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Abstract: Autonomous navigation of unmanned vehicles in forests is a challenging task. In such
environments, due to the canopies of the trees, information from Global Navigation Satellite Systems
(GNSS) can be degraded or even unavailable. Also, because of the large number of obstacles,
a previous detailed map of the environment is not practical. In this paper, we solve the complete
navigation problem of an aerial robot in a sparse forest, where there is enough space for the flight and
the GNSS signals can be sporadically detected. For localization, we propose a state estimator that
merges information from GNSS, Attitude and Heading Reference Systems (AHRS), and odometry
based on Light Detection and Ranging (LiDAR) sensors. In our LiDAR-based odometry solution,
the trunks of the trees are used in a feature-based scan matching algorithm to estimate the relative
movement of the vehicle. Our method employs a robust adaptive fusion algorithm based on the
unscented Kalman filter. For motion control, we adopt a strategy that integrates a vector field, used to
impose the main direction of the movement for the robot, with an optimal probabilistic planner,
which is responsible for obstacle avoidance. Experiments with a quadrotor equipped with a planar
LiDAR in an actual forest environment is used to illustrate the effectiveness of our approach.

Keywords: forest flight; surveillance; robust state estimation; sensor fusion; motion planning

1. Introduction

Robot navigation in forests is a big challenge, mainly due to the several obstacles existent in
such environments, such as tree trunks, bushes and uneven or swamped terrains. Ground robots
that can navigate in forests are usually expensive, due to their complex and adaptive locomotion
systems [1,2]. In this scenario, autonomous Micro Air Vehicles (MAVs), such as electric drones, appear
as a viable and cost-effective alternative, as they are able to fly below the canopies of the trees and
execute several missions such as surveillance [3], search and rescue [4], ecological monitoring [5],
and forest management [6]. Although the forest terrain has low or no influence in the motion of the
MAVs, forest environments may be GNSS (Global Navigation Satellite System)-denied environments,
preventing the use of standard and commercial localization systems. Also, in forests, the presence of
several unknown obstacles imposes the need for efficient online obstacle avoidance systems to keep
the flight safe and allow the completion of the robotic task. This paper presents solutions for both
localization and motion control of a drone inside a sparse forest. In this context, we consider a forest
to be sparse if the average distance between trees is large enough to (i) allow a safe flight among the
trees and (ii) permit GNSS signals to be sporadically available. A picture of our MAV flying in a sparse
forest using our integrated solution is shown in Figure 1.
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Several recent works have addressed the problem of flying in a forest. Cui et al. [7], for example,
developed an autonomous navigation system for a quadrotor drone in forests using Simultaneous
Localization and Mapping (SLAM) to construct a map and localize the robot. The authors assume
that GNSS signals are never available inside the forest. The vehicle is equipped with an Attitude and
Heading Reference System (AHRS) and a LiDAR (Light Detection and Ranging) sensor that is used
in a LiDAR odometry (LO) algorithm. Although the inertial sensors in the AHRS are used in the
forecast step of a Kalman filter (KF), LO-based estimates of the drone velocity and magnetometer-based
heading are used in its data assimilation step. After the robot is localized on the map, the system plans
and controls the vehicle through a safe trajectory.

Figure 1. Aerial vehicle used in this work flying in a sparse forest.

Due to their complementary characteristics, the combination of inertial and GNSS measurements
is the standard approach for most navigation solutions for drones and other small flying vehicles.
However, for long drop-out periods of the GNSS, the lower-grade AHRS, which are normally
embedded in these aerial vehicles, are not sufficient to estimate the robot position and velocity.
Therefore, it is necessary to combine information from other exteroceptive sensors such as cameras
and LiDAR as is done by the authors of [7] and other authors [8,9].

Shen et al. [8] proposed a modular and extensible multisensor fusion algorithm based on the
unscented Kalman filter (UKF). The proposed algorithm is able to combine information from a wide
variety of sensors. However, it is not proposed as a solution for the time-varying uncertainty of
the sensors, which is the case when, for instance, the GNSS signal changes from fully available to
unavailable. Chambers et al. [9] also proposed a multisensor fusion algorithm able to combine
relative and absolute information. The authors proposed the use of a chi-squared test to reject outliers,
common, for example, in LiDAR odometry data. Despite the algorithm being able to reject outliers in
the measurements, it is vulnerable to slow drift error in the measurements, as identified by the authors.

The combination of inertial and visual/LiDAR odometry for state estimation is commonly divided
into loosely and tightly coupled approaches. The later jointly estimates the vehicle states and the
position of the detected visual landmarks [10,11]. On the other hand, loosely coupled approaches
compute the vehicle motion by comparing sequential images (scans) [12,13], and then the estimated
motion is used in the fusion algorithm. In the present work, a loosely coupled LO is used because
of its smaller computational burden. However, two challenges arise in this strategy: the first is how
to combine relative information from LO with absolute information from GNSS system into a fusion
architecture; the second is how LO and GNSS errors are modeled in the standard Kalman filter-based
fusion algorithms, since they are usually corrupted with time-varying noise, such as outliers and slow
drift, which are not easily modeled by Gaussian variables.

For the problem of combining relative and absolute measurements, there are typically three
approaches in the literature: using LO measurements as pseudo-global information [12], numerical
differentiating the relative motion to compute velocity [7], and applying the so-called stochastic cloning
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approach [14]. In practice, pseudo-global position drifts with time, and the numerically computed
velocity is a poor approximation of the actual velocity. Thus, some authors [8,9,15] advise that one
should rather consider LiDAR-odometry as a relative measurement and use stochastic cloning. This is
basically a state augmentation technique, in which two instances of the same states, at different
time instants, are concatenated in the state vector. These two instances are then used to define a
measurement model that explicitly considers relative information given by LO. Our strategy uses the
stochastic cloning approach within a UKF.

