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ABSTRACT Toxoplasma gondii, one of the world’s most common parasites, can in-
fect all types of warm-blooded animals, including one-third of the world’s human
population. Most current routine diagnostic methods are costly, time-consuming,
and labor-intensive. Although T. gondii can be directly observed under the micro-
scope in tissue or spinal fluid samples, this form of identification is difficult and re-
quires well-trained professionals. Nevertheless, the traditional identification of para-
sites under the microscope is still performed by a large number of laboratories.
Novel, efficient, and reliable methods of T. gondii identification are therefore needed,
particularly in developing countries. To this end, we developed a novel transfer
learning-based microscopic image recognition method for T. gondii identification.
This approach employs the fuzzy cycle generative adversarial network (FCGAN) with
transfer learning utilizing knowledge gained by parasitologists that Toxoplasma is
banana or crescent shaped. Our approach aims to build connections between micro-
scopic and macroscopic associated objects by embedding the fuzzy C-means cluster
algorithm into the cycle generative adversarial network (Cycle GAN). Our approach
achieves 93.1% and 94.0% detection accuracy for �400 and �1,000 Toxoplasma mi-
croscopic images, respectively. We showed the high accuracy and effectiveness of
our approach in newly collected unlabeled Toxoplasma microscopic images, com-
pared to other currently available deep learning methods. This novel method for
Toxoplasma microscopic image recognition will open a new window for developing
cost-effective and scalable deep learning-based diagnostic solutions, potentially en-
abling broader clinical access in developing countries.

IMPORTANCE Toxoplasma gondii, one of the world’s most common parasites, can
infect all types of warm-blooded animals, including one-third of the world’s human
population. Artificial intelligence (AI) could provide accurate and rapid diagnosis in
fighting Toxoplasma. So far, none of the previously reported deep learning methods
have attempted to explore the advantages of transfer learning for Toxoplasma de-
tection. The knowledge from parasitologists is that the Toxoplasma parasite is gener-
ally banana or crescent shaped. Based on this, we built connections between micro-
scopic and macroscopic associated objects by embedding the fuzzy C-means cluster
algorithm into the cycle generative adversarial network (Cycle GAN). Our approach
achieves high accuracy and effectiveness in �400 and �1,000 Toxoplasma micro-
scopic images.

KEYWORDS Toxoplasma gondii, artificial intelligence, transfer learning, microscopic
image, banana shaped

Toxoplasma gondii is a ubiquitous, single-cell protozoan parasite that can infect all
warm-blooded animals as well as one-third of the human population worldwide (1).

Most infections in humans are lifelong, and several studies have suggested that such
infections may contribute to severe neurological and psychiatric symptoms. That makes
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diseases caused by T. gondii one of the biggest health care problems globally. Diagnosis
of T. gondii is typically performed by testing blood or other body fluids for antibodies
or the parasite’s DNA (2). Large numbers of laboratories still perform identification of T.
gondii in tissue or spinal fluid samples under the microscope. However, the microscopic
detection and quantification of T. gondii are time-consuming and labor-intensive and
need well-trained professionals. Moreover, the intensity of illumination, image bright-
ness, contrast level, and background of staining have large variations in different fields
of view (FoV). In addition, T. gondii is found both inside and outside nucleated cells with
separated and aggregated forms, which makes the task of T. gondii recognition more
challenging (Fig. 1).

Recently, deep learning technology has significantly improved efficiency and accu-
racy in macroscopic computer vision tasks, thereby attracting considerable attention in
microscopic image analysis (3–6). Rajaraman et al. (7) evaluated the performance of a
pretrained convolutional neural network (CNN) as a feature extractor in the classifica-
tion of parasites and host cells, which improved infectious disease screening. Further-
more, Mehanian et al. (8) developed a computer vision system with deep learning to
identify malaria parasites under the microscope in field-prepared thick blood films.
However, most of the existing deep learning methods for parasite analysis are under a
supervised learning framework, which requires many well-trained professionals to label
a number of image data sets. Furthermore, labeling, annotating, and sorting the output
data are time-consuming, costly, and labor-intensive. This severely limits their scalabil-
ity in practical applications.

