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Background: Cardiovascular diseases (CVDs) are the leading cause of

death globally. Based on recent studies, one of the factors that can have

detrimental e�ects on CVD is the consumption of ultra-processed foods

(UPFs). The current study investigated the relationship between UPF intake and

cardiometabolic risk factors among Iranian women.

Methods: The current cross-sectional study was conducted on 391 women

aged 18–65 years with a body mass index (BMI) ≥ 25 kg/m2. Dietary

intake was assessed using a 147-item food frequency questionnaire (FFQ).

Anthropometric and biochemistry parameters were also collected. UPFs were

identified using the NOVA classification.

Results: In the present study, women had a mean (standard deviation) age

of 36.67 (9.10) years and the mean BMI of 31.26 (4.29) kg/m2. According to

our findings, there was a significant association between UPF consumption

and transforming growth factor (TGF) (β: 0.101, 95% CI: 0.023, 0.180, p =
0.012), atherogenic coe�cient (AC) (β: 0.011, 95% CI: 0.001, 0.032, p = 0.034),

visceral fat level (VFL) (β: 0.006, 95% CI: −0.017, 0.029, p = 0.076), and the

quantitative insulin sensitivity check index (QUICKI) (β: −3.775, 95%CI: 0.001,

0.001, p = 0.042).

Conclusion: In conclusion, an increase in consumption of one gram of UPFs is

associated with an increase in TGF, AC, and VFL but with a decrease in QUICKI.

Despite this, further experimental studies are necessary to draw amore definite

conclusion and disentangle the mechanisms by which UPFs may a�ect health.
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Introduction

Cardiovascular diseases (CVDs) are the leading cause of

death globally; an estimated 17.9 million people died fromCVDs

in 2019, representing 32% of all global deaths (1). About 85% of

the deaths were due to heart attack and stroke (1). According to

previous studies conducted in 2016 and 2017, CVD has been the

major cause of mortality in Iran, accounting for 46% of all deaths

and 20–23% of the disease burden (2, 3).

The global consumption of ultra-processed foods (UPF) has

risen exponentially. UPFs account for between 25 and 60% of

total daily energy consumption, according to the Nationwide

Food Surveys (4–14). According to the NOVA classification

system, UPFs are defined as foods made up entirely or

predominantly from unhealthy components containing higher

levels of total fat, saturated fat, added sugar, energy density, and

salt, and lower quantities of fiber and vitamin density (15). UPF

packaging contains materials that come into contact with food,

such as Bisphenol A, which, according to a meta-analysis of

observational studies, may increase the risk of cardiometabolic

disorders, even though prospective cohort studies are still

limited (16, 17). Some studies reported that consumption of UPF

is associated with adverse health outcomes, including CVDs,

and obesity (18–20). Srour et al. reported a higher risk of CVD

associated with the consumption of ultra-processed foods (21).

Given the high prevalence of CVDs in Iran, it is necessary to

find dietary factors that may associate with the disease (22). The

main objective of this study was to investigate the relationship

between UPF intake and cardiometabolic risk factors among

Iranian women, and the secondary objectives were to exhibit

the association between UPF consumption, food groups, and

demographic variables.

Methods

Study population

The research was conducted in Tehran, Iran, using a multi-

stage cluster random sampling procedure on 391 overweight and

obese women with a body mass index (BMI) ranging from 25 to

40 kg/m2 and aged 18–48 years, recruited from the community

health center of the Tehran University of Medical Sciences

(TUMS) in 2018. We used the sample size formula N =([(Z

1−α+Z1−β)×
√
1-r2]/r)2+2), β = 95%, and α = 0.05, r = 0.25.

Participants were excluded from the study if they reported a

total daily energy intake outside of 800–4,200 kcal (17,556–3,344

kJ) (23) or if they reported a history of diseases such as CVD,

diabetes, cancer, kidney disease, thyroid disease, menopause,

pregnancy, and breastfeeding. In addition, individuals on lipid-

lowering agents, individuals on blood glucose-lowering agents,

and those who consumed alcohol or smoked were excluded

from the study. Furthermore, the food frequency questionnaire

(FFQ) did not include individuals who did not respond to

more than 70 questions and had significant fluctuations in

their weight over the past year. After learning about the study’s

objectives, all the participants signed an informed consent

form. The Human Ethics Committee of Tehran University of

Medical Sciences approved the study protocol (Ethics number:

IR.TUMS.VCR.REC.1398.142, Date of reference number: 5

April 2019).

Dietary assessment and NOVA calculation

To evaluate the food consumption of participants during

the previous year, we used a validated semi-quantitative FFQ,

whose validity and reliability have already been authorized

(24, 25). Trained dietitians were responsible for applying

the FFQ. In total, one hundred forty-seven food items were

included in this FFQ with a standard serving size, and

participants assessed their consumption frequency according to

four categories: daily, weekly, monthly, and infrequent. Using

home measures, the portion sizes of the consumed foods were

converted to grams (23). Nutrient and energy intakes were

calculated using NUTRITIONIST IV software (version 7.0;

N-Squared Computing, Salem, OR). The following food and

beverage items are classified as UPFs in the NOVA food group

classification, which is the subject of this research, and are

grouped into the FFQ into seven food groups (daily intake

was calculated as grams): (1) Non-dairy beverages (coffee, cola,

nectar, and industrial sweet drink), (2) dairy beverages (ice

cream, pasteurized and non-pasteurized, chocolate milk, and

cocoa milk), (3) cakes and cookies (cookies, biscuits, pastries

(creamy and non-creamy), cake, pancake, industrial bread,

toasted bread, noodles, and pasta), (4) fast food and processed

meat (burger, sausage, pizza, and bologna), (5) salty snacks

(chips, crisps, crackers, and cheese puff), (6) oil and sauce

(mayonnaise, margarine, and ketchup), (7) sweets (Gaz, Sohan,

Noghl, sesame halva, chocolate, candies, rock candies, jam,

and sweets) (26). All the NOVA components were adjusted for

energy intake.

Anthropometry and body composition

Participants were advised to fast for 12 h the night before

the assessment and avoid unusual physical activity for 72 h

before the anthropometrics and body composition assessments.

A digital stadiometer (Seca) was used to measure height (m)

with a precision of 0.5 cm. The waist circumference (WC) (cm)

and hip circumference (HC) (cm) with an accuracy of 0.5 cm

were measured within the largest and the littlest circumference

separately. The waist-to-hip ratio (WHR) was computed as WC

(cm)/HC (cm).
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A multi-frequency bioelectric impedance analyzer (BIA)

(Inbody Co., Seoul, Korea) scanner evaluated body composition.

