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Lung adenocarcinoma (LUAD) needs to be stratified for its heterogeneity. Oncogenic
driver alterations such as EGFR mutation, ALK translocation, ROS1 translocation, and
BRAF mutation predict response to treatment for LUAD. Since oncogenic driver
alterations may modulate immune response in tumor microenvironment that may
influence prognosis in LUAD, the effects of EGFR, ALK, ROS1, and BRAF alterations on
tumor microenvironment remain unclear. Immune-related prognostic model associated
with oncogenic driver alterations is needed. In this study, we performed the Cox-
proportional Hazards Analysis based on the L1-penalized (LASSO) Analysis to establish
an immune-related prognostic model (IPM) in stage I-II LUAD patients, which was based
on 3 immune-related genes (PDE4B, RIPK2, and IFITM1) significantly enriched in patients
without EGFR, ALK, ROS1, and BRAF alterations in The Cancer Genome Atlas (TCGA)
database. Then, patients were categorized into high-risk and low-risk groups individually
according to the IPM defined risk score. The predicting ability of the IPM was validated in
GSE31210 and GSE26939 downloaded from the Gene Expression Omnibus (GEO)
database. High-risk was significantly associated with lower overall survival (OS) rates in 3
independent stage I-II LUAD cohorts (all P < 0.05). Moreover, the IPM defined risk
independently predicted OS for patients in TCGA stage I-II LUAD cohort (P = 0.011). High-
risk group had significantly higher proportions of macrophages M1 and activated mast
cells but lower proportions of memory B cells, resting CD4 memory T cells and resting
mast cells than low-risk group (all P < 0.05). In addition, the high-risk group had a
significantly lower expression of CTLA-4, PDCD1, HAVCR2, and TIGIT than the low-risk
group (all P < 0.05). In summary, we established a novel IPM that could provide new
biomarkers for risk stratification of stage I-II LUAD patients.

Keywords: tumor microenvironment, immune-related prognostic model, lung adenocarcinoma, oncogenic driver
alterations, The Cancer Genome Atlas, Gene Expression Omnibus
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INTRODUCTION

Lung adenocarcinoma (LUAD) is the most common type of lung
cancer that comprises around 40% of all lung cancer, and it is
also one of the most aggressive and rapidly fatal tumor types (1).
Molecular alterations play important roles in the genesis and
development of lung cancer, especially in LUAD, for it often
occurs in females and never-smokers, and LUAD can be
classified according to the presence of specific mutually
exclusive oncogene aberrations that drive carcinogenesis (2–5).
Moreover, molecular alterations including EGFR mutation, ALK
translocation, ROS1 translocation, and BRAF mutation provide
definite targets for drugs in precision medicine (6). However,
similar to conventional chemotherapies, the development of
resistance for these new-targeted drugs is still a major
challenge for treatment effectiveness. Despite the success of
targeted-based therapies, early diagnosis and surgical resection
of early-stage disease remain the best opportunity for a cure, for
that outcome varies differently between LUAD patients at early
stage and advanced stage (7, 8). But in spite of its early stage of
development, LUAD patients at stage I-II are at substantial risk
for recurrence and death, even after complete surgical resection.
Therefore, more indicators are urged to be evaluated for
further stratified LUAD patients at stage I-II to provide
precision treatment.

Tumor microenvironment (TME) plays an important
role in cancers ’ development include LUAD, which
is constituted by varieties of immune and stromal cell
types (endothelial cells, fibroblasts, etc.) and extracellular
components they secrete (cytokines, growth factors, hormones,
extracellular matrix, etc.), involved in cancer immunoediting,
including elimination, equilibrium and escape (9–13). EGFR
mutation has been demonstrated to correlate with an
immunosuppressive TME in non-small-cell lung cancer
(NSCLC), and EGFR tyrosine kinase inhibitors (TKIs) may
modulate the immune response by regulating TME (14–20).
Further, some studies showed immune checkpoint inhibitors
have poor efficacy in NSCLC patients who harbor an EGFR
mutation or ALK translocation, whereas they appear to be
active in those with a BRAF mutation (21, 22). Therefore, we
speculate that the poor response to treatment of LUAD patients
harboring molecular alterations may be partly caused by the
specific influences of these alterations on the composition of the
TME, such as increase immunosuppressive cells or decreased
immunoreactive cells. Thus, understanding the exact effects of
molecular alterations on the cancer-associated immune
microenvironment in LUAD is critical. In the current study,
we downloaded gene expression data of stage I-II LUAD
cohorts from The Cancer Genome Atlas (TCGA) database to
study the relationship between EGFR mutation, ALK
translocation, ROS1 translocation, and BRAF mutation and
immune TME in LUAD, and establish an immune-related
prognostic model (IPM) for prognostic prediction in LUAD
patients at stage I-II, which is a widely used method for
diseases’ prognostic prediction in different type of solid
tumors (23–26).
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MATERIALS AND METHODS