Moreover, current existing parasite recognition models are limited mainly to malaria.
Here, we proposed a deep learning method for T. gondii recognition. To improve
learning efficiency in the task, we employed a transfer learning strategy by leveraging
knowledge from parasitologists that T. gondii is crescent shaped, similar to a banana.
Furthermore, the shape of aggregated parasites resembles the images of a bunch of
bananas, where host cells are significantly different. It is assumed that a microscopic

FIG 1 Typical variations of color, illumination, and background in different fields of view and
microscope magnifications. (a) Stained T. gondii images from different slides captured by a micro-
scope with �400 magnification. (b) Stained T. gondii images from different slides captured by a
microscope with �1,000 magnification. (c) Unstained T. gondii image captured by a microscope with
�400 magnification. (d) Training image data with similar macroscopic object sources (banana and
crescent) and a different macroscopic object (star).
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object has an inherent connection with the macroscopic world. Based on this assump-
tion, we designed a microscopic-macroscopic associated object pulling (M2AOP) strat-
egy and proposed a fuzzy cycle generative adversarial network (FCGAN) for T. gondii
recognition. This strategy embeds a fuzzy C-means (FCM) cluster algorithm (9) into the
cycle generative adversarial network (Cycle GAN) (10), which can learn degrees of
membership belonging to each cluster (class) point. Then, the degrees are utilized as
the translated coefficient to replace the microscopic and macroscopic domain labels in
Cycle GAN when the microscopic images are inductively transferred into the macro-
scopic world. FCGAN can exploit more discriminative information using a third associ-
ated object to asymmetrically pull T. gondii and host cell samples. Prior knowledge on
the features selected is not necessary, avoiding bias caused by hand-picking. Transfer-
ring knowledge from the macroscopic domains can eliminate interference in micro-
scopic domains while retaining features crucial to identifying microscopic objects.

We tested two T. gondii image data sets consisting in total of 13,135 microscopic
images with a magnification of �400 (T400) and 14,992 microscopic images with a
magnification of �1,000 (T1000). A number of experiments were conducted demon-
strating the effectiveness of our FCGAN method with high accuracy and precision.
Using macroscopic knowledge to guide our model, the present study is the first of its
kind to investigate the utility of a deep learning algorithm for T. gondii parasite
recognition. To our knowledge, based on thorough investigation of the existing
literature, no previous research has explored the potential of transferring human
knowledge for T. gondii parasite recognition.

RESULTS
Recognition performance of the model. As shown in Table 1, for recognition

performance in �400 and �1,000 T. gondii data sets, our FCGAN with banana source
data achieves the best performance in all unsupervised models with small difference
from supervised deep learning models (ResNet, VggNet, and GoogleNet). For compar-
ison with supervised methods, we selected three widely used supervised CNNs includ-
ing VggNet, GoogleNet, and ResNet. As shown in Table 1, it can be seen that ResNet,
GoogleNet, and VggNet obtain 98.4%, 98.7%, and 97.2% accuracy in the T400 data set,
respectively. FCGAN with banana source achieves a competitive result of 93.1% accu-
racy, 0.939 F1 score, 0.960 recall, and 0.919 precision on the T400 data set and 94.0%
accuracy, 0.939 F1 score, 0.929 recall, and 0.949 precision on the T1000 data set. The
values of accuracy, F1 score, precision, and recall in our model are similar to those from
ResNet, VggNet, and GoogleNet. All those results demonstrate that our FCGAN can
achieve similar performance as supervised deep learning methods, while FCGAN does

TABLE 1 Results of FCGAN and baselines on T400 and T1000 Toxoplasma data setsa

Model

Parameter for data set:

T400 T1000

% accuracy F1 score Recall Precision % accuracy F1 score Recall Precision

Supervised learning method
ResNet 98.4 0.986 0.982 0.990 98.9 0.989 0.984 0.995
VggNet 98.7 0.989 0.996 0.982 99.1 0.991 0.990 0.991
GoogleNet 97.2 0.974 0.950 0.998 99.6 0.997 0.999 0.993

