacophores that were generated for 
this study. Indeed, the combinations of pharmacoph-
ores created for this study displayed a lack of selectivity 
between the different NRs isoforms (ER_alpha/ER_
beta, LXR_alpha/LXR_beta, PPAR_alpha/PPAR_beta/
PPAR_gamma, RAR_alpha/RAR_beta/RAR_gamma, 
ROR_alpha/ROR_gamma, RXR_alpha/RXR_beta/RXR_
gamma, TR_alpha/TR_beta), which is clearly visible with 
the small checkerboard along the central diagonal in the 
Fig. 9.

Conclusion
 In the present work, we aimed to create NRs agonist 
selective pharmacophores and NRs antagonist selective 
pharmacophores. Our main objective was to evaluate the 
use of a 3D pharmacophore modeling approach to dis-
criminate agonist and antagonist ligands of the NRs. We 
generated with the LigandScout software 3D  structure-
based pharmacophores and 3D  ligand-based pharmaco-
phores using respectively the NRs PDB structures and 
the sets of NRs ligands included in the NRLiSt BDB. We 
evaluated and compared the performance of these two 
approaches by focusing on two features: (1) the ability to 
generate selective pharmacophores for agonist or antago-
nist ligands, (2) the recalls associated to the combinations 
of pharmacophores in order to study the coverage the 
chemical space of the NRLiSt BDB datasets. Using the 
structure-based approach, we obtained selective pharma-
cophores for both agonist and antagonist ligands of the 
NRs, but since the recalls were correlated with the avail-
ability and the diversity of PDB structures, no selective 
pharmacophore could be generated for some datasets. 
Using the ligand-based approach, we created pharma-
cophores selective for agonist ligands and pharmaco-
phores selective for antagonist ligands for each NRLiSt 
BDB datasets that yielded high performances. However, 
the best performances were obtained by combining the 
structure-based and the ligand-based approaches. We 
identified that: (1) the number of pharmacophores nec-
essary to cover each NRLiSt BDB dataset depended on 
the number of ligands included in the dataset and (2) a 
limited number of pharmacophore features, mostly 4 or 
5, were sufficient to discriminate agonist and antagonist 
ligands of the NRs. We also study the selectivity of the 
combination of the pharmacophores obtained for each 
dataset against all other datasets and we demonstrated 
that our pharmacophores were selective for their dedi-
cated NRs ligands, and that this selectivity was associated 
with three features: the number of ligands in the data-
set, the number of pharmacophores in the combination 
and the active ligands over decoys ratio. In conclusion, 
we have been able to generate 3D agonist and antagonist 
selective pharmacophores that cover most of the NRLiSt 
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BDB active ligands chemical space. These 3D pharmaco-
phores can be used as a predictor of the pharmacological 
activity of NRs ligands.

Additional file

Additional file 1: Figure S1. Correlation between the number of 
pharmacophores necessary to cover a given dataset and the number of 
ligands in the dataset. Figure S2. A–N Representation of the pharmaco‑
phore features composition of the “SBLB agonist selective pharmacoph‑
ores” and “SBLB antagonist selective pharmacophores” combinations for 
each NRLiSt BDB dataset (left graph). The number of ligands found with 
each pharmacophore and the total number of unique ligands found by 
combining the pharmacophores are also illustrated (right graph).Figure 
S3. A–C Comparison of the distribution of pharmacophore features 
between SBLB agonist selective pharmacophores and SBLB antagonist 
selective pharmacophores for each NR of the NRLiSt BDB using the 
Wilcoxon-test. The red line represents the significance threshold (p-value 
= 0.05). Figure S4. Correlation between the selectivity of a combination 
of pharmacophore towards their dedicated NRs ligands (average recovery 
rate against all the others NRLiSt BDB datasets) and the number of ligands 
in the dataset. Figure S5. Correlation between the selectivity of a combi‑
nation of pharmacophore towards their dedicated NRs ligands (average 
recovery rate against all the others NRLiSt BDB datasets) and the number 
of pharmacophores included in the combination. Figure S6. Correlation 
between the selectivity of a combination of pharmacophore towards their 
dedicated NRs ligands (average recovery rate against all the others NRLiSt 
BDB datasets) and the active ligands over decoys ratio. Figure S7. Struc‑
ture of the LXR_alpha and LXR_beta agonist that could only be repre‑
sented by a pharmacophore formed of 2 non-independent features. Fig-
ure S8. Structure of the ER_alpha antagonist ligand and ER_alpha agonist 
ligand that could not be separated using 3D pharmacophore models. 
Figure S9. Structure of the GR antagonist ligands and GR agonist ligands 
that could not be separated using 3D pharmacophore models. Figure 
S10. Structure of the PR agonist ligands and PR antagonist ligands that 
could not be separated using 3D pharmacophore models. Figure S11. 
Structure of the PR antagonist ligand and PR agonist ligand that could not 
be separated using 3D pharmacophore models. Figure S12. Structure 
of the RAR_alpha agonist ligands and RAR_alpha antagonist ligands that 
could not be separated using 3D pharmacophore models. Figure S13. 
Structure of the RAR_gamma agonist ligand and RAR_gamma antagonist 
ligands that could not be separated using 3D pharmacophore models. 
Figure S14. Overlapping features between the SB_pharmacophore5 ER_
alpha agonist selective pharmacophore and LB ER_alpha agonist selective 
pharmacophores (reference point tethers are represented by the orange 
circle on the alignment, right graph). Figure S15. Correlation between 
the number of pharmacophore features and the number of ligands 
retrieved by each pharmacophore. Table S1–Table S54.. For each NR 
agonist and antagonist datasets. Pharmacophore features composition of 
the SBLB agonist or antagonist selective pharmacophores (AR: aromatic 
ring, H:hydrophobic, HBA: Hydrogen Bond Acceptor, HBD: Hydrogen 
Bond Donor, PI: Positive ionizable area, NI: negative ionisable area, opt.: 
feature set as optional) and number of active ligands found with each 
pharmacophore (“Nbr of agonist or antagonist ligands found”), number 
of unique active ligands found by combining the pharmacophores (“Accu‑
mulated nbr of unique agonist or antagonist ligands found”) and number 
of decoys found (“Nbr of agonist or antagonist ligands found”). Table 
S55. Overlapping features between ER_alpha the SB agonist selective 
pharmacophores and the LB agonist selective pharmacophores included 
in the SBLB agonist combination of pharmacophores (Overlap: number 
of LB pharmacophore features that overlap SB pharmacophore features, 
RMS: Root Mean Square of matched features pairs, Score: LigandScout 
alignment score). Table S56. Overlapping features between ER_alpha the 
SB antagonist selective pharmacophores and the LB antagonist selective 
pharmacophores included in the SBLB antagonist combination of phar‑
macophores (Overlap: number of LB pharmacophore features that overlap 
SB pharmacophore features, RMS: Root Mean Square of matched features 
pairs, Score: LigandScout alignment score).
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