Data Sources
The study design and workflow were provided in Figure 1. The
somatic mutation status (workflow type: VarScan2 Variant
Aggregation and Masking), transcriptional profiles, and the
corresponding clinical and overall survival (OS) data of 403 stage
I-II LUAD patients were downloaded from The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/). The gene
expression profile was measured experimentally using the Illumina
HiSeq 2000 RNA Sequencing platform. The gene symbols were
annotated based on the Homo_sapiens. GRCh38.91.chr.gtf file
(http://asia.ensembl.org/index.html). Log2 transformations were
performed for all gene expression data. The study reported here
in fully satisfies the TCGA publication requirements (http://
cancergenome.nih.gov/publications/publicationguidelines).

For validation of the predict ability of the IPM established
based on TCGA data, the gene expression profile-matrix files from
GSE31210 based on platform GPL570 (Affymetrix Human
Genome U133 Plus 2.0 Array) and GSE26939 based on
platform GPL9053 (Agilent-UNC-custom-4X44K) and the
individual clinical and OS information were downloaded from
GEO database (https://www.ncbi.nlm.nih.gov/geo/). The obtained
data were used according to the GEO data access policies. Both
mRNA profile data and clinical feature data of stage I-II LUAD are
made public. All analyses were carried out based on pertinent
guidelines and regulations.

Gene Set Enrichment Analysis (GSEA)
GSEA (Version:3.0; http://software.broadinstitute.org/gsea/
index.jsp) was performed to identify different enriched
immune-related genes between patients without EGFR
mutation, ALK translocation, ROS1 translocation, and BRAF
mutation (WT) group and patients with EGFR mutation, ALK
translocation, ROS1 translocation, or BRAF mutation (MUT)
group (27). An annotated gene set file (the expression signatures
of the hallmark gene sets, each containing 50 specific gene sets
derived by concentrating multiple gene sets from the Molecular
Signatures Database (MSigDB) was selected as the reference gene
set. The GSEA threshold for significantly enriched functional
annotations was set at a P < 0.05, false discovery rate (FDR) <
0.25, and a normalized enrichment score > 1.5.

Identification of Immune-Related
Prognostic Signature
Univariate Cox regression analysis was performed using the R
package “survival” to evaluate correlations between the expression
levels of immune-related genes selected by GSEA and the OS of
stage I-II LUAD patients in TCGA cohort. Immune-related genes
with P < 0.05 by univariate Cox regression analysis were identified
as alternative prognostic genes.

