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Abstract
Purpose  While the spread of COVID-19 is increased, new, automatic, and reliable methods for accurate detection are essen-
tial to reduce the exposure of the medical experts to the outbreak. X-ray imaging, although limited to specific visualizations, 
may be helpful for the diagnosis. In this study, the problem of automatic classification of pulmonary diseases, including the 
recently emerged COVID-19, from X-ray images, is considered.
Methods  Deep Learning has proven to be a remarkable method to extract massive high-dimensional features from medical 
images. Specifically, in this paper, the state-of-the-art Convolutional Neural Network called Mobile Net is employed and 
trained from scratch to investigate the importance of the extracted features for the classification task. A large-scale dataset 
of 3905 X-ray images, corresponding to 6 diseases, is utilized for training MobileNet v2, which has been proven to achieve 
excellent results in related tasks.
Results  Training the CNNs from scratch outperforms the other transfer learning techniques, both in distinguishing the X-rays 
between the seven classes and between Covid-19 and non-Covid-19. A classification accuracy between the seven classes 
of 87.66% is achieved. Besides, this method achieves 99.18% accuracy, 97.36% Sensitivity, and 99.42% Specificity in the 
detection of COVID-19.
Conclusion  The results suggest that training CNNs from scratch may reveal vital biomarkers related but not limited to the 
COVID-19 disease, while the top classification accuracy suggests further examination of the X-ray imaging potential.

Keywords  COVID-19 · Pulmonary disease detection · X-ray imaging · Biomarkers · Deep learning · Training from scratch

1  Introduction

The Coronavirus (COVID-19) is perhaps the greatest chal-
lenge of mankind in the twenty-first century. The develop-
ment of the disease, its transmission, and the increased mor-
tality in a number of countries, make it imperative to develop 
treatment, but also to protect health care and society from 
the transmission of the disease.

Therefore, remote control of the disease, including diag-
nosis, early quarantine, and follow-up, is essential. Artificial 
intelligence can contribute to the above perspectives. Recent 
studies claim to achieve precise results regarding the auto-
matic detection of the disease from thoracic X-ray scans 
[1–3]. Although the research is limited due to the absence of 
large scale image data, the first results are encouraging and 
necessitate further investigation and research.

Although the diagnosis is increasingly becoming a rapid 
process, the financial issues arising from the cost of diag-
nostic tests concern both states and patients, especially in 
countries with private health systems, or restricted access 
health systems due to prohibitive prices.

During the first months of 2020, there has been an 
increase in publicly available patient data, including X-ray 
images. Possible patterns and knowledge mined from the 
X-ray scans may constitute a possible pipeline for the diag-
nosis of COVID-19.
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Τhe development of deep learning applications enables 
the researchers to perform a rapid and deep analysis on the 
X-ray scans. Deep Learning is a combination of Machine 
Learning methods mainly focused on the automatic feature 
extraction and classification from images, while its applica-
tions are broadly met in medical image detection, segmen-
tation, and classification tasks. Machine learning and Deep 
Learning have become established disciplines in applying 
artificial intelligence to mine, analyze, and recognize pat-
terns from data. Reclaiming the advances of those fields to 
the benefit of clinical decision making and computer-aided 
systems is increasingly becoming nontrivial, as new data 
emerge [4].

Deep Learning  for pattern recogtition in images is a 
learning method, wherein deep Convolutional Neural Net-
works (CNN) are utilized for automatic mass feature extrac-
tion, achieved by the process called convolution [5]. Each 
layer involves a transformation of the data into a higher and 
more abstract level. Higher layers (i.e., deep layers) of por-
trayal enhance parts of the information that are significant 
for segregation and smother unimportant attributes. Due to 
the unlimited parameters mined during this process, sev-
eral methods have been proposed to achieve dimensionality 
reduction, such as Pooling [5].