Unsupervised learning method
ResFCM 84.3 0.851 0.817 0.889 80.0 0.801 0.803 0.800
VggFCM 77.4 0.760 0.650 0.916 87.6 0.863 0.785 0.960
GoogleFCM 74.3 0.758 0.730 0.789 81.5 0.797 0.728 0.880
CycleFCM 86.9 0.889 0.955 0.832 86.2 0.862 0.861 0.863
FuzzyFCM 86.0 0.887 0.992 0.802 91.7 0.918 0.933 0.904
GANFCM 81.0 0.838 0.890 0.792 88.9 0.892 0.911 0.873
FCGAN�Star 74.8 0.767 0.749 0.786 87.0 0.867 0.845 0.889
FCGAN�Crescent 92.0 0.927 0.916 0.938 92.3 0.926 0.950 0.903
FCGAN�Banana 93.1 0.939 0.960 0.919 94.0 0.939 0.929 0.949

aOur FCGAN method with the guidance of different macroscopic source objects are highlighted in boldface.
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not require labeling of any microscopic images. It should be emphasized that T. gondii
labeling under the microscope is time-consuming and labor-intensive and requires
well-trained professionals.

In comparison with unsupervised methods, we tested five unsupervised baselines
together with our FCGAN, including VggFCM, ResFCM, GoogleFCM, CycleFCM, and
GanFCM. The results are illustrated in Table 1, and receiver operating characteristic
(ROC) curves with area under the curve (AUC) values are drawn in Fig. 2. As shown, it
is easy to prove that our FCGAN achieves the best performance compared to other
unsupervised methods, outperforming the baselines at least 6.2% (93.1% to 86.9%) in
accuracy, 0.05 (0.939 to 0.889) in F1 score, 0.005 (0.960 to 0.955) in recall, and 0.003
(0.919 to 0.916) in precision on the T400 data set.

To discuss the effectiveness of source object, we then compared the results from
banana, crescent, and star images as sources. In morphology, a star is less similar
to T. gondii than banana and crescent, and its results and ROC curves have a
distance between FCGAN�Banana and FCGAN�Crescent in Table 1 and Fig. 2. The
accuracy results are 93.1% (94.0%) of banana source, 92.0% (92.3%) of crescent
source, and 74.8% (87.0%) of star source on the T400 (T1000) data set. It can be seen
that FCGAN�Banana obtains a better performance than FCGAN�Crescent and
FCGAN�Star in both data sets. Those results indicate that, the more similar the
macroscopic object, the better the performance achieved in our FCGAN model.

Taken together, our microscopic-macroscopic associated object pulling strategy
with banana source can achieve competitive results for T. gondii recognition without
any microscopic image labels.

Evaluation of the fuzzy component. In Fig. 3, we illustrate a few samples of the
translated images generated from FCGAN with different source objects and GAN-based
baselines. FCGAN preserves most information in translated images, including shape,
nucleus, and texture information, with the same background and color as their source
objects. But, for GAN-based methods, CycleFCM keeps the most background informa-
tion for images, and FuzzyGAN generates target objects only partially, omitting some
morphology information for both T. gondii and the host cell. Similarly, GAN�FCM
leaves out some morphology features for the host cell. Besides, compared with
different source objects, FCGAN with banana source produces a clear outline without
any background, compared to other source objects.

Together, our FCGAN can create the texture and shape relationship between
microscopic object and macroscopic object with selectivity of associated information.

FIG 2 ROC curves of different methods for Toxoplasma recognition in T400 and T1000 data sets. The AUC value is given for each method. FCGAN with banana
source achieves the best performance compared to other unsupervised methods.
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The comparison of different models can show that our FCGAN with banana source can
achieve a better performance, indicating that FCGAN can exploit associated informa-
tion (for example, shape and texture information) to boost the cluster results.