Cox-Proportional Hazards Analysis Based
on the L1-Penalized (LASSO) Analysis
LASSO with L1-penalty is a popular method for determining
interpretable prediction rules that could be used to successfully
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address the collinearity problem (28). Therefore, a sub-selection
among the immune-related genes that were significant in the
univariate Cox regression analysis was determined by LASSO-
penalized Cox regression analysis, which was performed by using
the R package “glmnet” (Version: 2.0–16; https://cran.r-project.
org/web/packages/glmnet/index.html), and genes were regarded
as significant at P < 0.05. To be specific, stage I-II LUAD patients
in TCGA cohort were randomly split into training and validation
cohorts using a 7:3 ratio, then LASSO-penalized Cox regression
analysis was performed in the training cohort, the tuning
parameters were determined according to the expected
generalization error estimated from 10-fold cross-validation
and information-based criteria Akaike Information Criterion
(AIC)/Bayesian Information Criterion (BIC), and the “min”
Frontiers in Oncology | www.frontiersin.org 3
lambda was adopted. Furthermore, the dataset was subsampled
1,000 times and genes that were repeated N ≥ 900 times were
chosen. As a result, a relatively small number of immune-related
genes involved in stage I-II LUAD patients’ prognosis with a
weight of nonzero that was determined by shrinkage of the
regression coefficient via the imposition of a penalty
proportional to their size were identified.
Establishment and Validation of an
Immune-Related Prognostic Model (IPM)
Finally, an IPM based on key immune-related genes selected by
LASSO Cox analysis was established in training cohort. By
weighting the expression level of each immune gene (RIPK2,
FIGURE 1 | Workflow chart of data generation and analysis.
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PDE4B, and IFITM1) to the regression coefficients of the
multivariate Cox regression analysis, the risk score derived
from the IPM was calculated by utilizing the “predict” function
in R software to assess each patient’s risk level. The optimal cutoff
of a risk score was identified by the maximum Youden’s index
that was obtained from a receiver operating characteristic (ROC)
curve, and patients with available survival data were separated
into IPM defined high-risk and low-risk groups, respectively.
The predictability of the IPM was evaluated by area under ROC
(AUC), which calculated the proportions of concordant pairs
among all pairs of observations with 1.0 indicating perfect
prediction accuracy. The higher the value of the AUC is, the
better the predictability of the model. In addition, the
performance of the IPM in predicting prognosis was validated
by survival analysis in 2 independent stage I-II LUAD cohorts
from GEO database.
Estimation of Immune Cell Type Fractions
The Cell type Identification by Estimating Relative Subsets of
RNA Transcripts (CIBERSORT) is used for characterizing the
cell composition of complex tissues based on their gene
expression profiles, and it is highly consistent with ground-
truth estimations in many cancers (29). A leukocyte-gene
signature matrix consisting of 547 genes and termed LM22 was
used to distinguish 22 immune cell types; these types contained
myeloid subsets, natural killer (NK) cells, plasma cells, naive and
memory B cells, and seven T cell types. We uploaded normalized
gene expression data with standard annotation files to the
CIBERSORT web portal and utilized CIBERSORT in
combination with the LM22 signature matrix to estimate the
fractions of 22 human hematopoietic cell phenotypes between
stage I-II LUAD samples in high-risk group and in low-risk
group. The sum of all estimated immune cell type fractions was
equal to 1 for each sample. The threshold was set at P < 0.05 and
the final CIBERSORT output was subsequently analyzed.
Statistical Analysis
Comparisons of immune cell type fractions and checkpoints,
including CTLA-4, PDCD1 (also known as PD-1), CD274 (also
known as PD-L1), HAVCR2 (also known as TIM3), LAG3, and
TIGIT between high-risk and low-risk groups, was performed
using the Mann-Whitney U test. Pairwise comparisons of the
variables between groups were performed using the Mann-
Whitney U test for continuous variables and the Fisher’s exact
test for categorical variables. The log-rank test and Kaplan-Meier
survival analysis were used to test the predictive ability of the
IPM in training cohort, validation cohort, and the whole stage I-
II LUAD cohort. Additionally, we conducted univariate Cox
regression, and variables associated with P ≤ 0.20 in the
univariate analysis were entered into a multivariable Cox
regression analysis to check whether the IPM was an
independent prognostic factor within the available data. The
level for a statistically significant difference was set at P < 0.05.
The SPSS 21.0 software package (SPSS Inc.) and GraphPad Prism
5 (GraphPad Software Inc.) were used for data analysis.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

EGFR, ALK, ROS1, and BAFR Mutations
Associated Immune Profile in Stage I-II
LUAD Patients in the TCGA Cohort
Among 403 stages I-II LUAD patients in TCGA database, a total
of 171 patients with available gene expression profile and
mutation status were analyzed. Their EGFR, ALK, ROS1, and
BRAFmutation frequencies were 14.6% (25/171), 8.8% (15/171),
5.8% (10/171), and 8.8% (15/171), respectively. A total of 110
patients had no mutation in EGFR, ALK, ROS1, and BRAF
mutation and were categorized as WT group (n=110), and the
remaining 61 patients had at least one somatic mutation (EGFR,
ALK, ROS1, or BRAF) and were categorized as MUT group
(n=61). GSEA analysis of WT group andMUT group showed the
immune response of WT group was markedly stronger than
MUT group, that 50 gene sets were upregulated in lung
adenocarcinoma, and 30 gene sets were upregulated in WT
group, among which 2 immune-related gene sets were greatly
enriched, with normalized P < 0.05 (Figure 2). Thus, these two
top-ranking functions, namely, INTERFERON_ALPHA_
RESPONSE (normalized enrichment score: NES = 1.82, size =
95, P = 0.023) and INTERFERON_GAMMA_RESPONSE
(NES = 1.79, size = 198, P = 0.049) were selected, and 220
non-repetitive immune-related genes were obtained from these
two immune-related processes.