This electrical impedance analyzer measures the resistance of

body tissues to the passage of an electrical signal given through

the feet and hands. The body composition analyzer was used to

assess the individuals’ weight, BMI, fat mass (FM), fat-free mass

(FFM), body fat percentage (%), and the others, according to a

predetermined methodology. The participants were instructed

to urinate before measuring their body composition according

to the fabricant recommendations.

Biochemical assessment

The blood samples were obtained between 8:00 and

10:00 a.m. at the Nutrition and Biochemistry lab of the

School of Nutritional Sciences and Dietetics, TUMS, after an

overnight fast and deposited in tubes containing 0.1 percent

ethylenediaminetetraacetic acid (EDTA). The serum was

centrifuged, aliquoted, and stored at −70◦C. The glucose

oxidase phenol 4-aminoantipyrine peroxidase (GOD/PAP)

technique determined fasting blood glucose levels (FBG). To

evaluate blood triglyceride (TG) levels, enzyme colorimetric

assays with GPO–PAP were utilized. Total cholesterol was

assessed using phenol 4-aminoantipyrine peroxidase (CHOD–

PAP), low-density lipoprotein (LDL), and high-density

lipoprotein (HDL) were measured using the direct approach

and immunoinhibition. The serum high-sensitivity C-reactive

protein (hs-CRP) was measured using an immunoturbidimetric

method. The Enzyme-Linked Immunosorbent Assays (ELISA)

technique was used to evaluate the levels of IL-1β and PA-I

(Human PAI-1∗96 T ELIZA kit Crystal Company). The serum

insulin concentrations were determined using the enzyme-

linked immunosorbent assay (ELISA kit). The ELISA kit was

also used to quantify serum MCP-1 levels (Zell Bio GmbH,

Germany, assay range:5 ng/L−1,500 ng/L, sensitivity:2.4 ng/L,

CV10 percent inter-assay variability). All of the kits were

given by Pars Azmoon (Pars Azmoon Inc. Tehran, Iran). Insulin

resistance was assessed using a homeostasis model (HOMA–IR).

The index was computed using the algorithm (plasma glucose

mmol/ l / × fasting plasma insulin mIU/ l)/22.5 (27). The

quantitative insulin sensitivity check index (QUICKI) was also

used to evaluate insulin resistance through the formula 1/[log

(fasting insulin)+ log (fasting glucose)] (27). From biochemical

parameters, FBG, TG, HDL, LDL, hs-CRP, and IL_1β variables

are considered as CVD risk factors in this study.

The atherogenic index of plasma (AIP) was calculated using

the logarithmic of (TG/HDL-C). TC/HDL, LDL/HDL, and (TC-

HDL) /LDL were used to determine castelli’s risk index 1 (CRI-

I), castelli’s risk index 2 (CRI- II), and atherogenic coefficient

(AC), respectively. The following formula was used to compute

CHOLIndex: CHOLIndex = LDL-C – HDL-C (TG <400) =
LDL-C – HDL-C + 1/5 TG (TG >400). (28). Ln (FBG (mg/dl)

∗ TG (mg/dl)/2) was used to determine triglyceride–glucose

index (TyG index) (29). The terms triglyceride glucose-waist

circumference (TyG–WC) and triglyceride glucose–body mass

index (TyG–BMI) were obtained through the formulas: [Ln

(FBG (mg/dl) ∗ TG (mg/dl)/2)] ∗ WC and [Ln (FBG (mg/dl)
∗ TG (mg/dl)/2)] ∗ BMI), respectively (30).

Blood pressure assessment

Blood pressure was measured using an automated

sphygmomanometer according to standard procedures

(OMRON, Germany).

Other collected data

General information about the participants, such as their

age, job status (employed, unemployed), education level

(illiterate, under diploma, diploma, and bachelor and higher)

(what are the categories? Detail the methodology here, as well

as the other variables), marital status (single and married),

economic status (low, middle, and high class), standard

questionnaires, were collected. The physical activity status was

obtained using the validated International Physical Activity

Questionnaire (IPAQ). Afterward, metabolic equation hours per

day (MET-min/week) were calculated for each subject. After

that, each subject’s metabolic equation hours per day score

(MET-min/week) was calculated. Trained professionals were

responsible for applying the questionnaires (31, 32).

Statistical analyses

The Kolmogorov–Smirnov test was used to check the

quantitative variable’s normality (P > 0.05). Categorical data

were reported as absolute and relative frequencies, and

quantitative data were reported as means and standard deviation

(SD). According to the NOVA score, the participants were

categorized into tertiles of UPF consumption in grams. To

compare the mean difference of quantitative and frequency

of categorical variables across UPF tertiles, a one-way analysis

of variance (ANOVA) and Pearson chi-square (χ2) tests were

performed, respectively. Analysis of covariance (ANCOVA)

adjusted for potential confounders (age, BMI, energy intake,

and physical activity) and considering BMI as a collinear

variable for anthropometrics and body composition variables

were performed. The Bonferroni post-hoc test was used

to detect the statistically significant difference among UPF

tertiles. Linear regression was performed to evaluate the

association of the UPF consumption (independent variable)

with cardiometabolic risk factors (dependent variable). Model

1 was adjusted for age, BMI, physical activity, total energy
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TABLE 1 General characteristics among tertiles of NOVA score in obese and overweight women (n = 391).