The classical way to deal with time-varying uncertainty of measurements is the use of adaptive
filters, in which the statistical parameters that characterize the uncertainty are jointly estimated with
the dynamic states of the system. In this context, approaches based on the techniques, namely,
covariance matching (CM) [16], Interacting Multiple Models (IMM) [17], and covariance scaling
(CS) [18], were investigated. Among these methods, the covariance matching approaches yield
improved results in the estimation of the covariance matrix for Gaussian distribution, if compared
to the CS approach, and also with greater simplicity compared to approaches based on multiple
models [19]. However, in the presence of outliers, its performance can be damaged. In such case,
statistical tests, such as chi-squared test, can be used to identify and reduce the influence of outliers [9].

The first contribution of this work is a LiDAR-based odometry for forest environments. Although
similar to the work by the authors of [20], we refine the motion estimate with an iterative closed point
(ICP) algorithm. The second contribution is the extension of the Quaternion-Based Robust Adaptive
Unscented Kalman Filter (QRAUKF), proposed in our previous work only for attitude estimation [21].
In the present paper, this method is used to estimate the complete state of the MAV by combining
measurements from relative and absolute sensors, namely, LiDAR-based odometry, GNSS, and AHRS.
The proposed sensor fusion algorithm can handle the time-varying uncertainty of measurements, such
as outliers and slow varying errors. Note that some preliminary results of these contributions were
initially presented in our conference paper [22].

To fulfill the requirements of a complete navigation system, we integrate the proposed state
estimation approach with the motion planning strategy proposed by Pereira et al. [23]. In this strategy,
a continuous vector field, such as the one proposed by Gonçalves et al. [24], which is meant to
encode the drone task and is constructed over the environment. This vector field only indicates
the main direction of movement for the vehicle and completely ignores small obstacles, such as
trees. These obstacles are considered in a lower level of the strategy, which is based on an optimal
motion planner that generates trajectories that both follows the vector field and avoids the obstacles.
In this regard, the third contribution of this paper is the development an efficient LiDAR-based object
detection and its integration with the optimal motion planner, which in our case is a slightly modified
version of RRT*, an asymptotically optimal version of the Rapidly Exploring Random Tree (RRT)
planner [25]. In this paper we use a 2D vector field and a 2D version of RRT* to fly the robot on a plane
parallel to the ground. The present paper is one of the few works that consider a complete navigation
system for autonomous aerial vehicles in forests. Another example is the work by the authors of [7],
which, in addition to the localization system discussed before, also presents a strategy that uses the
estimated information to close the loop with a motion planner. In this sense, the main difference
between the work by the authors of [7] and our work is that we have a target curve, where the work by
the authors of [7] has a setpoint in 2D. Although the authors also use a two-level planner, their higher
level is performed by an A* algorithm that runs for each laser data obtained. Their lower level is a
vector field histogram (VFH) method, which is a reactive approach. Although it is difficult to compare
both strategies due to the fact that our goal is to follow a curve instead of reaching a setpoint, we believe
that having a deliberative approach, such as RRT*, in the lower level of the planner can yield shorter
and smoother global paths.

Figure 2 shows the block diagram of the proposed navigation solution. The blocks representing the
available measurements of AHRS, GNSS, and LO are discussed in Section 2. In Section 3.1, the laser-based
odometer block, LO, is detailed. Section 3.2 presents the mathematical model used in our sensor fusion
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approach, represented in Figure 2 by the block RAUKF. This approach is detailed in Section 3.3. The motion
control system, responsible to plan and drive the robot through the target path is presented in Section 4.
Finally, Section 5 presents experimental results executed in a forest environment.
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Figure 2. Block diagram of the proposed navigation solution. Data from the available sensors are
combined using a robust and adaptive version of UKF (RAUKF). The filter outputs and estimates of
position p̂k and velocity v̂k, feed the motion control system, which consists of a path planner and a
velocity controller. The controller outputs are the MAV roll φ, pitch θ, yaw rate ψ̇, and vertical velocity
vz, with respect to NED frame.

2. Problem Statement and Proposed Solution

We address the problem of autonomous navigation of a rotorcraft micro aerial vehicle (MAV)
flying in forests. We assume that the forest is sparse, allowing the vehicle to safely fly among the trees
and GNSS signals to be detected in some parts of the forest. For a more precise definition, if we assume
to have a circular vehicle with one meter diameter, then we consider that a sparse forest has an average
distance between two trees of at least four meters.

We also assume that the vehicle is equipped with an AHRS (a GNSS), which may fail when
the vehicle is flying inside a forest, and a planar LiDAR whose plane is parallel to the ground.
The LiDAR may need to be mounted on a gimbal to make sure its plane is parallel to the ground
during the vehicle acceleration or deceleration. From these measurement systems, the following
information may be available: (i) AHRS provides the attitude of the vehicle represented as the unit
quaternion em = [e0,m e1,m e2,m e3,m]T ∈ H1, with respect to the north-east-down (NED) coordinate
frame, and acceleration am =

[
ax,m ay,m az,m

]T , with respect to the vehicle’s body coordinate frame;
(ii) GNSS provides global position pm = [pN,m pE,m pD,m]T and velocity vm = [vN,m vE,m vD,m]T with
respect to NED. In this paper we assume that other altitude sensors, such as a barometer, may be also
used to compute pD,m; and (iii) LiDAR provides distance ri and relative bearing δψ of the environment
obstacles. A LiDAR odometry system will use such data to provide estimates of position increments
δm = [δN,m δE,m]T with respect to NED. In our notation "m" denotes on-board measurements. LiDAR
measurements will also be used to detect and avoid the obstacles found in the vehicle path.

Figure 2 shows a block diagram of the proposed solution. Basically, the information provided by the
sensors is combined by a UKF-based sensor fusion algorithm and the combined information is used by
the motion control system, which consists of a path planner and a velocity controller. The path planner
computes the vehicle path and uses the information from the LiDAR to construct a local map for collision
avoidance. Then, the velocity controller drives the vehicle through the planned path. It is important to
mention that, although we assume to have 2D LiDAR-odometry information, the proposed system is
able to estimate the states of the vehicle and to perform its guidance and control in 3D. For this paper,
however, we use a 2D motion planner that only generates paths at a fixed height parallel to the ground.