Identification of Immune-Related Genes
Associated With Survival
Of 171 stage I-II LUAD patients in TCGA database, 164 patients
had survival information and were performed survival analysis.
The general information of 164 patients was summarized in
Table 1. Their median follow-up period was 800 days (range: 14–
7248 days) and the 3-year OS rate was 69.9% (95% confidence
interval [CI]: 60.5–77.5%).

The results of Univariate Cox regression analysis in 164
patients revealed that 7 of the 220 immune-related genes were
significantly related to OS (Table 1). Then 164 patients were
randomly split into training and validation cohorts using a ratio
of 7:3, corresponding to 119 and 45 total patients, respectively.
Further, LASSO-penalized Cox regression analysis was
performed in training cohort and only 3 of 7 immune-related
genes showed significant prognostic signatures (i.e., P < 0.05),
that is Phosphodiesterase 4B (PDE4B), Receptor-interacting
protein kinase 2 (RIPK2), and Interferon-inducible transmembrane
protein 1 (IFITM1).

Establishment and Evaluation of an IPM to
Predict Patient Outcomes in the Training
Cohort of TCGA Database
Then an IPM was established based on 3 immune-related genes.
By weighting the expression level of each immune gene to the
regression coefficients of the multivariate Cox regression
analysis, a risk score system was established to predict patient
survival by using the “predict” function in R software in training
cohort (n=119). The risk score was calculated for each patient.
January 2021 | Volume 10 | Article 593022
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The risk score distribution and gene expression data were shown
in Figure 3A. The IPM achieved an AUC of 0.74 at 1 year, 0.76 at
3 years, and 0.81 at 5 years (Figure 3B).

The ROC curves showed that 1.29 had a maximum Youden’s
index (0.31) among all values. Thus 1.29 was identified as the
optimal cutoff value of the risk score, risk score ≥ 1.29 and < 1.29
were defined as high-risk group and low-risk group, respectively.
In the entire cohort, 39 (32.8%) and 80 (67.2%) patients were
individually categorized as high-risk and low-risk group. As a
result, patients in high-risk group had significantly lower 3-year
OS rate than the patients in low-risk group (48.6% [95% CI:
29.4–65.3%] vs 84.2% [95% CI: 71.3–91.6%], P < 0.0001,
Figure 3C).

Authentication of the IPM in Validation-
Cohort and the Whole Stage I-II LUAD
Cohort of TCGA Database
The performance of the IPM was assessed in validation cohort
(n=45) and the whole stage I-II LUAD cohort (n=164)
individually. With the same formula and the same cutoff
obtained from training cohort (n=119), patients in validation
Frontiers in Oncology | www.frontiersin.org 5
cohort and the whole stage I-II LUAD cohort were individually
divided into high-risk group and low-risk group. In validation
cohort, patients assigned to high-risk group (n=11) had a
significantly lower 3-year OS rate than those assigned to low-
risk group (n=34) (46.8% [95% CI: 13.5–74.9%] vs 74.1% [95%
CI: 49.7–87.9%], P = 0.020). Similar results were found in the
whole stage I-II LUAD cohort; the risk score distribution and
gene expression data of the whole stage I-II LUAD cohort are
shown in Figure 4A, and the IPM achieved an AUC of 0.74 at 1
year, 0.71 at 3 years, and 0.75 at 5 years (Figure 4B). High-risk
patients (n=50) had significantly shorter 3-OS rate than low-risk
patients (n=114) (48.2% [95% CI: 31.3–63.2%] vs 81.3% [95% CI:
70.5–88.5%], P < 0.0001, Figure 4C).