Motivated by the recent and relative research, in this 
study, we focus on circumventing two vital issues arisen in 
the detection of COVID-19 from X-ray scans. The first issue 
is related to the methodology of the experimental setups. In 
essence, the researches have demonstrated that the detec-
tion of COVID-19 is achievable, but this conclusion derives 
from an analysis based on incomplete data. Τhe models pro-
posed are powerful in classifying images between only three 
classes (viral and bacterial pneumonia, COVID-19, normal). 
This, unfortunately, does not demonstrate the existence of a 
clear fingerprint of the Coronavirus in X-ray images, firstly, 
due to the insignificant database size and, secondly, due to 
the fact that the fingerprints of other pulmonary diseases 
have not been compared. The second issue is related to the 
flaws of Deep Learning and is often referred to as the issue 
of interpretability [6]. In short, the algorithm is not transpar-
ent, thereby a radiologist cannot supervise and know which 
factors or indices were utilized by the model to reach to a 
decision.

To further evaluate the methodology of Deep Learning, 
we perform an experiment utilizing six of the most com-
mon pulmonary diseases, including that of COVID-19. In 
this way, the capabilities of the method in distinguishing 
between the various diseases is evaluated. Besides, the 
dataset of the particular experiment is significant, includ-
ing approximately 450 cases of COVID-19. To contribute 
to the latter referred issue (i.e., the interpretability), we 
perform three different experiments altering the mining 
methods to inspect the variance of the extracted features. 

Specifically, the state-of-the-art CNN called Mobile Net 
(v2) is employed to extract features from the images in 
three different ways, as follows: (a) training from scratch, 
(b) feature extraction via transfer learning (or of-the-self-
features), and (c) hybrid feature extraction via fine-tuning. 
Those methods are explained in Sect. 2.2.

Due to the absence of a complete X-ray dataset contain-
ing not only common pneumonia or other diseases, but 
also cases of diagnosed COVID-19, the final dataset of 
this experiment is a combination of X-rays corresponding 
to common pulmonary diseases recorded during the last 
years and confirmed COVID-19 cases recorded from Janu-
ary 2020 to March 2020.

The results of the present research further enhance the 
research to date. In particular, it is highlighted that with 
the strategy of training from scratch, the CNN succeeds 
in mining significant image features, discovered solely in 
the particular X-ray images. Based on these characteristics 
(features), 88% accuracy in classification of the relative 
diseases and ~ 99% accuracy in diagnosis of COVID is 
achieved. This may prove that these features are Biomark-
ers and need further analysis, as they may be gene or other 
signatures.

2 � Methods

2.1 � Dataset of the Study

2.1.1 � COVID‑19 X‑ray Images

For the creation of the dataset, the research focused on 
obtaining X-rays corresponding to confirmed cases infected 
by the virus SARS-COV-2. Through extensive research, a 
collection of 455 well-visualized, confirmed pathological 
X-ray images was created. The final collection includes 
selected X-rays from a repository created by Dr. Cohen [7], 
and publically available medical image repositories, such 
as the Radiological Society of North America (RSNA), 
Radiopaedia, and the Italian Society of Medical and Inter-
ventional Radiology (SIRM). The latter association released 
a publically available COVID-19 dataset [8], which was also 
incorporated.

2.1.2 � Common Bacterial and Viral Pneumonia X‑ray Images

To train and evaluate the classification method in more com-
plex conditions, a collection of conventional bacterial and 
viral pneumonia X-ray scans was added to the dataset. This 
collection is available on the Internet by Kermany et al. [9]. 
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A selection of 910 related X-ray images, which were ran-
domly selected, was incorporated into the dataset.

2.1.3 � Pulmonary Diseases Detected from X‑ray Scans

It is impossible to investigate the performance of any clas-
sification method in detecting the COVID-19 disease unless 
other pulmonary diseases are incorporated. For this reason, 
the final dataset includes selected X-ray scans corresponding 
to other pulmonary abnormalities.

The National Institutes of Health (NIH) X-ray dataset 
was exploited, which is referred to as NIH dataset for the 
particular experiment, and comprises 112.120 frontal-view 
X-ray images of 30.805 unique patients with the text-mined 
fourteen disease image labels [10].