Analysis of network layers. To analyze the network layers, we did feature map
visualization for the first convolutional layer (Fig. 4). Feature visualization is a key
technique that helps identify and recognize patterns inside neural networks.
T-distributed stochastic neighbor embedding (t-SNE) plots for the last layer were
performed for all models (Fig. 5). t-SNE is a nonlinear dimensionality reduction ap-
proach that allows embedding of high-dimensional data in a lower-dimensional space.

FIG 3 Image translation generated from different sources by FCGAN and other GAN-based methods on
Toxoplasma cells and host cells. Compared to the GAN-based methods, the images generated from FCGAN
contain more texture and shape details. Most notably, FCGAN with banana source has learned to
reconstruct the nucleus of T. gondii.

FIG 4 Visualization of the convolutional feature map learned by FCGAN and baselines on Toxoplasma cell. Object outline has
been extracted and visualized for the first convolutional layer of FCGAN and other baselines.
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FCGAN can extract the outline of target images with clearer morphology than other
baselines. FCGAN focuses on their texture information and produces clear feature maps
for these data. FCGAN with banana source preserves the nucleus information in the T.
gondii image. Nucleus information for T. gondii is lost with crescent and star sources.
FCGAN achieves the best t-SNE plot performance compared to other baselines. The
t-SNE plot shows that the feature extracted by the last layer in FCGAN with banana
source is the best discriminated. All these results can prove that our FCGAN focuses on
a clear outline of T. gondii in shallow convolutional layers and can extract discriminative
information in the network.

Application of the system for unstained T. gondii detection. To investigate if our

system can be used in the diagnosis of other T. gondii microscopic images, we applied
the same transfer learning framework to analysis of unstained parasite images (Fig. 1c).
Five hundred unstained T. gondii images and equal amount of unstained host cell
images were collected to feed into our model. We achieved 90.3% accuracy, 0.910 F1
score, 0.986 recall, and 0.846 precision on this new unstained data set. This result shows
that our FCGAN works not only on a large-scale stained parasite data set but also on
an unstained one with a limited number of data.

FIG 5 t-SNE plot of FCGAN and other baselines. t-SNE mappings provide a method to evaluate and refine clustering of parasite and cell images. Data points
are colored according to cluster membership. The values on the x and y axes indicate the relative distance between the data points.
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Microscope staining is a key technique used to enable better visualization under the
microscope. A variety of staining techniques can be used with light microscopy.
Labeling and staining of parasites in microscopic images have always been challenging.
As a result, an artificial intelligence (AI)-powered system for parasite recognition
without any staining might open a new area for parasite detection showing potential
to overcome the drawbacks of staining techniques.

DISCUSSION

To our knowledge, this is the first deep learning study of the T. gondii recognition
task and transfer learning-based fuzzy cycle generative adversarial network approach.
The model is inspired by the knowledge from parasitologists that T. gondii is banana or
crescent shaped.

In this context, resemblances between macroscopic images and microscopic images
are exploited in order to train the data set. We designed a microscopic-macroscopic
associated object pulling strategy and proposed the FCGAN method for T. gondii
microscopic image recognition without any data annotation. This method uses the
fuzzy clustering algorithm to improve selectivity and optimize cycle consistency and
associated object pulling losses.

Using T. gondii microscopic image data sets with magnifications of �400 and �1,000,
we successfully demonstrated that our FCGAN model has stronger associated informa-
tion selectivity and better pulling effect than the other deep learning approaches. We
employed different source object data with differing similarities to T. gondii. The
ranking of performance in different source objects is banana � crescent � star, which
is consistent with their similarity to Toxoplasma in shape.

To demonstrate the general applicability of our system, we tested T. gondii images
captured by different equipment. The stained T. gondii microscopic images were
collected in China; among them �400 images were captured by the Leica microscope
and �1,000 images were captured by the Olympus microscope, which achieved
accuracies of 93.1% and 94%, respectively. The unstained images were collected in
Colombia with �400 magnification by the EVOS FL Auto cell imaging system, achieving
90.3% accuracy. That illustrates that our FCGAN method can cope with various data
from different equipment.