Relationship Between IPM-Defined Risk
and Patient Characteristics in the TCGA
Cohort
As shown in Table 2, of 164 stage I-II LUAD patients in the
TCGA cohort, IPM-high risk (IPM-HR) was significantly related
to advanced age (P < 0.0001), survival status (P < 0.0001), and N
stage (P < 0.0001). However, the IPM defined risk had no
relationship with sex, smokers or never smokers, T stage,
residual tumor, EGFR mutation, ALK mutation, ROS1
mutation, BRAF mutation, and WT/MUT groups (all P > 0.05).

The IPM Independently Predicted Poor
Outcomes for Stage I-II LUAD Patients
in TCGA Dataset
As shown in Table 3, univariate analysis was performed in the
whole stage I-II LUAD cohort. In addition to the IPM, N
classification, UICC stage, age, neoplasm cancer status, and
residual tumor status were all effective for predicting the OS
rate of stage I-II LUAD patients (all P < 0.05). Multivariable
FIGURE 2 | Enrichment plots of two immune-related gene sets that were significantly enriched in the WT group.
TABLE 1 | Univariate Cox regression analysis results of seven prognostic
immune-related genes significantly associated with overall survival in stage I-II
LUAD patients in TCGA cohort.

Gene Hazard ratio P value

PDE4B 0.66 0.010
RIPK2 1.64 0.012
HLA.DMA 0.76 0.018
CIITA 0.75 0.020
ITGB7 0.71 0.024
IFITM1 0.82 0.030
CD74 0.82 0.036
January 2021 | Volume 10 | Article 593022
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analysis showed that high-risk score of the IPM and a positive
tumor finding during the follow-up visit were all independent
adverse prognostic factors for OS in stage I-II LUAD patients
(Table 4).

Validation of the IPM in GEO Stage I-II
LUAD Cohorts by Kaplan–Meier
Curve Analysis
To determine whether the IPM was robust, 71 stage I-II LUAD
patients from GSE26939 and 226 stage I-II LUAD patients from
GSE31210 were used to verify the prognostic significance of IPM
defined risk. Patients in each cohort were calculated IPM defined
risk score and divided into high-risk group and low-risk group
Frontiers in Oncology | www.frontiersin.org 6
based on the individual ROC curve determined cutoff value.
Consistent with the results in TCGA cohort, patients in high-risk
group had significantly lower OS rate than those in low-risk
group, respectively (GSE26939: P = 0.0006, Figure 5A;
GSE31210: P = 0.0152, Figure 5B).

The Immune Landscape Between the
High- and Low-Risk Group of Stage I-II
LUAD Patients
For the whole 164 stage I-II LUAD patients in TCGA cohort, the
proportions of 22 immune cell types were estimated between
high-risk and low-risk groups using the CIBERSORT method.
The proportions of different subpopulations of tumor-infiltrating
A B

C

FIGURE 3 | Establishment and evaluation of an IPM in the training cohort. (A) Risk score distribution and gene expression data. (B) Time-dependent ROC curve of
the IPM for training cohort. (C) Kaplan-Meier survival of the IPM for training cohort.
January 2021 | Volume 10 | Article 593022
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immune cells were weakly to moderately correlated (Figure 6A).
High-risk group patients had significantly higher proportions of
macrophages M1 (P = 0.024) and activated mast cells (P = 0.009),
and lower proportions of memory B cells (P = 0.038), resting
CD4 memory T-cells (P = 0.001), and resting mast cells (P =
0.001) than the low-risk group patients (Figure 6B).

Then, we investigated the expression of critical immune
checkpoint molecules (CTLA-4, PDCD1, CD274, HAVCR2,
LAG3, and TIGIT) between high-risk group and low-risk
group patients. The expression of CTLA-4, PDCD1, HAVCR2,
and TIGIT in high-risk group was significantly lower than that in
low-risk group in the whole 164 stage I-II LUAD patients in
TCGA cohort (CTLA-4: P = 0.001; PDCD1: P = 0.043; HAVCR2:
P = 0.030; TIGIT: P = 0.021, Figure 6C).
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

In the current study, we developed an IPM associated with
oncogenic driver alterations frequently occur in LUAD based
on TCGA database, and demonstrated that the IPM defined risk
independently predicted overall survival in stage I-II LUAD,
which validated by GSE databases.