Those images are extracted from the clinical PACS data-
base at the National Institutes of Health Clinical Center in 
America. The corresponding diseases were mined from 
the associated radiological reports using natural language 
processing. The labels contain fourteen common thoracic 
pathologies include Atelectasis, Consolidation, Infiltration, 
Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, 
Pneumonia, Pleural thickening, Cardiomegaly, Nodule, 
Mass and Hernia. This dataset is significantly more repre-
sentative of the real patient population distributions and real-
istic clinical diagnosis challenges, than any previous chest 
X-ray datasets. The dataset comes with annotated metadata 
info, consisting of several risk associated factors.

A significant limitation of this dataset is the labeling pol-
icy, which may raise some concerns. More specifically, the 
medical reports were analyzed by an automatic text-mining 
model, which assigned the corresponding labels according 
to its text-mining procedure. However, as the authors claim, 
“there would be some erroneous labels, but the Natural Lan-
guage Processing (NLP) labeling accuracy is estimated to 
be > 90%” [10].

For the particular experiment, the following disease cases 
were selected: (a) Pulmonary Edema, (b) Pleural effusion, 
(c) Chronic obstructive pulmonary disease, (d) Pulmonary 
fibrosis. The selection was based on the significance and 
frequency of those diseases. Analytically, 293 images rep-
resenting the Pulmonary Edema, 311 images representing 
the Pleural Effusion, 315 images representing the Chronic 
Obstructive Pulmonary Disease (COPD), and 280 images 
representing the Pulmonary Fibrosis were randomly chosen 
from the collection.

2.1.4 � Image Pre‑processing and Data Augmentation

The X-ray images were rescaled to a size of 200 × 200. For 
the images of different pixel ratios and to avoid distortion, 
black background of 200 × 200 pixels was added to achieve 

a complete transformation. Low contrast images or images 
containing parts of the whole thoracic X-ray scan were 
excluded.

During the training process, slight augmentations were 
applied to the images. Data augmentation is mandatory to 
generate the necessary diversity aiding to the generaliza-
tion capabilities of the CNNs [11]. Specifically, the images 
are randomly rotated by a maximum of 10° and randomly 
shifted horizontally or vertically by a maximum of 20 pixels 
towards any direction. In this way, the CNN learns to be 
robust to position and orientation variance.

2.1.5 � Data Limitations

The present collection of data faces some limitations, which 
have to be mentioned. Firstly, a relatively small sample of 
COVID-19-infected cases is incorporated. Besides, this sam-
ple may derive from patient cases with severe symptoms, the 
analysis of which was mandatory. Cases with slight symp-
toms are missing from the current public collections, which 
is due to the policy of protecting people (and society) who 
have mild symptoms of the disease, and are immediately 
quarantined without further examination.

Secondly, the pneumonia incidence samples are older 
recorded samples and do not represent pneumonia images 
from patients with suspected Coronavirus symptoms, while 
the clinical conditions are missing.

Thirdly, further data related to demographic characteris-
tics and other potential predisposing or risk factors are not 
available, and this impedes a holistic approach and examina-
tion beyond the medical image.

2.2 � Learning Strategies for Feature Extraction

There are currently major techniques that successfully 
employ CNNs to medical image classification, by extract-
ing features, as follows: (a) training the CNN from scratch, 
(b) employing a pre-trained CNN, which is called Transfer 
Learning [12], and (c) a hybrid method, which also a Trans-
fer Learning method, while it adopts the former strategies 
by tuning the trainability of specific layers of the CNN; this 
method is called Fine-Tuning [13].

The first strategy may be adopted either by developing a 
novel CNN architecture, or by employing the architecture of 
a successful CNN. In this study, we employ a state-of-the-art 
CNN architecture, to follow each of the strategies.