Our method achieves similar classification accuracy when separating T. gondii from
host cells without using labeled Toxoplasma images to train the model but instead
using banana, crescent, and star images. The proposed technique, while obtaining
worse results than established supervised techniques, outperforms unsupervised tech-
niques by using an “analogy” macroscopic data set instead of a real microscopic data
set of T. gondii.

However, the performance of our model depends highly on the macroscopic object
images resembling the objects in the microscopic images. Therefore, the performance
of this model would likely be enhanced by testing on a more-similar source image data
set. If this approach needs to be applied to another biomedical image domain, a
macroscopic object that best matches the microscopic objects of interest is required.

In addition, the variation present in macroscopic object photos is significantly
influenced by the fact that they are two-dimensional (2D) views of three-dimensional
(3D) objects whereas cells and parasites are flattened 3D objects with the sharpest-
focus image acquired. Therefore, multiple microscopic images taken at different focus
distances need to be tested in the future.

Some other domain knowledge can be combined in the deep learning framework,
such as appearance, geometric characteristics, or statistical properties. However, it is
unclear which knowledge is necessary to improve prediction. Therefore, this paper
proposes a method transferring knowledge between microscopic and macroscopic
domains. As a convolutional neural network (CNN) can learn the features necessary for
classification, prior knowledge on the features that are beneficial for T. gondii recog-
nition is not necessary. In future research, other domain knowledge such as shape, size,
color, and statistical properties needs to be tested individually in order to highlight the
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most important features that have led to the high accuracy obtained in the present
study. Then, this particular knowledge can be integrated into the deep learning
framework to make a better and more reliable prediction.

Nevertheless, our method for Toxoplasma microscopic image analysis can poten-
tially speed up detection and pave the way for rapid, low-cost diagnostics. Moreover,
FCGAN can be applied to other biomedical image recognition tasks which have
complicated procedures in data collection and annotation. Our model can learn useful
knowledge from macroscopic related objects without time-consuming and labor-
intensive image annotation and labeling.

MATERIALS AND METHODS
Our proposed method is empowered by a microscopic-macroscopic associated object pulling

strategy for microscopic parasite recognition. We utilized a fuzzy cycle generative adversarial network
(FCGAN), shown in Fig. 6, where cycle consistency and fuzzy discriminator loss are optimized along with
a fuzzy C-means algorithm.

Backbone network design. To extract robust features for microscopic images, we constructed a
deep neural network to compute the representation of each sample x by passing it to multiple layers of
nonlinear transformations. The key advantage of using such a network to map x is that the nonlinear
mapping function can be explicitly obtained. There are M � 1 layers in the designed network and p(m)

units in the mth layer, where m � 1, 2, . . ., M. The output of x at the mth layer is computed as:

f(m)(x) � h(m) � �(W(m)h(m�1) � b(m)) � �p(m)
(1)

where W�m���p�m��p�m�1�
and b�m���p�m�

are the weight matrix and bias of the parameters in this layer,
respectively, and � is a nonlinear activation function which operates component-wisely, such as widely

used tanh or sigmoid functions. The nonlinear mapping f�m�:�d→�p�m�
is a function parameterized by

�W�i��i�1
m and �b�i��i�1

m . For the first layer, we assumed h(0) � x and p(0) � d.
In this paper, we employed two typical convolutional networks as the base framework in FCGAN,

including visual geometry group network (VggNet) (11) and cycle generative adversarial network (10).
The VggNet architecture was introduced by Simonyan and Zisserman in their 2014 paper (11). This

network is characterized by its simplicity, using only 3 � 3 convolutional layers stacked on top of each
other. Reducing volume size is handled by maximum pooling. Two fully connected layers, each with
4,096 nodes, are then followed by a softmax layer.

Cycle GAN is a generative adversarial network (GAN) that uses two generators and two discrimina-
tors. We call one generator G and have it convert images from the X domain to the Y domain. The other

FIG 6 Schematic representation of FCGAN. Losses are shown in dashed rectangles. After training with source and target data alternatively, the generators G
and F are used to pull T. gondii into the source domain and keep host cells in the target domain according to their shape and texture information. Discriminators
DS and DT are not shown in the architecture. Source fake images are the output of target images through generator F, and target fake images are the output
of source image through generator G. Features are extracted by a classifier C for both images from source and those from target.
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generator is called F and converts images from Y to X. Each generator has a corresponding discriminator,
which attempts to discriminate its synthesized images from real ones. Along with two components to
Cycle GAN objective functions, an adversarial loss and a cycle consistency loss are essential to getting
good results. A detailed description can be found in reference 10.