Quantitative variables NOVA tertiles P-value P-value*

T1 T2 T3

<383.681 383.681–467.713 >467.713

N = 131 N = 130 N = 130

Mean± SD

Age (year)a 36.480± 9.138 38.759± 8.77 34.860± 9.352 0.003 0.004

PA (MET-min -week) 1,465.171± 231.881 834.995± 235.775 1,353.665± 254.709 0.098 0.154

Weight (kg) 81.958± 12.382 79.884± 10.975 81.669± 13.320 0.337 0.365

Height (cm) 161.574± 5.888 160.115± 5.881 161.763± 5.796 0.047 0.869

BMI (kg/m2) 31.141± 0.440 30.847± 0.449 30.459± 0.483 0.946 0.576

WC (cm) 113.163± 8.516 113.638± 7.477 116.295± 13.637 0.247 0.592

BMC (Kg) 2.676± 0.376 2.622± 0.342 2.661± 0.330 0.445 0.643

SMM (Kg) 25.954± 3.281 25.347± 3.300 25.333± 3.4205 0.247 0.311

SLM (Kg) 44.083± 5.759 43.585± 5.126 43.587± 5.317 0.693 0.454

Categorical variables

Supplementation intake n (%)b 0.311 0.057

Yes % 58 (36.7) 47 (29.7) 53 (33.5)

No % 51 (29.0) 61 (34.7) 64 (36.4)

Income status n (%) 0.582 0.185

Low class 33 (37.5) 31 (35.2) 24 (27.3)

Middle class 60 (33.0) 61 (33.5) 61 (33.5)

High class 35 (32.7) 31 (29.0) 41 (38.3)

Marital status n (%) 0.275 0.880

Single 35 (32.1) 31 (28.4) 43 (39.4)

Married 92 (33.6) 96 (35) 86 (31.4)

Job status n (%) 0.137 0.073

Unemployed 2 (100) 0 (0) 0 (0)

Employed 128 (33.2) 129 (33.5) 128 (33.2)

Educational status n (%) 0.753 0.744

Illiterate 1 (25) 1 (25) 2 (50)

Under diploma 12 (26.1) 17 (37) 17 (37)

Diploma 46 (30.9) 54 (36.2) 49 (32.9)

Bachelor and higher 68 (37) 55 (29.9) 61 (33.2)

PA, physical activity; BMI, body mass index; WC, waist circumference; BMC, bone mineral content; SMM, skeletal muscle mass; SLM, soft lean mass.

Values are represented as means and SD and number (%) for categorical variables.

ANCOVA (P-value*) was performed to adjust potential confounding factors; age, energy intake, PA, BMI. BMI consider as the collinear variable for body composition, and

anthropometric measurements.

p < 0.05 were considered as significant.
asignificant difference was seen between T3 and T2.
bsignificant difference was seen between T2 and T3.

A p <0.05 were considered as significant and p-values of 0.05, 0.06, and 0.07 were considered as marginally significant.

intake, supplements intake, and job status. Model 2 was

further adjusted for legumes and vegetables. This analysis

was presented as the β-value and a confidence interval of

95% (CI). SPSS v.26 software (SPSS Inc., IL, USA) was

used for statistical analysis. The significance level was set at

p < 0.05.

Results

A total of 391 participants were included in the present

study. Women had a mean (SD) age of 36.67 (9.10) years and

a mean BMI of 31.26 (4.29) kg/m2. The majority of women were

employed (97%), 47% were highly educated (bachelor’s degree
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and higher), and 45.5% had a middle income. The mean of UPF

intake in our sample was 442.47 (127.91) g or 96.8 %.

The general characteristics of participants among UPF

tertiles are presented in Table 1. The average UPF consumption

in tertile 1 was <383,681 g, in tertile 2 was from 383,681 g to

467,713 g, and in tertile 3 was >467,713 g. The mean of age (P

= 0.003) was statistically different between UPF tertiles in the

crude model and after controlling for confounding variables.

The mean height (P = 0.047) was statistically different between

UPF tertiles in the crude model. According to the Bonferroni’s

post-hoc test, the significant mean difference in age was between

T2 and T3, and the mean difference was higher in T2 than in T3.

In the categorical variables, the supplementation intake (P =
0.057) and job status (P = 0.073) were marginally significant

between UPF tertiles after controlling for cofounders. There was

no significant difference for other variables (Table 1).

Dietary intakes among the UPF tertiles

Dietary intakes of all the participants among tertiles of

UPF consumption are presented in Table 2. The mean of non-

dairy beverages (P = 0.001), dairy beverages (P = 0.001),

cookies (cakes) (P = 0.001), potato chips (salty) (P = 0.001),

TABLE 2 Dietary intakes among tertiles of the NOVA score in obese and overweight women (n = 391).

Total UPF consumption tertiles P-value P-value*

T1 (n= 131)

<383.681

T2 (n= 130)

383.681-467.713

T3 (n= 130)

>467.713

NOVA score components

Nondairy beverages (g/d) 177.351± 93.223 124.069± 25.540 157.152± 27.648 251.242± 126.711 0.001 0.001

Cookies-cakes (g/d) 98.913± 44.205 75.570± 25.626 97.288± 28.007 124.061± 57.167 0.001 0.001

Dairy beverages (g/d) 47.833± 27.952 37.472± 18.4894 46.629± 22.117 59.479± 35.795 0.001 0.001

Potato chips- salty 22.106± 13.893 17.354± 9.094 22.652± 10.166 26.348± 18.853 0.001 0.001

Processed meat- fast food (g/d) 41.138± 25.424 28.402± 12.600 40.230± 14.202 54.881± 35.167 0.001 0.001

Oil_ Sause (g/d) 18.269± 8.727 16.764± 8.5494 17.861± 7.4184 20.194± 9.766 0.005 0.005

Sweet (g/d) 36.861± 24.0635 30.679± 15.1176 36.916± 17.1858 43.037± 33.8778 0.001 0.001

Food groups

Refined grains (g/d) 432.348± 220.133 474.142± 191.103 380.801± 207.529 444.129± 253.5120 0.008 0.969

Whole grains (g/d) 7.586± 10.410 9.144± 11.2396 6.769± 9.0196 6.746± 10.831 0.177 0.361

Fruits (g/d) 528.904± 338.1681 605.778± 317.153 466.287± 317.377 513.252± 370.044 0.011 0.340

Vegetables (g/d) 433.577± 263.259 526.618± 264.203 382.927± 226.814 385.498± 275.073 0.001 0.003

Nuts (g/d) 14.370± 16.1868 17.821± 17.786 11.449± 14.354 13.795± 15.697 0.018 0.518

Legumes (g/d) 52.691± 41.2788 63.432± 49.5718 45.834± 35.7690 48.313± 34.0807 0.005 0.045

Dairy (g/d) 387.451± 246.357 438.192± 267.952 330.196± 224.147 394.927± 233.413 0.007 0.769

Eggs (g/d) 21.687± 14.174 22.105± 12.3656 21.235± 12.394 21.732± 17.7520 0.909 0.569

Fish and seafood (g/d) 11.408± 12.1569 12.086± 11.932 10.743± 11.2257 11.399± 13.4774 0.735 0.990

Meats (g/d) 64.571± 50.1758 67.371± 40.9762 54.081± 41.6793 73.518± 65.0100 0.022 0.250