The second and the third strategy are means of Transfer 
Learning. Transfer learning is a machine learning method 
wherein a model developed for a specific task is reused 
for another task. There are two categories to perform the 
Transfer Learning, i.e. the of-the-self feature extraction and 
Fine-Tuning.
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The off-the-self strategy is an approach utilizing the 
weights of the Convolutional layers, which are defined from 
the source task (the initial training of another domain) with-
out re-training the network [14]. Extracting such features is 
usually fast and this approach requires only the addition of a 
classifier to perform the classification of those features with 
respect to their significance in the particular task.

The Fine-Tuning strategy involves utilizing a network ini-
tialized with pre-trained weights and partially re-training it 
on the target task. In the context of deep learning, fine-tun-
ing a deep network is a common strategy to learn both task-
specific deep features, and retain the methodology to extract 
global features met in every image, such as shapes. Usually, 
the Fine-Tuning strategy allows more trainable weights at 
the top of the network (i.e., the final steps), due to the fact 
that those convolutional layers extract more abstract and 
high-level information, compared to the first layers wherein 
local features are learned. In the particular experiment, we 
gradually allow more layers to be trainable, by defining six 
experimental cases, referred to as Fine-Tuning (e.g., 11), 
where the number in the parenthesis corresponds to the num-
ber of trainable convolutional blocks.

2.3 � Method for the Extraction of Possibly 
Significant Biomarkers

2.3.1 � The State‑of‑the‑Art CNN Called Mobile Net

For the classification task, the state-of-the-art CNN called 
Mobile Net [15] was employed. Mobile Net has been 
recently utilized for the same classification task by Apostolo-
poulos [3]. In their work, the authors demonstrated the supe-
riority of Mobile Net in reducing the False Negatives for the 

detection of COVID-19, compared to other famous CNNs. 
Besides, this CNN introduces a fewer number of parameters 
compared to other CNNs, which makes it appropriate for 
swift training.

The MobileNet [15] model is based on depthwise sepa-
rable convolutions [16], which is a form of convolutions 
transforming a conventional convolution into a depthwise 
convolution [16] and a 1 × 1 convolution, which is com-
monly known pointwise convolution [16]. This procedure 
reduces the number of parameters drastically.

To the top of the Mobile Net v2, a Global Average Pool-
ing [17] layer was added, which drastically reduces the issue 
of overfitting [18]. The extracted image features are inserted 
into a Neural Network of 2500 nodes to distinguish between 
the irrelevant and the significant ones. To further aid to the 
overfitting reduction, the weights of each feature are normal-
ized utilizing a Batch Normalization layer [19], while we 
independently zero out the 50% of the outputs of neurons 
at random, via a Dropout layer [20]. An overview of the 
method is illustrated in Fig. 1.

The intention of the particular study is not only to achieve 
a high classification accuracy, but to achieve this by training 
the CNN from scratch. This strategy is preferable to transfer 
learning to evaluate the significance of the features extracted 
from the precise images, while it is not depending on fea-
tures already learned by the pre-trained model, the initial 
training of which, was performed utilizing non-medical 
images.

Based on the results, the extracted features may be evalu-
ated to conclude that they may constitute real image bio-
markers related to various diseases.

Fig. 1   Overview of the feature extraction process
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2.4 � Experiment Setup

We performed a set of three different experiments employing 
the same CNN (Mobile Net v2), but altering the learning 
strategy. The following strategies are evaluated: (a) Trans-
fer Learning with of-the-self features, (b) Transfer Learning 
with Fine-Tuning, and (c) Training from scratch, which, in 
this experiment, is a latent form of the Transfer Learning, 
since we only borrow the architecture of the Mobile Net and 
not the learned parameters. The experiments were performed 
utilizing a single GPU setup (NVIDIA GeForce RTX 2060 
Super) using the Keras library [21] and TensorFlow [22] as 
backend.