Fortunately, most of the drones found in the market today are equipped with AHRS, GNSS,
or some combination of both that will deliver part of the data required by our approach. A LiDAR
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sensor, which is currently becoming lighter and less expensive, must be installed in such vehicles to
complete the set-up necessary for our approach.

3. Localization

This section presents our solution for MAV localization in forests. We start by presenting the
LiDAR based odometry.

3.1. LiDAR-Based Motion Estimation in Forests

LiDAR-based odometry is a motion estimation technique that uses the matching between
consecutive laser scan data to estimate the incremental motion of the vehicle. In a forest, raw laser
measurements do not have much information, as most of the measurement beams do not hit any
obstacle. In such a way, more information can be extracted from measurements by detecting
environmental features. If this is done efficiently, the detection of features can decrease considerably
the amount of data to be processed for motion estimation, thus reducing the computational burden of
the entire system. The feature-based laser-odometer algorithm used in this work is mainly composed
of two steps: (i) feature extraction and (ii) incremental motion estimation.

Feature extraction is the first step towards accurate motion estimation. Considering that the
operating environment is a forest, tree trunks seem to be natural choices for features. To detect
the trunks in the LiDAR data we use three steps. First, the range measurements are constrained to
minimum and maximum values; this is necessary to reduce the influence of noise in the measurements,
which increases with distance, and to eliminate beams that hit parts of the vehicle. In the second step,
laser scans are segmented using edge points, detected as discontinuities in the scan:

∆i =
ri+1 − ri−1

2
, (1)

where ri is the range measured by ith LiDAR beam for i = 2, . . . , nr − 1, where nr is maximum number
of beams. Note that such a segmentation strategy is widely used in the literature to generate clusters of
laser data [26]. Figure 3a shows the original scan, represented by a sequence of range values ri and the
detected discontinuities ∆i. To mitigate measurement noise, we only accept ∆i ≥ 0.1 m. In addition,
to compute the discontinuity ∆i, we use the range beams in positions i− 1 and i + 1, which diminishes
the influence of outliers in the measurements. A tree trunk is probably found between the peaks down
and up of the signal.
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Figure 3. (a) Original laser scan in blue and the detected discontinuities in red. (b) Tree radius estimate.
The blue dots represent the laser beams, and the tree trunks are represented by red circles.
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The third step of the feature extraction algorithm assumes that all trunks are cylindrical and
estimates the radius rc of each trunk. Figure 4 illustrates the radius estimation method used in our
work. This method follows the procedure proposed by the authors of [26], and computes the radius as

rc =
rm sin(ψc)

1− sin(ψc)
, (2)

where ψc = (ψb − ψa) /2 is the angle of the beam that hits the center of the tree and ψa and ψb are the
angles of the edges. Figure 3b shows some trees (red circles) estimated using this method. To eliminate
possible wrong features, such as bushes, we only consider tree trunks with radius greater than 0.1 m
and less than 1.5 m.

ψa

ψc

ψb

r m

y

x

(xc , yc)rc

Figure 4. Procedure to compute the radius of tree trunk.

Before the estimation of the circles that model the trees, the range information from the LiDAR
was transformed from the body coordinate frame to the NED coordinate frame. Thus, the positions
of the centers of the circles are represented in NED. These centers are then considered as features
and used in an Iterative Closest Points (ICP) algorithm [27]. This algorithm is used to establish the
correspondence between the features just found with the ones found in a previous instant of time.
Thus, for the set of features D = {d1, d2, . . . , dnd} at time step k and M = {m1, m2, . . . , mnm} at
time step l < k, where di, mj ∈ R2 are centers of the fitted circles and nd and nm are the numbers of
features extracted, the problem is to find an alignment; rotation, R; and translation, ρ that minimizes
the distance between the two sets of points. This can be formulated as

ε(R, ρ) =
nc

∑
i=1

∥∥∥Rdi + ρ−mi

∥∥∥2
, (3)

(R∗, ρ∗) = arg min
R,ρ

ε(R, ρ) , (4)

where ε(R, ρ) is called ICP metric fit error and nc is the number of common features between the
current feature set D and the past feature set M. The closed-form solution for the least-squares
problem of Equation (4) in 2D is given by [28]

R∗ = R(ψ) ,

ρ∗ = m̄− R∗ d̄ ,

where R(ψ) is a 2D rotation matrix that represents the vehicle rotation of angle ψ about the vertical
axis, m̄ , 1

nc
∑nc

i mi, d̄ , 1
nc

∑nc
i di, and

ψ = arctan
(

S12 − S21

S11 + S22

)
,
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with Sij being the element ij of the covariance matrix S , 1
nc

∑nc
i (di − d̄)(mi − m̄)T .

3.2. Mathematical Modeling

In this section, the stochastic models used in the state estimators are presented. First, we present
the process model f , which is based on the kinematic equations of the aircraft. Then, we show the
observation model h, which relates the measured output data y with the vehicle’s states x. The notation
used through this section is listed at the end of the paper.

3.2.1. Process Model

The temporal evolution of the vehicle dynamics is described by two sets of nonlinear first-order
ordinary differential equations relative to a local NED coordinate frame.

The set of equations related to the position of the vehicle’s center of gravity,
p = [pN pE pD]

T ∈ R3, with respect to the NED coordinate frame, is given by

ṗ(t) = v(t). (5)

The time evolution of the linear velocity with respect to NED, v = [vN vE vD]
T ∈ R3 is given by

v̇(t) = RNED
b (e)a(t) + g, (6)

where g = [0 0 gz]
T ∈ R3 is the gravity acceleration vector with gz = 9.81 m/s2, andRNED

b is the
orthogonal rotation matrix that represents the rotation of the body coordinate frame with respect to
the NED coordinate frame (the work by the authors of [29], p. 256). In this work, this rotation matrix
is computed using the attitude provided by the AHRS. In systems for which this information is not
provided, such attitude information needs to be estimated together with the other vehicle states. Also,
it is important to mention that, for the case of high velocities, a term corresponding to the Coriolis effect
may be added to Equation (6). In this work, we assume that the vehicle achieves small enough velocities.