Red meat (g/d) 21.479± 18.5197 24.003± 20.368 17.760± 15.8117 22.894± 18.722 0.038 0.947

Macronutrients and energy

Energy intake (kcal/d) 2633.280± 809.432 2916.675± 654.474 2267.608± 712.433 2713.37± 904.867 0.001 -

Micronutrients

SFA (mg/d) 28.409± 11.545 30.861± 11.417 24.761± 10.291 29.587± 12.033 0.001 0.628

MUFA (mg/d) 32.008± 12.917 35.155± 13.593 27.591± 10.563 33.253± 13.241 0.001 0.817

PUFA (mg/d) 20.082± 9.568 22.589± 10.515 17.403± 8.316 20.235± 9.087 0.001 0.717

Trans fat (g/d) 0.0007± 0.002 0.001± 0.003 0.0006± 0.001 0.0005± 0.001 0.097 0.120

Total fiber (g/d) 47.344± 21.360 57.263± 21.377 40.359± 19.203 44.333± 19.795 0.078 0.001

pro, protein; Cho, carbohydrate; SAFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.

Values are represented as means (SD).

ANCOVA (P-value*) was performed to adjust potential confounding factors (energy intake).

A P-value under 0.05 is considered significant.
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TABLE 3 CVD risk factors consist of anthropometric measurements and body composition, biochemical variables, and inflammatory factors among

tertiles of NOVA score in obese and overweight women (n = 391).

Variables UPF consumption tertiles P-value

T1<383.681 T2 383.681– 467.713 T3>467.713

Body Composition

FFM (Kg) Crude 47.019± 5.938 46.217± 5.444 46.263± 5.616 0.440

Model 1 46.402± 0.982 47.858± 1.037 46.017± 1.332 0.513

Model 2 46.286± 1.014 47.917± 1.058 46.121± 1.347 0.499

FFMI Crude 18.977± 1.618 17.977± 1.443 17.672± 11.450 0.266

Model 1 17.801± 0.246 18.153± 0.260 17.838± 0.334 0.625

Model 2 17.729± 0.252 18.202± 0.263 17.882± 0.33 0.479

FMI Crude 13.422± 3.163 13.318± 3.235 13.610± 3.799 0.784

Model 1 12.214± 0.590 12.903± 0.623 12.217± 0.800 0.716

Model 2 12.168± 0.612 12.929± 0.638 12.255± 0.813 0.700

BF (%) Crude 42.238± 5.016 41.890± 5.255 42.550± 6.196 0.629

Model 1 40.208± 1.026 41.033± 1.084 39.571± 1.392 0.725

Model 2 40.174± 1.066 41.058± 1.112 39.588± 1.416 0.726

BFM (Kg) Crude 34.936± 8.395 33.830± 7.801 35.421± 9.887 0.325

Model 1 31.494± 1.421 33.926± 1.501 31.150± 1.927 0.450

Model 2 31.387± 1.471 33.978± 1.535 31.251± 1.955 0.450

TF (kg) Crude 16.965± 3.489 16.5070± 3.411 17.103± 4.086 0.393

Model 1 15.609± 0.624 16.608± 0.660 15.450± 0.847 0.493

Model 2 15.571± 0.648 16.630± 0.676 15.479± 0.861 0.492

TF (%) Crude 320.916± 65.872 317.959± 68.968 322.384± 75.379 0.875

Model 1 298.070± 12.616 312.018± 13.326 297.691± 17.107 0.736

Model 2 297.023± 13.092 312.746± 13.660 298.300± 17.394 0.712

Anthropometric measurements

WC (cm) Crude 97.281± 16.058 97.138± 12.693 97.951± 17.058 0.933

Model 1 92.021± 3.239 98.703± 3.421 89.857± 4.391 0.259

Model 2 91.161± 3.329 99.287± 3.473 90.382± 4.423 0.207

WHR Crude 0.939± 0.054 1.637± 8.018 0.936± 0.051 0.372

Model 1 0.931± 0.009 0.940± 0.010 0.911± 0.013 0.236

Model 2 0.931± 0.010 0.939± 0.010 0.911± 0.013 0.233

VFA (CM2) Crude 168.858± 36.720 176.087± 150.293 168.733± 42.799 0.764

Model 1 154.422± 6.889 161.912± 7.276 147.917± 9.341 0.526

Model 2 154.298± 7.155 161.986± 7.465 148.012± 9.506 0.536

VFL Crude 17.122± 12.037 15.612± 3.307 17.514± 17.260 0.423

Model 1 14.815± 0.605 15.404± 0.639 14.262± 0.820 0.576

Model 2 14.826± 0.628 15.397± 0.656 14.252± 0.835 0.589

NC a (cm) Crudea 38.338± 12.042 36.958± 2.702 37.430± 3.942 0.537

Model 1b 36.130± 0.421 37.791± 0.445 36.420± 0.571 0.036

Model 2a 36.233± 0.433 37.723± 0.452 36.354± 0.575 0.068

Biochemical variables

SBP (mmHg) Crude 113.000± 15.0006 112.227± 12.386 108.333± 17.190 0.083

Model 1 113.074± 1.661 111.479± 1.691 108.975± 1.734 0.231

Model 2 113.374± 1.4497 110.824± 1.504 119.552± 1.164 0.222

DBP (mmHg) Crude 77.969± 9.586 77.930± 9.454 76.547± 12.418 0.590

Model 1 77.745± 1.194 77.736± 1.216 77.931± 1.247 0.992

Model 2 78.237± 1.064 76.992± 1.069 78.117± 1.172 0.677
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TABLE 3 Continued