The training and evaluation procedure was performed 
with ten fold-cross-validation. During this procedure, the 
dataset is randomly split to ten folds, nine of which are uti-
lized for training the model, and the remaining fold is hidden 
and used to test the performance and the confidence of the 
predictions after the training. This process is repeated in a 
way that every fold is utilized as the test set. This increases 
the computational cost but enhances the significance of the 
result. The final accuracy is obtained by calculating the 
mean accuracy derived from each testing fold.

2.5 � Metrics

The metrics, based upon which the evaluation of the per-
formance is made, are the overall 7-class accuracy, and 
the accuracy corresponding to the 2-class classification 
(COVID-19 vs. non-COVID-19).

Besides, to focus on the performance of COVID-19 
detection, the following values are recorded: (a) Correctly 
predicted COVID-19 cases (True Positives), (b) Correctly 
predicted non-COVID-19 cases (True Negatives), (c) Incor-
rectly predicted COVID-19 cases (False Positives), and (d) 
Incorrectly predicted non-COVID-19 cases (False Nega-
tives). Based on those values, the Sensitivity and Specificity 
of the test are calculated by the following equations:

For the particular experiments and given that there is a 
class imbalance issue, the most reliable metric is that of the 
7-class accuracy, while given that this accuracy is high, the 
second most vital metric is that of Specificity. This is due 
to the importance of correctly identifying the actual non-
COVID-19 cases (True Negatives).

(1)Sensitivity =
True positives

True positives + False negatives

(2)Specificity =
True negatives

True negatives + False positives

3 � Results

In this section, the results for the different experiment 
setups are presented. Based on those results, the optimal 
strategy is selected, and assumptions are made regarding its 
effectiveness.

3.1 � Results of the Of‑the‑Self‑features Strategy

In Table 1, the accuracy, sensitivity, and Specificity of the 
first strategy are given. The reader should recall that the 
2-class accuracy refers to the case where the labels are 
“COVID-19” and “Non-COVID-19”. Besides, the sensitiv-
ity and the Specificity refer to the 2-class measurement.

Due to the class imbalance, the metric of Specificity 
was approaching 100% and was not mentioned in Table 1, 
as it is not a meaningful measurement when reaching those 
values. The same issue is valid for the 2-class accuracy but 
was mentioned in Table 1 for comparisons. The confusion 
matrix for each class is presented in Table 2.

The confusion matrix corresponding to the COVID-19 
class vs. all the classes is presented in Table 3.

Based on the results, it is confirmed that the particular 
strategy is not effective in extracting useful features to dis-
tinguish possible underlying information from the X-rays 
related to the COVID-19 disease. Besides, a bias towards 
the non-COVID-19 cases is observed in Table 3, which 
makes the strategy not appropriate for the particular task.

3.2 � Results of the Fine‑Tuning Strategy

In Table 4, the accuracy, the Sensitivity, and the Specific-
ity of the second strategy are given. The reader should 
recall that several adjustments for fine-tuning are tested 
in the particular section, which are discussed in Sect. 2.2. 
The number defining each experimental case, refers to the 
number of blocks made trainable during the experiment, 
e.g., “Fine-Tuning 3” corresponds to 3 trainable blocks 
starting from the top of the CNN. The reader should also 
recall that the values for the accuracy are the mean values 
of the accuracies obtained at each fold from the tenfold-
cross-validation procedure.

Table 1   Accuracy, sensitivity, and specificity for the of-the-self-fea-
tures strategy

Strategy Accuracy
2-class (%)

Accuracy
7-class (%)

Sensitivity 
(%)

Specificity 
(%)

Of-the-self-
features

88.81 51.98 04.62 –
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As it is observed in Table 4, the strategy of fine-tun-
ing obtains different results. This is explained by the 
fact that we gradually allow more layers to be trainable, 
thus approaching close to the strategy of training from 
scratch, which obtains the best results, as it is presented in 
Sect. 3.3. Hence, the confusion matrixes are not provided 
due to insignificance and limitations of space.

3.3 � Results of the Training‑from‑Scratch Strategy

In Table 5, the accuracy, Sensitivity, and Specificity of the 
specific strategy are presented.