Aiming at discrete-time state estimators, the continuous-time dynamic Equations (5) and (6) are
discretized by integrating over time interval [(k− 1)T, kT], where t = kT relates continuous time to
the discrete index and T > 0 is the sampling period. In this case, only the right-hand end point of
[(k− 1)T, kT], given by xk , x(kT), is used. In this work, for simplicity, the Euler integration method
is used for discretization (see the work by the authors of [30], p. 26).

Then, it is considered that the measured input vector uk =
[
aT

k eT
k
]T ∈ R6 is corrupted by bias

βa,k and random noise qk, and are modeled as

am,k = ak + βa,k + qa,k, (7)

em,k = ek ⊕ qe,k, (8)

where βa,k = [βax βay βaz ]
T ∈ R3 are the bias terms, qa,k ∼ N ([0]3×1, Qa) ∈ R3 is the acceleration

noise vector, and qe,k ∼ N ([0]3×1, Qe) ∈ R3 is the orientation noise vector parameterized as “rotation
vector”. The operator ⊕, as in the work by the authors of [21], maps the rotation vector qe,k to a
quaternion and rotates ek.

The accelerometer bias βa,k is modeled as a random-walk process:

βa,k = βa,k−1 + qβ,k−1 , (9)

where qβ ∼ N
(
[0]3×1, Qβ

)
∈ R3. The bias components are jointly estimated with vehicle states,

yielding the “joint state vector” x̌k ∈ R9, defined as

x̌k ,
[

pT
k vT

k βT
a,k

]T
. (10)
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In our work, LiDAR-based odometry (LO) yields relative measurements, which means that
it depends on past states. Therefore, state vector in Equation (10) is augmented with a “clone”,
p̀c

l =
[
pc

N pc
E
]T ∈ R2, of the position states projected in the xy-plane as estimated in time step l < k,

p̀l = [pN pE]
T ∈ R2. Here, the term “clone” (represented by the superscript “c”) is used to define a

simple and exact copy of a past state, as is done by the authors of [14]. After a new LO measurement is
obtained and used to correct the system estimates (see Section 3.3.1), the cloned states are updated
with the newest estimate of p̀k. The equation that describes the evolution of the cloned states with
respect to time is given by

p̀c
k = p̀c

k−1. (11)

Notice that there is no noise in this model, indicating that the cloned states remain the same until
they are replaced by a new clone. We define the augmented state vector xk ∈ R11 as

xk ,
[

x̌T
k ( p̀c

k)
T
]T

. (12)

The discretized version of Equations (5) and (6) together with Equations (9) and (11) compose the
“process model” of the vehicle, which can be compactly recast as

xk = f (xk−1, uk−1, qk−1, k− 1) . (13)

3.2.2. Observation Model

The observation model relates the components of the state vector xk with the measured output
variables yk ∈ R8 is given by

yk , [pm,k vm,k δm,k]
T . (14)

Global position and velocity are given by the GNSS system and are modeled as

pm,k = pk + rp,k , (15)

vm,k = vk + rv,k , (16)

where rp,k ∼ N
(
[0]3×1, Rp

)
∈ R3 and rv,k ∼ N ([0]3×1, Rv) ∈ R3 are the position and velocity noises,

respectively.
LiDAR-odometry gives incremental displacement, δm,k ∈ R2, in the xy-plane, which means

that the measurement depends both on the current p̀k and the past states, stored as clone p̀c
k

(see Equation (12)). The augmentation of the state vector with a copy (clone) of the past state is
the approach known as stochastic cloning [14]. Then, assuming that the state vector is augmented with
the position states p̀c

k, the relative measurement model is given by

δm,k = p̀k − p̀c
k + rδ,k, (17)

where rδ,k ∼ N
(
[0]2×1, Rδp

)
∈ R2.

The complete observation model may be written as

yk = h (xk, rk, k) , (18)

where h is a function of random noise rk and the current xk states given by Equations (15)–(17).
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3.3. Nonlinear State Estimator

In this paper, we assume that the dynamic system is modeled by the nonlinear state-space
Equations (13) and (18), in which ∀k ≥ 1 and the known data are the measured output yk and
input uk−1. It is also assumed that process noise, qk−1 ∈ Rnq , and output measured noise, rk ∈ Rnr ,
are mutually independents with covariance matrices of Qk−1 ∈ Rnq×nq and Rk ∈ Rnr×nr , respectively.
Under these assumptions, the state estimation problem aims at providing approximations for the mean
x̂k = E[xk] and covariance Pxx

k = E[(xk − x̂k) (xk − x̂k)
T ] that characterize the a posteriori probability

density function (PDF) ρ(xk|y1:k).
Due to the nonlinear characteristics of the model, we use, as basis to our approach, the unscented

Kalman filter (UKF) [31]. In the standard form of the UKF, two problems arise: (i) due to the
stochastic cloning approach, the covariance matrix Pxx

k may become negative semidefinite [8], which is
inconsistent with its definition, and (ii) the output measured noise rk can have time-varying statistical
properties, which can degrade the estimates. Regarding (i), a modification based on statistical linear
regression (SLR), similar to what was used by Shen et al. [8], is shown in Section 3.3.1. The solution
to (ii) is our core contribution. We consider two events that may change the statistical properties of
measured noise: sudden jumps and slow varying error in the measurements. The rejection of these
perturbations are addressed in Sections 3.3.2 and 3.3.3.