Microscopic-macroscopic associated object pulling strategy. A set of unlabeled microscopic
images is classified as target domain T including T. gondii and host cells; another set of its associated
macroscopic object images is used as source domain S, such as bananas. It is expected that source data
share the same cluster point with target T. gondii images and that host cell images belong to another
cluster point. Then, we calculated the degree of membership of each cluster point for each sample in T.
Furthermore, an image translator is used to pull the target T. gondii images closer to source banana
images and the host cell images away from banana, which is achieved by replacing the domain label with
the degrees of membership of each cluster point. Through the whole process, labeling of T is not
required. We integrated Cycle GAN into the image translator combined with a fuzzy C-means algorithm
to enhance its selectivity, by which discriminator labels are replaced by degrees of membership obtained
in fuzzy C-means.

For a set of unannotated target domain T and its desired associated source domain S, Cycle GAN
learns two mappings without any supervision, which are G:S¡T and F:T¡S with two generators G and
F. To bypass the infeasibility of pixel-wise reconstruction with unpaired data, i.e., G(S) � T or F(T) � S,
Cycle GAN introduces an effective cycle consistency loss for F(G(S)) � S and G(F(T)) � T. The idea is that
the generated target domain data are able to return to the exact data in the source domain from which
they are generated. To guarantee the fidelity of fake data G(S) and F(T), Cycle GAN uses two discrimi-
nators DS and DT to distinguish real or synthetic data and thereby encourage generators to synthesize
realistic data.

To solve the task of learning generators with unpaired images from two domains, S and T, we
adopted the idea of the original cycle consistency loss (10) for generators G and F, forcing the
reconstructed synthetic samples F(G(xS)) and G(F(xT)) to be identical to their inputs xS and xT.

Lcyc(G, F) �ExS�Pdata(S)[||F(G(xS)) � xS||1]

�ExT�Pdata(T)[||G(F(xT)) � xT||1]
(2)

where xS is the image from source domain S and xT is from target domain T. Lcyc uses the L1 loss, which
shows better visual results than the L2 loss.

Challenges in M2AOP strategy. Lacking supervision with a direct reconstruction error between G(S)
and T or F(T) and S brings some uncertainties and difficulties to the desired strengthened output of T.
gondii and weakened output of host cells. The conventional Cycle GAN cannot evaluate the importance
of each sample, and it will transform all images in the T domain without any selectivity. That makes our
task even more challenging.

Such a problem means that Cycle GAN cannot exploit the discriminative information from the
associated object in S and cannot select effective target samples from T in an unsupervised manner. Our
goal is to pull target T. gondii images closer to banana images in S and make the other host cell images
remain a great distance from source banana images. So, we designed the FCGAN approach, consisting
of source target image translated consistency, a fuzzy pulling cluster generator, a discriminator, and its
optimization.

Fuzzy cycle generative adversarial network. Aiming to obtain selectivity on Cycle GAN in T. gondii
recognition without the help of microscopic annotations, we considered using a cluster algorithm.
Specifically, a fuzzy clustering algorithm resolves this dilemma by introducing a degree of membership
for each data point belonging to an arbitrary number of clusters (12).

We embedded the degree of membership into Cycle GAN, which means the degree of each sample
belonging to the T. gondii cluster point and host cell point. We assumed that T. gondii shares a cluster
point with banana images in S; then, the cluster closer to the source banana point is the T. gondii cluster,
and the other point represents host cell images. Then, we developed the generator loss especially for
discriminators embedded with degrees of membership into adversarial loss. It could strengthen the
generativity of embedded Cycle GAN for samples belonging to the T. gondii group and weaken the
samples belonging to the host cell group. As a result, the cluster points of T. gondii and the host cell can
be separated with a greater distance in the embedded Cycle GAN.