In Table  5, it is observed that training from scratch 
outperforms the other strategies in terms of every metric, 
obtaining a remarkable 2-class accuracy of 99.18% and a 
high 7-class accuracy of 86.66%. The reader should recall 
that 2-class accuracy refers to the effectiveness of distin-
guishing the COVID-19 cases from every other case, includ-
ing both abnormal and normal cases. In Table 6, the confu-
sion matrix for the 7-class task is presented.

Several outcomes are to be highlighted in Table 6. Firstly, 
out of 455 COVID-19 cases, 443 cases were correctly identi-
fied, while only 2 cases were mistakenly classified as nor-
mal. Secondly, out of the 1341 normal cases, only 1 case was 
mistakenly identified. For the rest of the pulmonary abnor-
malities, there is a diversity, which may derive from the fact 
that the different pathogens embody seals that are difficult to 
distinguish from the X-rays and confuse the CNN.

The confusion matrix corresponding to the COVID-19 
class vs. all the classes is presented in Table 7.

The classification obtains an excellent trade-off between 
the corresponding True Positives, False Positives, True 
Negatives, and False Negatives.

4 � Discussion

The particular research focuses on discovering possi-
ble image biomarkers from X-ray images. These biomark-
ers may be significantly related to the COVID-19 disease.

While Deep Learning extracts a massive amount of 
high-dimensional features from images, it is possible that 
some of those features behave as actual image biomarkers. 
The reader may be confused by the difference between 
a feature and an image biomarker. Therefore, we briefly 
describe the difference between them. A feature is a spe-
cific characteristic of an image, either well-defined in the 

Table 2   Confusion Matrix 
for the 7-class classification 
employing transfer learning 
with of-the-self features

Actual classes

Covid19 Edema Effusion Emphys Fibrosis Pneumonia Normal

Predicted classes
 Covid19 21 0 1 1 0 1 0
 Edema 270 254 210 199 155 171 136
 Effusion 4 5 24 4 6 0 1
 Emphys 15 16 34 49 31 4 7
 Fibrosis 46 17 35 50 78 3 18
 Pneumonia 91 1 3 4 2 712 287
 Normal 8 0 4 8 8 19 892

Table 3   Confusion matrix for the 2-class classification employing 
transfer learning with of-the-self features

Actual class

COVID-19 Non-COVID-19

Predicted COVID-19 21 3
Predicted non-COVID-19 434 3447

Table 4   Accuracy, sensitivity, and specificity for the different cases 
of the fine-tuning strategy

Strategy Accuracy
2-class (%)

Accuracy
7-class (%)

Sensitivity 
(%)

Specificity 
(%)

Fine-tuning 1 86.44 50.24 11.22 –
Fine-tuning 3 88.02 56.91 57.26 –
Fine-tuning 5 87.66 52.67 58.08 –
Fine-tuning 7 90.37 43.43 63.52 93.91
Fine-tuning 9 91.28 66.31 71.84 94.55
Fine-tuning 

11
92.33 75.67 82.96 93.96

Table 5   Accuracy, sensitivity, and specificity when the training from 
scratch strategy was followed

Strategy Accuracy
2-class (%)

Accuracy
7-class (%)

Sensitivity 
(%)

Specificity 
(%)

Training 
from 
scratch

99.18 87.66 97.36 99.42
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literature or yet to be defined as to its importance. With 
Deep Learning, it is possible to extract millions of related 
features. The extracted features’ importance to the specific 
task is questionable. The majority of those features may be 
irrelevant to the desired outcome, or the desired subject of 
study and are rejected by the automatic classification per-
formed after the convolutional layers of a CNN. The bio-
markers are quantitative markers of confirmed significance 
and are not limited to the image features [23]. Generally, 
the ability of Deep Learning for image biomarker extrac-
tion is questionable due to the issue of the interpretability.