3.3.1. Unscented Kalman Filter for Absolute and Relative Measurements

Let the process noise be partitioned as qk−1 ,
[
qT

1,k−1 qT
2,k−1

]T
∈ R15 with covariance matrix

Qk−1 , diag (Q1,k−1, Q2,k−1) ∈ R15×15, where q1,k−1 ∈ R6 is the multiplicative noise related to the
state vector and q2,k−1 ∈ R9 is the additive partition of noise. To improve the numerical stability of
the filter, additive noise is considered for all states [32]. Henceforth, the notation x̂k|k−1 indicates an
estimate of xk at time k based on information available up to and including time k− 1. Likewise, x̂k
indicates an estimate of xk at time k based on information available up to and including time k.

Given these definitions, the modified UKF forecast step is given by(
ˆ̌xk|k−1, P̃x̌x̌

k|k−1, Px̌ ¯̌x
k|k−1

)
= UT

(
x̂a

k−1, Pxaxa

k−1 , uk−1, f
)

, (19)

Px̌x̌
k|k−1 = P̃x̌x̌

k|k−1 + Q2,k−1, (20)

in which, UT(·) is the unscented transform function, as defined in the work by the authors of [22],
xa

k−1 ∈ R15 and Pxaxa

k−1 ∈ R15×15 are respectively the augmented state vector and its corresponding
covariance matrix, given by

xa
k−1 ,

[
x̌T

k−1 qT
1,k−1

]T
,

Pxaxa

k−1 ,

[
Px̌x̌

k−1 [0]9×6
[0]6×9 Q1,k−1

]
.

Recall that, in the previous step, the cloned states are not part of the augmented state vector. Then,
the propagated cloned state and covariance is computed as

x̂k|k−1 =

[
ˆ̌xT
k|k−1

(
ˆ̀pc

k−1

)T
]T

, (21)

Pxx
k|k−1 =

[
Px̌x̌

k|k−1 FkP p̀x̌
k−1

Px̌ p̀
k−1FT

k P p̀ p̀
k−1

]
, (22)
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where Fk is computed as

Fk =
(

Px̌ ¯̌x
k|k−1

)T (
Px̌x̌

k−1

)−1
. (23)

The state estimate and error covariance matrix are updated using information from yk in the data
assimilation step, given by(

ŷk|k−1, P̃yy
k|k−1, Pxy

k|k−1

)
= UT

(
x̂k|k−1, Pxx

k|k−1, 0, h
)
, (24)

Pyy
k|k−1 = P̃yy

k|k−1 + Rk, (25)

νk = yk − ŷk|k−1, (26)

where νk is the innovation.

Kk = Pxy
k|k−1

(
Pyy

k|k−1

)−1
, (27)

x̂k = x̂k|k−1 + Kkνk, (28)

Pxx
k = Pxx

k|k−1 − KkPyy
k|k−1KT

k . (29)

After measurement update, the cloned states ˆ̀pc
k are replaced with a new copy of current states ˆ̀pk

and a new covariance matrix Pxx
k is computed, as per the authors of [9],

Pxx
k = C

(
Px̌x̌

k

)
CT , (30)

C =


I3×3 [0]3×3 [0]3×3
[0]3×3 I3×3 [0]3×3
[0]3×3 [0]3×3 I3×3[

I2×2 [0]2×1

]
[0]2×3 [0]2×3

 ,

where [0]n×n and In×n are zero and identity matrices with n by n elements, respectively. Notice that
the operations with the cloned states are performed only when new relative measurement is available.

3.3.2. Adaptive Measurement Covariance Matrix

The uncertainty of the measurements in the UKF is represented by the covariance matrix Rk.
This is usually a predefined parameter, which remains constant. However, as previously commented,
the measurement uncertainties can be time-varying. We then propose the use of innovation νk to tune
the measurement covariance matrix online through the covariance matching (CM) approach [16].

Based on the assumption that the observation covariance matrix Rk is constant during a sliding
sampling window with finite length N, the basic idea of CM is to make the innovation νk consistent
with its covariance E[νkνT

k ] , Pyy
k|k−1. The covariance of νk is estimated as based on the last N innovation

samples as

E[νkνT
k ] ≈

1
N

k

∑
j=k−N+1

νjν
T
j . (31)

Notice that the UKF (see Equation (25)) approximates the covariance by E[νkνT
k ] , P̃yy

k|k−1 + Rk.
Then, Rk can be estimated as

R̂k =
1
N

k

∑
j=k−N+1

νjν
T
j − P̃yy

k|k−1. (32)
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To avoid negative values due the subtraction operation in Equation (32), the following treatment
is performed,

R̂k = max

(
1
N

k

∑
j=k−N+1

νjν
T
j − P̃yy

k|k−1, R0

)
, (33)

where R0 is a lower threshold given by the nominal measurement-noise covariance, which may be
empirically determined, and max(A, B) returns a diagonal matrix with the max elements taken from
the diagonal of A and B.

3.3.3. Outlier Rejection

Outliers are spurious data that contaminate the statistical distribution. The contaminated
measurements may deviate significantly from the “normal” observations, thus directly reflecting
in the innovation value νk, and, consequently, in the covariance estimated by CM.

To minimize the influence of outliers, a particular method is to judge each element of the
innovation with a χ2-test [33]. Thus, for the ith element of the innovation vector, the normalized
innovation squared can be computed as

εν
k,i =

ν2
k,i

Pyy
k−1|k−2,ii

. (34)

Under the linear-Gaussian assumption, the PDF of εν
k,i ∼ χ2

1 is a chi-square distribution with one
degree of freedom. Then, for a significance level α ∈ [0, 1], the probability of a “normal” measurement
is p

(
εν

k,i ≤ ζ
)
= 1− α, where ζ ∈ R is the a value taken from the chi-square cumulative distribution

function. Thus, we can replaced the current innovation as

ν̂k = min

(
1,

ζ

εν
k,i

)
νk , (35)

where min (A, B) is a function that returns the minimum value between A and B.
One might ask, why we weaken the innovation instead of just drop the abnormal measurement

completely? The reason is that, besides detecting the presence of abnormal behaviors, statistical
procedures, such as (35), can still extract some remained information from the innovation. For instance,
we could receive a measurement with a scale error. In such a case, the outlier rejection procedure can
alter the measurement scale, eliminating the wrong information.