Variables UPF consumption tertiles P-value

T1<383.681 T2 383.681– 467.713 T3>467.713

HOMA-IR Crude 3.240± 1.346 3.585± 1.388 3.142± 1.007 0.073

Model 1 2.941± 0.190 3.770± 0.189 3.143± 0.204 0.011

Model 2a 3.031± 0.196 3.738± 0.189 3.078± 0.207 0.024

Insulin (mIU/ ml) Crude 1.205± 0.245 1.240± 0.234 1.194± 0.197 0.415

Model 1 1.229± 0.035 1.235± 0.034 1.190± 0.037 0.636

Model 2a 1.227± 0.036 1.237± 0.035 1.189± 0.038 0.629

FBG (mg/dL) Crude 87.569± 9.927 88.912± 10.343 85.536± 7.919 0.089

Model 1 84.834± 1.382 88.262± 1.372 84.393± 1.482 0.126

Model 2 85.057± 1.439 88.199± 1.388 84.209± 1.516 0.136

TC (mg/dL) Crude 182.383± 37.483 189.395± 33.851 183.000± 37.733 0.371

Model 1 177.717± 4.406 179.295± 4.417 184.293± 466 0.569

Model 2 177.026± 4.583 179.669± 4.472 184.648± 4.741 0.514

TG (mg/dL) Crude 118.267± 55.944 120.022± 59.970 116.144± 64.776 0.922

Model 1 115.533± 8.472 126.502± 8.494 118.257± 8.966 0.666

Model 2 114.907± 4.583 179.669± 8.609 118.752± 9.126 0.653

HDL (mg/dL) Crude 47.267± 10.965 47.340± 11.662 45.536± 9.567 0.518

Model 1 48.039± 1.328 45.996± 1.331 47.130± 1.405 0.584

Model 2 48.149± 1.383 45.941± 1.350 47.068± 1.431 0.561

LDL (mg/dL) Crude 95.244± 23.856 97.109± 24.795 92.029± 23.850 0.420

Model 1 98.986± 3.071 98.070± 3.078 99.803± 3.249 0.931

Model 2 98.176± 3.186 98.486± 3.109 100.248± 3.296 0.890

GOT (mg/dL) Crude 17.720± 7.441 18.604± 8.179 16.927± 5.976 0.358

Model 1 18.502± 1.037 18.579± 1.021 16.154± 1.104 0.202

Model 2 18.365± 1.064 18.675± 1.022 16.194± 1.112 0.221

GPT (mg/dL) Crude 19.209± 14.249 20.373± 13.793 17.478± 9.842 0.378

Model 1 21.013± 1.886 21.034± 1.857 16.240± 2.008 0.144

Model 2 21.125± 1.945 21.047± 1.868 16.093± 2.033 0.131

AIP Crude 0.366± 0.236 0.362± 0.240 0.361± 0.272 0.990

Model 1 0.343± 0.034 0.403± 0.034 0.353± 0.036 0.449

Model 2 0.339± 0.035 0.404± 0.034 0.356± 0.036 0.434

CRI-I Crude 4.029± 1.206 4.194± 1.209 4.294± 2.100 0.542

Model 1 3.778± 0.118 3.998± 0.118 4.025± 0.125 0.292

Model 2 3.755± 0.122 4.010± 0.119 4.038± 0.127 0.062

CRI-II Crude 2.075± 0.531 2.132± 0.642 2.075± 0.580 0.765

Model 1 2.114± 0.080 2.191± 0.080 2.187± 0.085 0.760

Model 2 2.091± 0.083 2.202± 0.081 2.200± 0.086 0.593

AC Crude 3.029± 1.206 3.194± 1.209 3.294± 2.100 0.542

Model 1 2.778± 0.118 2.998± 0.118 3.025± 0.125 0.292

Model 2 2.755± 0.122 3.010± 0.119 3.038± 0.127 0.072

CHOLIndex Crude 47.976± 21.460 49.769± 23.040 46.492± 23.306 0.657

Model 1 50.947± 3.040 52.074± 3.048 52.674± 3.218 0.925

Model 2 50.027± 3.151 52.545± 3.075 53.180± 3.260 0.775

TyG index Crude 8.446± 0.478 8.466± 0.486 8.377± 0.494 0.516

Model 1 8.404± 0.068 8.517± 0.068 8.402± 0.072 0.434

Model 2 8403± 0.070 8.517± 0.069 8.404± 0.73 0.449

(Continued)

Frontiers inNutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2022.945591
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Hosseininasab et al. 10.3389/fnut.2022.945591

TABLE 3 Continued

Variables UPF consumption tertiles P-value

T1<383.681 T2 383.681– 467.713 T3>467.713

TyG-BMI Crude 261.876± 40.206 261.827± 41.224 255.425± 46.928 0.571

Model 1 253.760± 7.272 246.303± 7.625 254± 337± 8.691 0.586

Model 2 252.295± 7.491 265.151± 7.716 255.342± 8.813 0.510

TyG-WC Crude 810.989± 177.111 812.087± 135.178 791.246± 132.359 0.76

Model 1b 718.567± 26.978 838.143± 28.287 754.874± 32.243 0.057

Model 2b 741.185± 27.740 842.278± 28.573 760.139± 32.637 0.026

Inflammatory biomarkers

PAL-1 (mg/dl) Crude 20.265± 39.585 14.200± 24.731 13.319± 20.377 0.405

Model 1 31.411± 12.591 23.991± 15.100 5.875± 12.168 0.429

Model 2 47.091± 17.465 20.579± 18.555 9.139± 12.762 0.255

MCP1 (mg/dl) Crude 57.514± 94.785 54.332± 109.983 36.967± 54.657 0.389

Model 1 83.110± 28.588 52.148± 34.285 25.798± 27.629 0.301

Model 2 117.021± 40.136 57.515± 42.640 25.996± 29.328 0.224

TGF (ng/ml) Crude 74.436± 39.046 80.671± 61.1695 80.775± 41.250 0.733

Model 1 55.998± 10.530 78.067± 12.628 88.626± 10.177 0.295

Model 2c 49.350± 15.871 78.440± 16.862 88.086± 11.597 0.077

IL_1β (ng/ml) Crude 2.585± 0.895 2.745± 1.022 2.843± 0.927 0.647

Model 1 2.625± 0.274 3.010± 0.328 2.715± 0.264 0.538

Model 2 2.307± 0.418 3.052± 0.445 2.708± 0.306 0.580

hs_CRP (mg/l) Crude 4.300± 4.624 4.219± 4.641 4.480± 4.773 0.942

Model 1b 3.905± 0.727 1.385± 0.871 6.109± 0.702 0.001

Model 2 b 3.972± 1.006 0.566± 1.069 6.390± 0.735 0.001

AC, atherogenic coefficient; BFM, body fat mass; BF, body fat; FFM, fat-free mass; FMI, fat mass index; FFMI, fat-free mass index;WC, waist circumference;WHR,Waist-to-Hip Ratio; NC,

Neck circumference; IL-1β, interleukin-1 beta; MCP-1, monocyte chemoattractant protein-1; CRI, Cardiac risk index; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; FBS,

Fasting Blood Sugar; TG, Triglyceride; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; GPT, Glutamic-pyruvic transaminase; GOT, Glutamic-oxaloacetic transaminase;

PAI-1, plasminogen activator inhibitor- 1, TF, Trunk Fat, VFA, Visceral fat area, VFL, Visceral fat level, SD Standard deviation; hs-CRP, high sensitive- C reactive protein; TC, Total

cholesterol; AIP, Atherogenic index of plasma; TyG, Triglyceride-glucose; TGF, Transforming growth factor.