For this idea, we introduced the fuzzy C-means (FCM) algorithm (13). To learn representative features,
we designed a feature extractor C improved from the visual geometry group (VGG) network (11). For
images {x1, . . ., xk, . . ., xN} in target domain T (their translated fake source images are {F(x1), . . ., F(xk), . . .,
F(xN)}), we can get their feature space after translation of {C(F(x1)), . . ., C(F(xk)), . . ., C(F(xN))} through the
feature extractor C. Partition of these features into P clusters with minimization is defined as the following
objective function:

Lfuzzy � �
i�1

P �
k�1

N

uik
m||C(F(xk)) � vi||

2 (3)

where xk is the kth image in domain T; vi is the d-dimensional center of the ith cluster; uik denotes the
degree of membership of feature C(F(xk)) to cluster vi; N is the total number of features in each domain;
and � C(F(xk)) � vi � is any norm expressing the similarity between the measured feature C(F(xk)) and the
cluster center vi. m denotes a weighting exponent parameter (m � 1) on each fuzzy membership value,
and it determines the amount of fuzziness of the resulting classification according to:
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uik � [0, 1];�
i�1

P

uik � 1, ∀ k ;0 � �
k�1

N

uik � N, ∀ i (4)

The first main step of this iterative algorithm is to update the membership function to determine in
which cluster the feature belongs according to:

uik �
1

�
j�1

C

(
||vi � C(F(xk))||

||vj � C(F(xk))||
)

2
(m�1)

(5)

where C is a feature extractor.
The second main step concerns the updated centroids based on the new membership matrix

according to:

vi(x) �
�
k�1

N

(uik)
mC(F(xk))

�
k�1

N

(uik)
m

(6)

Finally, we computed the objective function related to equation 3 and checked the criterion
termination (the objective function convergence).

The fuzzy membership matrix U consists of the degree of membership belonging to each cluster for
each sample feature. We embedded U, which has two degrees belonging to T. gondii and host cell for
each feature, denoted as U � {US, UT}, into our Cycle GAN and designed the fuzzy Cycle GAN loss for
generators {G, F} and discriminators {DS, DT}. Their corresponding loss constraints are:

�LF � �xT�pdata(T)
[log(US � DS(F(xT)))],

LDS
� �xS�pdata(S)

[logDS(xS)]

� �xT�pdata(T)
[log(UT � DS(F(xT)))],

(7)

�LG � �xS�pdata(S)
[log(1 � DT(G(xS)))],

LDT
� �xT�pdata(T)

[logDT(xT)]
(8)

where US is the degrees of membership belonging to the shared cluster point of source banana images
in S and T. gondii images in T, and UT is the degrees of membership belonging to the host cell cluster
point in T. From these two constraints, US(UT) instead of label 1 in DS(DT) makes fake images from T. gondii
images more similar to images in S than host cell images.

Figure 7 summarizes the main step of this sequential iterative algorithm with back-propagation and
the Lagrange multiplier method.

Training details. Our FCGAN approach was designed from cycle GAN and VGG layers to conduct the
algorithm, while we made several critical modifications to them. First, using the VGG network (11) to
learn feature representation is critical to maintain the discriminative information for microscopic images,
as it has achieved much faster convergence and locally smooth results in malaria recognition (8). Second,
we adopted the degrees of membership into the generative adversarial loss function to enhance the
generativity of sample group belonging to the closed cluster between source domains and weaken the
sample group belonging to the distant cluster between source domains for generators and discrimina-
tors. Such an approach can separate the different groups with a great distance.

We implemented our network on the TensorFlow framework (14) with Tesla K40C and 128G memory
in an Ubuntu 16.04 system and used the Adam solver (15) for FCGAN with a learning rate of 2 � 10�4

for generators and 2 � 10�6 for feature extractor, closely following the settings of Cycle GAN and VGG
network to train generators, discriminators, and feature extractors. After jointly training for 4,000
iterations, we applied an early stop when the fuzzy loss no longer decreased for about 5 iterations (it

FIG 7 The algorithm of the fuzzy cycle generative adversarial network (FCGAN).
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usually takes 4,000 joint training iterations to reach a desired point). In training, the number of training
data in two domains can be different. Our parameters in the algorithm are set as m � 2, P � 2, and
loop � 100.