3.3.4. Robust Adaptive Unscented Kalman Filter

By combining Equations (33) and (35) with Equations (19)–(30), we then obtain a three step
recursive algorithm that we call Robust Adaptive Unscented Kalman Filter (RAUKF) (see Figure 2).
The first step of this algorithm is the forecast step, which is given by Equations (19)–(22). The second
step is the robust noise estimation given by Equations (24), (26), (35), (33), and (25). The third and last
step is the data assimilation step are given by Equations (27)–(30).

Observe that the measurement sampling rate may be different for each sensor, yielding a
different measurement vector at each time instant. For the case where only GNSS measurements are
available, it is not necessary to compute Equation (30) and replace the cloned states with a new copy.
Thus, the data assimilation step is only given by Equations (27)–(29). When GNSS is not available but
LO is still available, the measurement output variables vector yk in Equation (14) will contain only
altitude, given by the vehicle’s barometer, and relative motion information, δm,k. The data assimilation
step will be executed by Equations (27)–(30).
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4. Motion Control

We divide our motion control approach in three steps. In the first step, we process the data
from the LiDAR and construct a local map for collision avoidance. In the second step, a probabilistic
motion planner uses this map to compute the vehicle path, and, finally, a velocity controller drives the
vehicle through the planned path. We start by describing our mapping approach, which is one of the
contributions of this paper.

4.1. Local Mapping for Collision Avoidance

Probabilistic planners usually do not require a map of the workspace, but instead they will need a
function that returns as fast as possible if a given configuration is in collision or not. The literature
has shown that the time spent to construct search trees by probabilistic planners such as RRT*, is 99%
concentrated in checking if the random configurations are in collision [34]. In this section, we present
an efficient mapping strategy that facilitates collision checking by the planner.

By using the MAV’s position and orientation estimated by RAUKF, the first step of our local
mapping methodology is to transform, using homogenous transformation matrices, the LiDAR points
represented with respect to the vehicle coordinate frame into the NED fixed frame. Next, we define
analytically all the obstacles found.

With the method described in Section 3.1, we process the LiDAR data and approximate each
obstacle classified as trees by cylinders (circles in the plane). For the sake of simplicity, those obstacles
that are not classified as trees, i.e., obstacles that have a radius is too big or too small, are also
approximated by circles. For this case, point sequences of up to n points are grouped, and each group
is represented by a circle of diameter given by the distance between the first and the last point in
the sequence. To guarantee safety during path planning, the radius of all circles, including trees and
non-trees, is increased by the radius of the robot, RMAV, plus a small safety amount Rs, which results
in radius Rcollision. Figure 5 illustrates this approach.

Figure 5 also shows other two strategies that we use to speed up the collision check by the planner.
First, the planner (in our implementation RRT*) only searches for paths in a finite horizon determined
by a circle of radius Rrrt centered in the current vehicle position. Second, we define minimum and
maximum distances, dmin and dmax, respectively, in which we consider that LiDAR points are obstacles.

Figure 5. MAV in a environment with 7 cylindrical trees and and a wall. Only the obstacles between
dmin and dmax are used to build the local map. Obstacles outside the circle of radius Rrrt are not used
during path planning.
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With these strategies, each collision checking operation is reduced by testing if a point is inside
a small number of circles, which are approximately the same number of obstacles close to the drone
(see Figure 6). In the worst case, for instance, if n = 50 and the number of laser points is 1041,
the number of circles would be only 21.

Figure 6. Simulation where a micro air vehicle (MAV) is flying in a forest with several trees and a long
obstacle, such as a wall. LiDAR data is shown in green. If the obstacle is within the region of interest,
it is approximated by a circle (brown disk). The light-blue region shows the expanded obstacle and the
dark-blue graph represents the planner’s search tree.

4.2. Path Planning

The path planning approach used in this paper to navigate in forests is based on the proposed
by Pereira et al. [23]. This is a two-level planner where the higher level specifies, using an artificial
vector field, the task of the MAV. If the drone must execute a periodic surveillance or monitoring
task, for example, we use a vector field that forces the vehicle to converge to and circulate along a
closed curve. A methodology to generate such a vector field was proposed by Gonçalves et al. [24].
Figure 7 shows an example of a vector field, ϑ(pE, pN), for circulation of a curve parameterized by
α(pE, pN) = p4

N + p4
E − 1000 = 0. Notice that this vector field can be constructed by the composition

of vectors normal to the curve and vectors tangent to the curve.
As the vector field does not consider the position of the trees and other obstacles in the forest, in a

lower level, our strategy uses a local planner that runs for each update of the local map constructed
with LiDAR information (Section 4.1). The local planner adopted in this work is RRT* [25], which is
usually a global planner, but here, as it runs in a small region of the workspace, it does not lead the
robot to any global goal position. In fact, the strategy proposed by the authors of [23] does not require
any goal position, and the direction of the movement is determined by the vector field through the
minimization of the following cost functional by RRT*:

F[ξ, ϑ] =
∫ 1

0

(
1− ξ ′(s)
‖ξ ′(s)‖ ·

ϑ (ξ(s))
‖ϑ(ξ(s))‖

)
‖ξ ′(s)‖ ds , (36)

where ξ(s) is the MAV’s path, ϑ(p), p ∈ R2 is the vector field, the upper comma stands for the
derivative with respect to the spacial parameterization variable s of the path ξ, operator ‖ · ‖ represents
the Euclidean norm, and the center dot is the scalar product. Notice that this functional is a function
of both the length of the path and on how “close” the path is from the vector field. In fact, F[ξ, ϑ] is
greater or equal to zero, and is zero if and only if the path is parallel to the field (ξ ′(s) = γ ϑ(ξ(s)),
for γ > 0).
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To avoid discontinuity in the MAV’s global path, it is important to guarantee that the initial
position of each local path computed by RRT* is the final position of the previous one. To guarantee
that, each local path is integrated (simulated) for the time of planning tloop to find point pend. Although
the vehicle follows the current path, a new instance of RRT* thus compute the path that starts at pend.
The next section shows how the computed path can be followed by the drone.
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Figure 7. Vector field (blue arrows) used in this work to define a periodic MAV’s surveillance and
monitoring task. By following the vector field, the vehicle will converge and circulate the solid
black path.