Quantitative variables were shown by means± SD and categorical variables were shown by number (%).

P-values resulted from one-way ANOVA analysis and thechi-squared test. A p-value < 0.05 was considered significant and p-values equal to 0.05, 0.06, and 0.07 were considered

marginally significant.

*P-values resulted from ANCOVA analysis and were adjusted.

Model 1: Adjusted for age, BMI, physical activity, total energy intake, supplements intake, and job status (BMI consider as a collinear variable).

Model 2: Additionally controlled for the effect of vegetables and legumes.

The Bonferroni post-hoc test was used to investigate differences between tertiles, significant difference between two means with p<0.05. 0.05, and 0.06 considered as marginally significant.
aSignificant difference was seen between T1 and T2.
bSignificant difference was seen between T2 and T3.
cSignificant difference was seen between T1 and T3.

processed meat (fast food) (P = 0.001), oil (sauce group) (P =
0.005), sweet (P = 0.001) were statistically different among UPF

tertiles, with it being higher in the third tertile. With increasing

UPF consumption, non-dairy beverages, cookies (cakes), dairy

beverages, potato chips (salty), processed meat (fast food), oil,

sauce, and sweet have increased in the crude and adjustedmodel.

CVD risk factors among the UPF tertiles

The association of CVD risk factors among UPF

consumption tertiles is shown in Table 3. UPF consumption

was associated with the HOMA–IR index (P = 0.024), hs-CRP

(P = 0.001), and TYG–WC (P = 0.026). On the contrary, it was

marginally associated with the markers TGF (P = 0.077), AC (P

= 0.072), CRI-1 (P = 0.062), and NC (P = 0.068).

Association between UPF consumption
and CVD risk factors, anthropometric
measurements, body composition,
biochemical variables, and inflammatory
factors

Association between UPF consumption and CVD risk

factors, anthropometric measurements, body composition,
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TABLE 4 Association between NOVA score and CVD risk factors, anthropometric measurements, body composition, biochemical variables, and

inflammatory factors in obese and overweight women (n = 391).

Variables NOVA score P-value P-value*

β (SE) CI (95%)

Body composition

FFM (Kg) Crude −0.001 (0.002) −0.005, 0.003 0.682 -

Model 1 −0.004 (0.004) −0.011, 0.003 - 0.278

Model 2 −0.004 (0.004) 0.001, 0.001 - 0.056

FFMI Crude −0.004 (0.003) −0.009, 0.001 0.115 -

Model 1 −0.001 (0.001) −0.003, 0.001 - 0.201

Model 2 −0.001 (0.001) −0.003, 0.001 - 0.376

FMI Crude −0.004 (0.001) −0.014, 0.006 0.427 -

Model 1 0.001 (0.002) −0.005, 0.004 - 0.878

Model 2 −5.286 (0.002) −0.004, 0.004 - 0.981

BF (%) Crude 0.003 (0.002) −0.001, 0.007 0.148 -

Model 1 0.001 (0.004) −0.006, 0.008 - 0.768

Model 2 0.001 (0.004) −0.006, 0.008 - 0.768

BFM (Kg) Crude 0.006 (0.003) −0.001, 0.013 0.084 -

Model 1 −0.002 (0.006) −0.013, 0.009 - 0.719

Model 2 −0.002 (0.006) −0.014, 0.009 0.658

TF (kg) Crude 0.002 (0.001) 0.001, 0.005 0.097 -

Model 1 −0.001 (0.002) −0.005, 0.004 - 0.812

Model 2 −0.001 (0.002) −0.006, 0.004 - 0.709

TF (%) Crude 0.035 (0.028) −0.020, 0.089 0.213 -

Model 1 0.001 (0.044) −0.086, 0.088 - 0.988

Model 2 −0.005 (0.045) −0.094, 0.083 - 0.904

VFA (CM2) Crude 0.028 (0.037) −0.044, 0.100 0.442 -

Model 1 −0.005 (0.082) −0.168, 0.157 - 0.951

Model 2 −0.007 (0.085) −0.174, 0.159 - 0.930

VFL Crude 0.002 (0.005) −0.007, 0.012 0.647 -

Model 1 0.005 (0.011) −0.017, 0.028 - 0.651

Model 2 0.006 (0.012) −0.017, 0.029 - 0.076

Biochemical variables

Insulin (mIU/ml) Crude −6.160 (0.001) 0.001, 0.001 0.617 -

Model 1 0.001 (0.001) −0.001, 0.000 - 0.230

Model 2 0.001 (0.001) 0.001, 0.001 - 0.273

HOMA_IR Crude 0.001 (0.001) −0.0002, 0.001 0.671 -

Model 1 −2.096 (0.001) −0.002, 0.002 - 0.981

Model 2 0.001 (0.001) 0.001, 0.033 - 0.055

QUICKI (mg/lit) Crude −1.731 (0.001) 0.001, 0.001 0.205 -

Model 1 −4.306 (0.001) −0.001, 0.001 - 0.720

Model 2 −3.775 (0.001) 0.001, 0.001 - 0.042

hs-CRP (mg/l) Crude 0.001 (0.003) −0.005, 0.005 0.962 -

Model 1 0.001 (0.003) −0.006, 0.007 - 0.875

Model 2 0.001 (0.003) −0.006, 0.007 - 0.916

FBG (mg/dL) Crude −0.004 (0.005) −0.014, 0.006 0.427 -

Model 1 −0.004 (0.006) −0.017, 0.009 - 0.506

Model 2 −0.006 (0.007) −0.020, 0.007 - 0.335

SBP (mmHg) Crude −0.012 (0.007) −0.027, 0.002 0.102 -
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TABLE 4 Continued

Variables NOVA score P-value P-value*

β (SE) CI (95%)