This study suggests that it may be possible to discover 
new reliable biomarkers from X-ray images due to the fact 
that a high classification accuracy was achieved. Since 
the CNNs and the Neural Networks lay on the evalua-
tion of millions of parameters to classify the significant 
features, some of those features may actually be image 
biomarkers leading to a reliable result. This horizon in to 
be investigated in future research, possibly exploring other 
approaches, such as Radiomics [24].

Οne factor that underpins the conclusion mentioned 
above, is the comparison between the various image fea-
ture mining strategies. In particular, it is demonstrated that 
those strategies do not mine the same features. This can be 
easily interpreted, since with strategies of Transfer Learn-
ing with of-the-self-features and Transfer Learning with 
fine-tuning, the ability of the CNN to extract significant 
features depends on factors related to the initial training. 
The initial training was mandatory to be performed on 
images of a completely different nature due to the absence 

of large-scale data. However, despite the fact that the latter 
strategies have excellent performances in other medical 
image classification tasks [12, 25], in the particular experi-
ment, they were underperforming. This may suggest that 
with the training from scratch, essential features related to 
the pulmonary abnormalities have been mined, which may 
constitute relevant Biomarkers.

In future studies, some issues of the present study can 
be circumvented. A more in-depth analysis, in particular, 
requires much more patient data, particularly those suffer-
ing from COVID-19.

A more promising approach for future studies would con-
centrate on identifying patients infected by COVID-19, but 
showing mild symptoms, although those symptoms may not 
be visualized correctly on X-rays, or may not be visualized 
at all.

It is of vital importance to establish models capable of 
distinguishing between a more significant numbers of pul-
monary diseases, possibly including that of SARS. Also, 
despite the fact that the appropriate treatment is not deter-
mined solely from an X-ray image [26], an initial screening 
of the cases would be useful, not in the type of treatment, 
but in the timely application of quarantine measures in the 
positive samples, until a complete examination and specific 
treatment or follow-up procedure are followed.

5 � Conclusion

The contribution of this work is twofold. Firstly, low-cost, 
rapid, and automatic detection of the COVID-19 disease was 
achieved, utilizing a significantly large sample of several 
pulmonary infections. It was demonstrated that the vari-
ous infections may be distinguished by a computer-aided 
diagnostic system, utilizing deep features extracted by 
Deep Learning methods. This strategy may be beneficial for 
medical-decision assisting tools to provide a second opin-
ion in challenging cases. It could be also applied to achieve 
an intact first assessment of the likelihood of disease in 
patients with either suspected or no symptoms. Besides, the 

Table 6   Confusion matrix 
for the 7-class classification 
employing the strategy of 
training Mobile Net v2 from 
scratch

Actual classes

Covid19 Edema Effusion Emphys Fibrosis Pneumonia Normal

Predicted classes
 Covid19 443 1 4 4 7 3 1
 Edema 1 232 36 34 11 0 0
 Effusion 2 31 161 58 37 0 0
 Emphys 3 12 54 156 40 0 0
 Fibrosis 3 17 56 63 184 0 0
 Pneumonia 1 0 0 0 1 907 0

Normal 2 0 0 0 0 0 1340

Table 7   Confusion matrix for the 2-class classification employing the 
strategy of training Mobile Net v2 from scratch

Actual class

COVID-19 Non-COVID-19

Predicted COVID-19 443 20
Predicted non-COVID-19 12 3430
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advantage of automatic detection of COVID-19 from either 
medical image lies in the reduction of exposure of nursing 
and medical staff to the outbreak.

Secondly, the study suggests that future research should 
be conducted to investigate the possible behavior of the 
extracted features as Biomarkers, since there is sufficient 
evidence, based on the particular results. The three training 
strategies were employed to evaluate the significance of the 
extracted features of each strategy. The strategy of allowing 
the deep CNN to learn new characteristics and features from 
the specific images resulted in an excellent performance over 
the other approaches, wherein features are extracted based 
on mined knowledge from non-medical images, or images 
unrelated to pulmonary diseases. This underlines the unique-
ness of the extracted features and marks them as possible 
biomarkers.
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