4.3. Path Following

As a result of path planning, a path is defined as a sequence of points in R3. As we assumed
a 2D vector field, the coordinate z of this path is constant and specifies the height or altitude of the
flight. To make the MAV to follow the path, we define a second vector field, this time in 3D, using the
methodology proposed in the work by the authors of [24]. The resultant field is considered to be a
velocity field that has an attractive component that is orthogonal to the path and another component
parallel to path, which is responsible by the robot’s longitudinal velocity.

The computed path does not define a orientation to the vehicle. However, besides following the
path, we use a heading controller that keeps the front of the robot pointing to the direction of the path.
This is done to guarantee that the planar LiDAR, which usually does not have a 360◦ field of view,
is able to detect obstacles in front of the MAV.

5. Experimental Results

This section presents an experiment with the customized commercial aerial vehicle shown in
Figure 1. Our DJI Matrice 100 quadrotor, which is commercialized with built-in AHRS and GNSS, was
equipped with a Hokuyo UTM-30LX-EW planar LiDAR, which has a scanning frequency of 40 Hz.
The LiDAR was mounted on a servo-motor, which allowed us to compensate for the vehicle’s roll
angle. As we do not have a way to compensate for the vehicle’s pitch angle, the LiDAR was calibrated
so that range data is easily transformed to the body coordinate frame, and from the body frame to
NED. Once represented in NED, laser points that are more than 1 m from the current height of the
vehicle are filtered out, so that the vehicle only detects obstacles that are, approximately, on its motion
plane. AHRS and GNSS are, in fact, a DJI proprietary navigation solution that runs at the low-level
hardware and delivers attitude, global position, and velocity information in a fairly high frequency,
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that is, 100 Hz for attitude and 50 Hz for position. Table 1 shows the main hardware components of
our setup, and Figure 8 shows how these components are interconnected.

Table 1. MAV components.

Component Hardware

Quadrotor DJI Matrice 100 with IMU, barometer, magnetometer and GNSS sensors
Flight controller DJI N1

ESC/motor DJI E Series 620D / DJI 3510
Onboard computer Odroid XU4 with an octa-core ARM processor, 2 GB of RAM,

running Ubuntu Mate 16.04
LiDAR Hokuyo UTM-30LX-EW, 40 Hz, 30 m, 270◦ scanning range

Servo-motor Dynamixel MX-106R
USB/RS485 adapter USB2Dynamixel

USB/TTL adapter D-SUN, USB to TTL, CP2102

IMU Magnetometer Barometer GNSS

Flight controller

ESC/motor 1 ESC/motor 2 ESC/motor 3 ESC/motor 4

DJI Matrice 100

USB/TTL

Onboard Computer

LiDAR

Servo-motor

USB/RS485

UART
USB

USB

RS485

ethernet

Figure 8. Experimental setup diagram.

In our navigation system, the 100 Hz filter output is used to feedback the motion control system.
The complete system runs on the on-board computer Odroid XU4 with an octa-core ARM processor,
2 GB of RAM, running Ubuntu Mate 16.04. The entire navigation system was developed in C++ using
the Robot Operating System (ROS) as middleware. Synchronized data from DJI’s navigation solution
are then provided as ROS topics. LiDAR scans are also provided by a ROS topic, and, upon availability,
are used in the data assimilation step of our filter and to construct a local map. The experiment was
performed in a forest environment in the main campus of UFMG, where the vehicle was commanded
to fly at 1 m/s. Figure 9 shows a satellite view of the environment and vehicle path as estimated
by RAUKF. In this figure, GNSS was not available in the yellow parts of the path. In what follows
we discuss the main characteristics and behavior of the proposed navigation system during this
experiment. Note that, although we only present a single experiment in this paper, our system was
tested before in similar situations. Other results of our localization system working alone can be seen
in our previous conference paper [22].

Figure 9. Satellite view of the forest where our experiments were executed. Image provided by Google
Maps. The path estimated by RAUKF is shown in red whenever AHRS, LO, and GNSS were available
and in yellow if only AHRS and LO were available. The vehicle’s starting point is represented by the
blue square.
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5.1. Localization System

Due to tree canopies, although the vehicle is flying inside the forest, the GNSS signal can be
damaged. As we do not use raw GNSS data, but the result of DJI’s positioning solution, we could not
detect any damage in the vehicle’s position and velocity information during our experiment. Therefore,
to assess the robustness of our navigation system during GNSS failures, we artificially blocked the
GNSS signal in three periods of time, what was done via software while the vehicle flew autonomously.

Figure 10 shows the target surveillance path (black curve) and RAUKF estimates (red curve) in 3D.
We observe that our system was able to combine GNSS and relative LO measurements adequately.
In addition, even in the absence of global measurements, RAUKF estimates position and velocity,
allowing vehicle motion control. Notice that the target curve was not followed accurately, which is
expected, as the initial plan did not considered the obstacles in the environment.

0

1

5

2

3

0

4

-5 50-5-10

Figure 10. Three-dimensional path estimated by Robust Adaptive Unscented Kalman Filter (RAUKF)
(red) for the target path represented by the black curve. The vehicle starting point is represented by
the blue square. Observe that the estimated path deviates from the target one due to presence of trees,
represented by brown cylinders. Note that, as the diameter and position of the trees are not known,
such cylinders are approximations of the actual forest and are used for visualization only.