Model 1 −0.015 (0.008) −0.032, 0.002 - 0.032

Model 2 0.017 (0.008) −0.001, 0.020 - 0.148

DBP (mmHg) Crude −0.008 (0.005) −0.018, 0.002 0.134 -

Model 1 −0.004 (0.086) −0.016, 0.008 - 0.503

Model 2 −0.007 (0.006) −0.019, 0.005 - 0.236

TC (mg/dL) Crude 0.003 (0.019) −0.036, 0.041 0.893 -

Model 1 0.012 (0.022) −0.032, 0.055 - 0.598

Model 2 0.020 (0.022) −0.024, 0.064 - 0.073

TG (mg/dL) Crude 0.003 (0.032) −0.060, 0.067 0.916 -

Model 1 0.031 (0.042) −0.052, 0.115 - 0.456

Model 2 0.041 (0.043) −0.044, 0.126 - 0.344

HDL

(mg/dL)

Crude −0.005 (0.006) −0.016, 0.006 0.391 -

Model 1 −0.004 (0.007) −0.017, 0.010 - 0.588

Model 2 −0.002 (0.007) −0.016, 0.011 - 0.720

LDL

(mg/dL)

Crude −0.010 (0.013) −0.036, 0.015 0.433 -

Model 1 −6.043 (0.015) −0.030, 0.030 - 0.997

Model 2 0.007 (0.016) −0.024, 0.038 - 0.662

GOT (mg/dL) Crude −0.004 (0.004) −0.012, 0.0003 0.274 -

Model 1 −0.007 (0.005) −0.017, 0.003 - 0.167

Model 2 −0.006 (0.005) −0.017, 0.004 - 0.245

GPT (mg/dL) Crude −0.006 (0.007) −0.020, 0.008 0.391 -

Model 1 −0.016 (0.009) −0.034, 0.003 - 0.097

Model 2 −0.015 (0.010) −0.034, 0.004 - 0.117

PAI-1 (mg/dL) Crude −0.019 (0.022) −0.063, 0.025 0.401 -

Model 1 −0.012 (0.033) −0.077, 0.053 - 0.705

Model 2 −0.005 (0.033) −0.071, 0.061 - 0.883

MCP1 (mg/dL) Crude −0.047 (0.052) −0. 15, 0.055 0.363 -

Model 1 −0.041 (0.072) −0.184, 0.102 - 0.570

Model 2 −0.039 (0.073) −0.184, 0.107 -

TGF (mg/dL) Crude 0.034 (0.036) −0.038, 0.106 0.106

Model 1 0.092 (0.038) 0.016, 0.167 - 0.018

Model 2 0.101 (0.040) 0.023, 0.180 - 0.012

IL-1 β (mg/dL) Crude 0.001 (0.001) −0.001, 0.003 0.250 -

Model 1 0.001 (0.001) −0.002, 0.003 - 0.596

Model2 0.001 (0.001) −0.001, 0.003 - 0.060

AIP (mg/dL) Crude 2.472 (0.001) 0.001, 0.01 0.853 -

Model 1 0.001 (0.001) 0.001, 0.001 - 0.482

Model2 0.001 (0.001) −0.001, 0.011 - 0.072

CRI-I Crude 0.001 (0.001) −0.001, 0.002 0.476 -

Model 1 0.001 (0.001) −0.001, 0.002 - 0.277

Model2 0.001 (0.001) −0.001, 0.002 - 0.064

CRI-II Crude −3.679 (0.001) −0.001, 0.001 0.907 -

Model 1 0.001 (0.001) −0.001, 0.001 - 0.574

Model2 0.001 (0.001) 0.001, 0.001 - 0.431

AC Crude 0.001 (0.001) −0.001, 0.002 0.476 -
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TABLE 4 Continued

Variables NOVA score P-value P-value*

β (SE) CI (95%)

Model 1 0.001 (0.001) −0.001, 0.002 - 0.277

Model2 0.011 (0.001) 0.001, 0.032 - 0.034

CHOlIndex Crude −0.005 (0.012) −0.029, 0.019 0.688 -

Model 1 0.004 (0.015) −0.026, 0.033 - 0.811

Model2 0.009 (0.015) −0.021, 0.040 - 0.547

TyG Crude −6.963 (0.001) −0.001, 0.001 0.794 -

Model 1 0.001 (0.001) 0.001, 0.001 - 0.610

Model2 0.001 (0.001) 0.001, 0.001 - 0.501

TyG-BMI Crude 0.010 (0.023) −0.035, 0.055 0.648 -

Model 1 −0.012 (0.028) −0.67, 0.044 - 0.685

Model 2 −0.003 (0.029) −0.060, 0.054 - 0.917

TyG-WC Crude 0.061 (0.105) −0.146, 0.267 0.563 -

Model 1 −0.056 (0.177) −0.408, 0.296 - 0.752

Model 2 0.048 (0.188) −0.324, 0.421 - 0.797

AC, atherogenic coefficient; BFM, body fat mass; BF, body fat; FFM, fat-free mass; FMI, fat mass index; FFMI, fat-free mass index; IL-1β, interleukin-1 beta; MCP-1, monocyte

chemoattractant protein-1; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBS, fasting blood sugar; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density

lipoprotein; GPT, glutamic-pyruvic transaminase; GOT, glutamic-oxaloacetic transaminase; PAI-1, plasminogen activator inhibitor- 1, SD standard deviation; hs-CRP, high sensitive-

C reactive protein; TF, trunk Fat; VFA, visceral fat area; VFL, visceral fat level; TC, total cholesterol; AIP, Atherogenic index of plasma; TyG, Triglyceride-glucose; TGF, Transforming

growth factor; CRI: Cardiac risk index.

Model 1: Adjusted for age, BMI, physical activity, total energy intake, supplements intake, and job status (BMI considered as a collinear variable).

Model 2: In addition controlled for the role of vegetables and legumes.

*A P-value obtained from adjustment. All of the p-values obtained from the analysis of the linear regression.

A P < 0.05 was considered significant and p-values equal to 0.05, 0.06, and 0.07 were considered marginally significant.

biochemical variables, and inflammatory factors in crude and

adjusted models present with β-value and a 95% CI is shown

in Table 4. In the model 1, there was a significant association

between UPF consumption and TGF (β: 0.101, 95% CI: 0.023,

0.180, p = 0.012). Also, there was a significant association

between UPF consumption and AC (β: 0.011, 95%CI: 0.001,

0.032, p = 0.034), VLF (β: 0.006, 95% CI: −0.017, 0.029, p =
0.076), and ISQIUKI (β: −3.775, 95% CI: 0.001, 0.001, P =
0.042). With increasing one gram of UPF intake, AC increases

to 0.011, VFL increases by 0.006, and QUICKI is significantly

reduced by −3.775 mg/lit. The other variables in Table 3 had no

significant association.