For the first time, we identification immune relevant genes
significantly enriched in stage I-II LUAD patients without EGFR
mutation, ALK translocation, ROS1 translocation, and BRAF
mutation to establish an IPM. Though the prognostic impact of
EGFR mutation, ALK translocation, ROS1 translocation, and
BRAF mutations remains controversial in LUAD, targeted
therapy remains the best strategy to treat lung cancer patients
A B

C

FIGURE 4 | Validation of the IPM in the whole stage I-II LUAD cohort. (A) Risk score distribution and gene expression data. (B) Time-dependent ROC curve of the
IPM for the whole stage I-II LUAD cohort. (C) Kaplan-Meier survival of the IPM for the whole stage I-II LUAD cohort.
January 2021 | Volume 10 | Article 593022
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who harbor these oncogenic driver alterations, which were
specifically included in NCCN guideline (5, 30). Thus, only
EGFR mutation, ALK translocation, ROS1 translocation, and
BRAF mutation status were considered to be included for
identifying candidate genes to develop IPM in the current
study. After performing univariate Cox regression and LASSO
Cox analysis of immune relevant genes significantly enriched in
Frontiers in Oncology | www.frontiersin.org 8
WT group in according to GSEA analysis, we established an IPM
composed of 3 genes expression with individual weight. Then the
optimal cutoff value obtained from ROC curve analysis was used
to divide patients into high-risk and low-risk groups in each
cohort, respectively. The survival analysis demonstrated that
IPM defined high-risk was an independent poor prognostic
factor in stage I-II LUAD patients in TCGA cohort. Since our
IPM is based on tumor microenvironment-related genes,
although its establishment is related to EGFR mutation, ALK
translocation, ROS1 translocation, and BRAF mutation, it is
applicable to all patients with or without these mutations in
stage I-II LUAD. Furthermore, this impact was individually
validated in 2 independent cohorts of stage I-II LUAD patients
downloaded from GEO databases.

The IPM was consisted with RIPK2, PDE4B, and IFITM1
gene. RIPK2 gene encodes a member of the receptor-interacting
protein (RIP) family of serine/threonine protein kinases, which
contains a C-terminal caspase activation and recruitment
domain (CARD) and is a component of signaling complexes in
both the innate and adaptive immune pathways (31). It is a
central adaptor kinase in the NOD pathway, potent activator of
NF-kappaB, and inducer of apoptosis in response to various
stimuli, and it also has novel roles in cancer cell migration and
invasion (32–34). Several studies have revealed the potential of
RIPK inhibitors in amelioration of inflammatory signalling and/
or inflammatory cell death, and the RIPK2 inhibitors can potently
inhibited the proliferation of cancer cells (32, 34), but there are few
studies that have focused on the prognostic impact of RIPK2 on
lung cancer. PDE4B gene is a member of the type IV, cyclic AMP
(cAMP)-specific, cyclic nucleotide phosphodiesterase (PDE)
family, and the encoded protein of PDE4B regulates the cellular
concentrations of cyclic nucleotides and thereby play a role in
signal transduction. PDE4B is abundant in leukocytes, a series of
studies have reported an important role for cAMP and PDE4B in
TNF-a expression after LPS stimulation, neutrophil recruitment,
and apoptosis or T cell function (35–39). Inflammatory stimuli
can also enhance PDE4B activity through their elevation of the
transcription of PDE4BmRNA and increased PDE4B (40, 41). The
expression of PDE4B varied among different cancer type and its
prognostic significance remains controversial in cancer (42).
PDE4B expression was found to be increased in non-small cell
lung cancer tissues (43), and additional study highlights in vitro
findings that specific PDE4B inhibition is cytotoxic in lung cancer
cells (44). IFITM1 encodes a protein that is a member of the
interferon-inducible transmembrane protein family and was
initially known as a leukocyte antigen, a part of the membrane
complex involved in the transduction of antiproliferative and
TABLE 2 | Relationship between IPM-defined risk and patient characteristics at
diagnosis in Stage I-II LUAD patients in the TCGA cohort.