Image collection and evaluation. The stained T. gondii microscopic images were captured under
two bright-field light microscopes (Leica DM2700P and Olympus IX53) in China, where preserved slices
of parasite infection samples were mounted onto slides and stained with Giemsa stain. The first data set
was captured with �40 objectives (the magnification was �400 [T400]) in the Leica DM2700P micro-
scope, obtaining 8,156 T. gondii images and 4,979 host cell images. The second data set was captured
with �100 oil immersion objectives (the magnification was �1,000 [T1000]) in the Olympus IX53
microscope, which obtained 6,969 T. gondii images and 8,023 host cell images. Moreover, 500 unstained
T. gondii images and 500 host cell images were captured in Colombia by an EVOS FL Auto cell imaging
system with �400 magnification. In addition, we compiled 2,382 banana images, 2,053 crescent images,
and 1,860 star images from the Internet as different source data to compare macroscopic associated
objects.

Notably, different-magnification microscope slides typically display variations in color, background,
and illumination between slides from different technicians, laboratories, clinics, and regions. Color
variation can result from differences in staining pH, time and purity of dye, duration of the staining
procedure, and the sensor settings (Fig. 1). If uncorrected, these variations may degrade the model
performance. To overcome negative effects of variations, we adopted white balancing techniques to
compensate for some of these variations. For all images, we used the white balancing technique to pool
the pixels from all fields of view and computed a global color balance affine transform for each image.
Then, we used a level-set-based algorithm (16) to crop T. gondii and host cells, resize all images in
256 � 256, and normalize each pixel in [0,1] by (x � �)/	 before feeding into the deep learning network,
where x denotes each pixel in images and � � 	 � 127.5 in our setting.

To evaluate the overall recognition performance, we calculated the average recognition accuracy for
our parasite data sets and computed the F1 score, recall, and precision for parasites and their host cells.
The average values are summarized in Table 1. We also performed average area under the receiver
operating characteristic (ROC) curves for binary classification (17), and the ROC curves are drawn in Fig. 2.
AUC measures the probability that a given pair of samples will have different class labels. If a sample is
from class c, the classifier will be assigned a high prediction score, compared to the samples from other
classes. Here, the prediction score is calculated by its degree of membership.

To validate the effectiveness of our FCGAN approach for the T. gondii recognition task, we first
compared FCGAN with three supervised deep convolutional neural networks (CNNs), including deep
residual network (ResNet) (18), visual geometry group network (VggNet) (11), and Google Inception v4
network (GoogleNet) (19). We selected half-samples to train each supervised network and test on the left
images for two data sets. Besides, to discuss effects of components in our FCGAN, we implemented some
unsupervised experiments to evaluate effects of each component in FCGAN. VggFCM (ResFCM,
GoogleFCM) is a combination of the VGG (Res, Google) network with the fuzzy C-means (FCM) cluster
algorithm, and CycleFCM combines the VGG�FCM and conventional cycle generative adversarial net-
work (Cycle GAN), which can prove the efficiency of the embedded fuzzy component in Cycle GAN. Then,
we also replaced Cycle GAN with a generative adversarial network (GAN) (20) and produced two
baselines as fuzzyGAN with fuzzy domain labels, GanFCM with conventional GAN and FCM. Furthermore,
we chose stars and crescents as another source of macroscopic objects besides bananas, because a star
is not similar but a crescent is close to T. gondii.

To prove the main idea that the more similar the macroscopic object, the better the performance that
will be achieved in the FCGAN, we also performed extensive evaluations, including (i) cross-domain
image generation to test the fuzzy component, (ii) feature map visualization for convolutional layers, and
(iii) t-SNE plots for feature extraction.

Data availability. The data and codes that support the findings of this study are available on GitHub
at https://github.com/senli2018/FCGAN/.
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