Discussion

To the best of our knowledge, this is the first study

investigating the relationship between UPF intake and

cardiometabolic risk in overweight and obese Iranian women.

In the current study, we found an inverse association

between the NOVA score and FFM. In addition, we observed

a positive association between the NOVA score and VFL, AC,

the HOMA-IR-index, QUICKI, TC, TGF, IL-1B, and the CRI-

I levels. In other words, participants who had higher NOVA

scores and consumed higher amounts of UPF had higher levels

of VFL, AC, the HOMA-IR-index, QUICKI, TC, TGF, IL-1B,

and CRI-I. The positive association observed between UPFs and

mentioned markers might be partly explained by their poorer

nutritional quality compared with the NOVA scores’ lower

tertiles. In fact, UPFs tend to be higher in saturated fats, sugar,

and energy, and poorer in dietary fiber (5, 9, 21, 33). The positive

association between consumption of UPF and inflammatory

markers that have been seen among women may be explained

by the greater accumulation of body fat in women (34). In

line with our study, in 2021, a systematic review and meta-

analysis of 7 cohort studies (207,291 adults) showed a significant

positive association between UPF consumption and the risk of

CVDs among adults with a BMI of more than 25 kg/m2 (35).

Moreover, a recent narrative review study by Matos et al. (36)

concluded that the consumption of UPFs is positively associated

with the prevalence of chronic complications, including obesity,

hypertension, CVDs, type 2 diabetes, and consequently the risk

of all-cause mortality (36). The mechanism by which UPF is

associated with CVD is summarized in Figure 1.

In our study, individuals at higher tertiles of NOVA

(compared to tertile 1) had higher NC, AC, TyG-WC, HOMA-

IR-INDEX, CRI-I, TGF, and hs-CRP levels. Beslay et al., in

a large observational prospective study of 110,260 adults,

indicated that higher consumption of UPF was associated with

a gain in BMI and higher risks of overweight and obesity

(37). Also, a prospective cohort of healthy subjects in Italy

showed that adults in the highest quartile of UPF consumption
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FIGURE 1

UPFs have higher levels of saturated fats, sugar, salt, additives, calories, and lower nutritional quality. Consumption of UPFs is suggested to have

associations with obesity. Both obesity and consumption of UPFs could stimulate the whole chronic inflammation cascade and enhance the risk

of CVD and all-cause mortality.

had a higher risk of CVD (38). It is well known that adipose

tissue produces cytokines that induce inflammatory markers

production (39). Thus, the association between the consumption

of UPFs and the inflammatory response is expected to be mostly

dependent on adiposity. A cross-sectional study displayed that

there might be a direct association between consumption of

ultra-processed foods and CRP levels, under the assumption

that the high-glycemic index of these food products could

stimulate the whole chronic inflammation cascade, along with

an indirect association mediated by obesity. They suggest that

decreased consumption of UPFs can reduce chronic low-grade

inflammation, perhaps by reducing obesity (40).

In the present study, participants with higher NOVA scores

had higher consumption of cakes and sweets, processed meats,

and fast foods. Bonaccio et al., in 2021, indicated that a

high proportion of UPF in the diet was associated with an

increased risk of CVD and all-cause mortality, probably because

of its high dietary content of sugar (38). Rising evidence

suggests that the consumption of UPF products determined by

the low-nutritional quality and high-calorie content adversely

contribute to an unhealthy dietary pattern, which enhances the

risk of all-cause mortality as a substantial risk factor (36). In

addition, additives in such foods containing noncaloric artificial

sweeteners, emulsifiers, and thickening agents cause numerous

chronic disorders such as metabolic dysfunction, systemic

inflammation, endothelial dysfunction, and disrupted immune

response (41–43). More than that, synthetic compounds used

in the packaging of UPFs, such as bisphenol A, can act as
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xenohormones. Particularly, bisphenol A has been indicated to

impair reproductive function and augment the risk of cancer-

cause mortality (44, 45). Recently, a study conducted in the

US displayed that UPF consumption was related to increased

exposure to phthalates (44), which has suggested associations

with obesity (46). Some food additives specific to UPFs might

be involved in obesity etiology. For instance, saccharin, an

artificial sweetener, could potentiate glucose-stimulated insulin

release from isolated pancreatic β-cells (47), leading to insulin

resistance and possibly weight gain. Several emulsifiers (such as

carboxymethyl cellulose and polysorbate-80) induced metabolic

perturbations, alterations to the gut microbiota, and low-grade

inflammation in mice (48). Carrageenan, in the top 20 used

additives, might augment insulin resistance and inhibit insulin

signaling in mouse liver and human HepG2 cells (49, 50), which

might, in turn, induce weight gain (51). Trans fatty acids found

in UPFs containing hydrogenated oils have been associated

with cardiovascular disease (52) and obesity (53), apparently by

altering nutrient handling in the liver, the adipose tissues, and

the skeletal muscle (54). Acrylamide, a neo-formed compound

created during thermal processing of food as a result of the

Maillard reaction, was shown to induce adipocyte differentiation

and obesity in mice (55).

The present study possesses some strengths and limitations.

At first, to the best of our knowledge, this is the first study to

have evaluated the association between processed food intake

and CVD risk in overweight and obese Iranian women. Second,

dietary intake was assessed using a validated questionnaire.

Third, in the current study, we assessed several inflammatory

markers, other biochemical parameters, and body composition

as risk factors for CVD.

Nevertheless, despite these strengths, we must acknowledge

some limitations in the present study. First, the cross-sectional

nature of this study limited the ability to suggest a causal

relationship between UPF intake and the risk of cardiovascular

diseases. Second, some errors may be present in the dietary

assessment, mostly due to recall bias and misclassification

errors; to overcome such errors, we evaluated biomarkers

such as vitamin C to better capture individuals’ variability

in intakes. Third, our result may not be generalizable to

normal-weight women. At final, although we considered

known potential confounders, residual confounding cannot be

ruled out.

Conclusion

In conclusion, an increase of one gram ofUPFs consumption

is associated with an increase in TGF, AC, and VFL but

with a decrease in QUICKI. Higher consumption of UPF

is significantly associated with an enhanced risk of adult

inflammation and cardiometabolic risk factors. Further large

studies involving participants of different ages and genders are

highly warranted, in addition to experimental studies, to draw

a more definite conclusion and disentangle the mechanisms by

which UPFs may affect health.
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