Variable All IPM defined risk P value

IPM-LR IPM-HR

Number of patients 164 114 50
Age (year, median, range) 67 (41–86) 68 (41–86) 65.5 (42–85) <0.0001
Males (%) 69 (42.1%) 46 (40.4%) 23 (46%) 0.61
Smoker, n (%)
Smokers 133 (81.1%) 93 (81.6%) 40 (80.0%) 0.63
Never smokers 25 (15.2%) 16 (14.0%) 9 (18.0%)
Not Available 6 (3.7%) 5 (4.4%) 1 (2.0%)

Survival status, n (%)
alive 106 (64.6%) 85 (74.6%) 21 (42%) <0.0001
dead 58 (35.4%) 29 (25.4%) 29 (58%)

T stage, n (%)
T1 58 (35.4%) 45 (39.5%) 13 (26%) 0.11
T2-3 106 (64.6%) 69 (60.5%) 37 (74%)

N stage, n (%)
N0 124 (75.6%) 89 (78.1%) 11 (55.0%) <0.0001
N1 35 (21.3%) 20 (17.5%) 15 (35.0%)

Nx 5 (3%) 5 (4.4) 0 (0%)
Residual tumor, n (%)
R0 116 (70.7%) 83 (72.8%) 33 (66.0%) 0.84
R1 5 (3.0%) 3 (2.6%) 2 (4.0%)

Rx 3 (1.8%) 2 (1.8%) 1 (2.0%)
Not Available 40 (24.4%) 26 (22.8%) 14 (28.0%)

EGFR, n (%)
Mutation 25 (15.2%) 16 (14.0%) 9 (18.0%) 0.64
Wild type 139 (84.8%) 98 (86.0%) 41 (82.0%)

ALK, n (%)
Mutation 15 (9.1%) 10 (8.8%) 5 (10.0%) 0.78
Wild type 149 (90.9%) 104 (91.2%) 45 (90.0%)

ROS1, n (%)
Mutation 10 (6.1%) 7 (6.1%) 3 (6.0%) 0.97
Wild type 154 (93.1%) 107 (93.9%) 47 (94.0%)

BRAF, n (%)
Mutation 15 (9.1%) 10 (8.8%) 5 (10.0%) 0.80
Wild type 149 (90.9%) 104 (91.2%) 45 (90.0%)

WT/MUT Group, n (%)
MUT group 58 (35.4%) 38 (33.3%) 20 (40.0%) 0.41
WT group 106 (64.6%) 76 (66.7%) 30 (60.0%)
TABLE 3 | Univariate analysis of OS in stage I-II LUAD patients in TCGA.

Variable OS

HR(95%CI) P value

High-risk 3.08(1.83–5.18) <0.0001
N1 3.09(1.80–5.30) <0.0001
Stage II 2.94(1.72–5.01) <0.0001
Age > 70y 1.71(1.01–2.89) 0.045
With tumor 8.47(4.47–16.02) <0.0001
Residual tumor 4.62(1.59–13.39) 0.005
TABLE 4 | Independent prognostic factors for OS in stage I-II LUAD patients in TCGA.

No. of patients HR(95%CI) P value

IPM
High-risk 50 2.63(1.24–5.56) 0.011
Low-risk 114 1.00
Neoplasm cancer status
With tumor 27 6.13(2.93–12.84) <0.0001
Tumor free 104 1.00
January 2021
 | Volume 10 | Article
 593022

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. An Immune Prognostic Model for Lung Adenocarcinoma
homotypic adhesion signals in lymphocytes (45–47). IFITM1
plays an important role in the progression of cancer, including
that it promotes tumor cell proliferation, invasion, metastasis,
angiogenesis, and therapeutic resistance, including endocrine
therapy, chemotherapy, and radiotherapy resistance, and it was
always served as poor prognostic biomarkers for many cancers
(48). Several studies showed that IFITM1 critically regulates
epidermal growth factor receptor-mediated signaling in non-
small cell lung cancer models and is associated with a poor
prognosis of patients with adenocarcinoma (49–51). However,
some studies have shown that IFITM1 expression has a rather
Frontiers in Oncology | www.frontiersin.org 9
beneficial prognosis (52). In addition, the IFITM1 can inhibit virus
infections by preventing virus membrane fusion with cells and by
inhibiting fusion of infected cells (syncytialization) (53, 54). The
expression of RIPK2 was poor prognostic marker, whereas the
expressions of PDE4B and IFITM1 seemed favorable prognostic
factors in our developed and validated IPM, and none of them has
ever been systematically evaluated in stage I-II LUAD to date.
Considering the published studies, we suspected that these 3 genes
may have crucial function in modulating the immune response of
TME on LUAD, which may depend on the context of the cancer,
could be regarded as individual targets. Moreover, these 3 genes
A B