Figures 11a,b and 12a,b show the position and velocity of the MAV in the north and east
directions, respectively. Although we did not use GNSS signal in the navigation system for some time
intervals, for comparison purposes, we show all the measurements, including GNSS. The blockage
periods of GNSS signal are delimited by gray-shaded regions. We observe that RAUKF position and
velocity estimates tends to converge to GNSS position and velocity measurements. This behavior is
expected, once GNSS is an absolute measurement, which is not the case of the LO. For the data in
Figures 11a and 12a, we also computed the Root-Mean-Square-Error (RMSE) of the position estimate
in relation to GNSS in the periods where GNSS was artificially blocked and was not used in our filter.
In these periods, GNSS measurements were then considered as ground truth information. The RMSE
values were 0.65 m and 1.5 m for north and east directions, respectively.

Figures 11c,d and 12c,d show the three standard deviations of position and velocity estimates in
the north and east directions, respectively. Note that, whenever only LO relative measurements are
used in the data assimilation step, the uncertainty grows unbounded, reflecting the error integration
effect and non-observability of global position. On the other hand, due to relative measurements,
the velocity uncertainty is bounded, meaning that the velocity is observable.
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Figure 11. State estimation results. (a) Position and (b) velocity in the north direction; (c,d) three
standard deviation σN =

√
Pxx

k,ii of position and velocity estimates in the north direction.
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Figure 12. State estimation results. (a) Position and (b) velocity in the East direction; (c,d) three
standard deviation σE =

√
Pxx

k,ii of position and velocity estimates in the east direction.
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5.2. Motion Control System

In the experiment, the quadrotor flied autonomously among the trees. While Figure 10 shows the
MAV’s global path, Figure 13 shows four snapshots with the detailed behavior of the path planner,
and Figure 14 shows planned and measured velocities for part of the experiment. For the data in
Figure 14, the RMSE errors of the controller were 0.26 m/s and 0.27 m/s for north and east velocities,
respectively. Notice in Figure 10 that, besides these control errors, the robot’s flight path converges
to the specified curve whenever this is possible and deviate from it the presence of trees. Whenever
the laser detects trees in the environment, these obstacles are added to the local map, allowing the
local planner to compute a deviation path, necessary to avoid the tree. In this experiment, the desired
task is represented by a closed surveillance path. The MAV follows the path for several laps until it is
commanded to stop or its battery level becomes very low.

(a) (b)

(c) (d)

Figure 13. Four snapshots of our experiment detailing the behavior of the motion planner. The black
line represents the target curve specified by the vector field. From the robot’s estimated position,
the RRT* tree (in blue) grows inside a circle of radius Rrrt. (a) No obstacles are detected and the vehicle
converges to the target curve. (b,c) An obstacle (brown cylinder) is detected and its collision region
(light blue cylinder) is estimated. The planner then computed the path (in red) outside the collision
region. (d) After avoiding the obstacle, the MAV is able to follow the target curve. Observe that the
local map, including number, position, and size of the obstacles, change along the experiment. This
happens due to changes in the vehicle orientation and noise in the LiDAR data.
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RAUKF velocity Desired velocity
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Figure 14. Attitude controller results. (a) Velocity in the north direction and (b) velocity in the
east direction.

6. Conclusions

This paper presented a complete navigation solution for unmanned aerial vehicles navigating
inside a forest. The proposed solution is based on two main systems, called localization and
motion control. The localization algorithm combines LiDAR-based odometry and GNSS and AHRS
information using a robust adaptive sensor fusion algorithm (RAUKF) based on the UKF. LiDAR-based
odometry relies on the fact the trees are easily identified with a laser scan. It is important to mention
that tree detection highly increased the efficiency of both localization and motion planning methods,
allowing the system to run in a simple on-board hardware.

Our motion control approach is based on the combination of a vector field with and optimal
planner for obstacle avoidance. This makes easier to the user to plan the main task of vehicle, which
will be the simple definition of a curve in the space, letting obstacle avoidance to the MAV.

The experiment presented in this paper illustrated that the sensor fusion algorithm was able
to adequately combine global and relative measurements. RAUKF was also able to deal with some
abnormal information, both in relative and global measurements. By this experiment, we also observed
that the vehicle was able to perform its surveillance task, although its actual path deviated from the
target one, which is expected, as the target path does not considered obstacles.

In future, we plan to expand this work by using a 3D laser range finder, which will allow to plan
the vehicle’s motion in all workspace dimensions. The 3D range finder can be also used to estimate the
MAV’s orientation, which can be used in the data assimilation step of RAUKF. Finally, we also plan to
include an autonomous landing system, which by now, is done by a human operator.
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Notation

The following notations are used in this manuscript:

p = [pN pE pD]
T position with respect to the NED coordinate frame.

v = [vN vE vD]
T velocity with respect to NED coordinate frame.

g = [0 0 gz]
T gravity acceleration vector, where gz = 9.81m/s2.

RNED
b rotation matrix between the body coordinate frame and the NED coordinate frame.

uk input vector.
am,k accelerometer measurement.
em,k orientation measurement in unit quaternion.
βa,k accelerometer bias.
qa,k acceleration measurement noise.
qβ,k random walk noise.
qe,k orientation measurement noise.
p̀c

k cloned state vector.
xk state vector.
yk output measurement.
pm,k position measurement given by GNSS.
vm,k velocity measurement given by GNSS.
rp,k position measurement noise.
vp,k velocity measurement noise.
δm,k relative measurement given by LO.
rδ,k relative measurement noise.
f (·) process model.
h(·) observation model.
x̂k state estimate.
Pxx

k covariance matrix of state estimate.
qk process noise.
Qk covariance matrix of process noise.
rk output measuremnt noise.
Rk covariance matrix of output measurement noise.
R0 nominal covariance matrix of output measurement noise.
R̂k estimate of the covariance matrix of output measurement noise.
νk innovation.
εν

k,i normalized innovation squared.
ξ ′ MAV’s path.
ϑ vector field
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