FIGURE 5 | OS of two GEO stage I-II LUAD cohorts. (A) GSE26939; (B) GSE31210.
A B

C

FIGURE 6 | Immune landscapes of the IPM defined risk (A) Correlation matrix of all 22 immune cell proportions. (B) Violin plots visualizing significantly different
immune cells between high-risk and low-risk patients. (C) Violin plots visualizing significantly different immune checkpoints between high-risk and low-risk patients.
*P < 0.05,** P < 0.01, ***P < 0.001.
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may provide better performance in combination, depending on
their immune properties and prognostic significance in stage
I-II LUAD.

Immunosuppressive networks are established to evade
antitumor immune response during tumor development in
immune-competent hosts by selecting less immunogenic
cancer cells (55, 56). Disorder of the immunoreactive cells such
as T cells follicular helper and immunosuppressive molecules
and cells such as Treg cells and tumor-associated macrophages,
as well as decreasing the expression of cancer antigens, are
immunosuppressive mechanisms of cancers (57, 58). In the
current study, we found that high-risk group patients generally
had higher fractions of macrophages M1 and activated mast cells,
and significantly lower proportions of memory B cells, resting
CD4 memory T cells, and resting mast cells compared to the low-
risk patients. The results indicate that patients in the high-risk
group and low-risk group may have different mechanisms of
tumor immune response. It has been confirmed that T cells CD4
memory resting can be further differentiated and confer various
functions, including blocking CD8+T cell activation and NK cell
killing, suppressing harmful immunological reactions to self-
antigens and foreign antigens, and aiding CD8+T cells in tumor
rejection (59, 60). The above results suggest that the poorer
prognosis for high-risk LUAD patients may be due to higher
immunosuppression and lower immunoreactivity in TME, thus
promoting the development of tumor. It needs to be further
confirmed by immune-profiling by flow cytometry in tumor
tissue to be of relevant value in the future research.

Immune checkpoint molecules have been demonstrated play
important roles in anti-tumor T-cell activity (61–63).
Immunotherapy can stimulate cell-mediated immunity to
recognize and destroy cancer cells by modulating T-cell function
and targeting relevant mechanisms of immune resistance, such as
immune inhibitory molecules in the tumor microenvironment (64).
Both inhibitory of checkpoints (CTLA-4 and PDCD1) commonly
seen on activated T-cells have been found to be the most reliable
targets for the treatment of cancer (65–67). In addition to the
expression of CTLA-4 and PDCD1, tumor-infiltrating lymphocytes
(TILs) express a number of other co-inhibitory receptors, including
HAVCR2 and TIGIT (68, 69), providing additional targets that could
be exploited for inducing anti-tumor immune responses. In the
current study, we found that the low-risk stage I-II LUAD patients
had significantly higher expression of CTLA-4, PDCD1, HAVCR2,
Frontiers in Oncology | www.frontiersin.org 10
and TIGIT than the high-risk patients. Since biomarkers can be used
to identify patients who are more likely to respond to single-agent
immune checkpoint inhibitors (70). Thus, the IPM can distinguish
patients with a different expression of immune checkpoints, andmay
provide a novel immunotherapeutic strategy for stage I-II LUAD
patients after more prospective studies are completed. In addition, it
also indicates that the tumor immune microenvironment may be
involved in the prognosis of stage I-II LUAD.

Overall, we established and validated an IPM based on 3
immune related genes associated with EGFR mutation, ALK
translocation, ROS1 translocation, and BRAF mutation status,
which independently predicted the overall survival of stage I-II
LUAD patients. High-risk was related to lower proportion of
resting CD4 memory T cells and lower expression of checkpoint
molecules CTLA-4, PDCD1, HAVCR2, and TIGIT. The current
IPM may provide a new biomarker for stratification and
immunotherapeutic strategies of stage I-II LUAD. To further
validate the IPM, prospective studies with larger sample sizes,
more detailed treatment information are warranted, and further
studies on the mechanism of IPM are needed.
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