
A Physiologically Based Pharmacokinetic Model of Isoniazid and Its
Application in Individualizing Tuberculosis Chemotherapy

Henrik Cordes, Christoph Thiel, Hélène E. Aschmann, Vanessa Baier, Lars M. Blank, Lars Kuepfer

Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany

Due to its high early bactericidal activity, isoniazid (INH) plays an essential role in tuberculosis treatment. Genetic polymor-
phisms of N-acetyltransferase type 2 (NAT2) cause a trimodal distribution of INH pharmacokinetics in slow, intermediate, and
fast acetylators. The success of INH-based chemotherapy is associated with acetylator and patient health status. Still, a standard
dose recommended by the FDA is administered regardless of acetylator type or immune status, even though adverse effects occur
in 5 to 33% of all patients. Slow acetylators have a higher risk of development of drug-induced toxicity, while fast acetylators and
immune-deficient patients face lower treatment success rates. To mechanistically assess the trade-off between toxicity and effi-
cacy, we developed a physiologically based pharmacokinetic (PBPK) model describing the NAT2-dependent pharmacokinetics
of INH and its metabolites. We combined the PBPK model with a pharmacodynamic (PD) model of antimycobacterial drug ef-
fects in the lungs. The resulting PBPK/PD model allowed the simultaneous simulation of treatment efficacies at the site of infec-
tion and exposure to toxic metabolites in off-target organs. Subsequently, we evaluated various INH dosing regimens in NAT2-
specific immunocompetent and immune-deficient virtual populations. Our results suggest the need for acetylator-specific dose
adjustments for optimal treatment outcomes. A reduced dose for slow acetylators substantially lowers the exposure to toxic me-
tabolites and thereby the risk of adverse events, while it maintains sufficient treatment efficacies. Vice versa, intermediate and
fast acetylators benefit from increased INH doses and a switch to a twice-daily administration schedule. Our analysis outlines
how PBPK/PD modeling may be used to design and individualize treatment regimens.

Although tuberculosis is a curable disease, about 9.6 million
individuals still fell ill with tuberculosis and about 1.5 million

people died from tuberculosis in 2014 (1). The World Health Or-
ganization (WHO) estimates that about one-third of the world’s
population is latently infected with Mycobacterium tuberculosis
and the lifetime risk of developing active tuberculosis lies between
5 and 15% (2). Tuberculosis is caused by the inhalation of M.
tuberculosis bacteria via airborne droplets spread by diseased indi-
viduals. The pathogen reaches the alveoli and distal airways in the
lung of the host, where it proliferates and infiltrates tissue. Mac-
rophages in the alveolar and interstitial space in the lung ingested
the bacteria, initiating a cascade of events resulting in either suc-
cessful containment of the infection or progression to active dis-
ease. An impaired immune system, such as that resulting from
HIV infection or the intake of immune-suppressive substances,
increases the susceptibility to the development of tuberculosis (3).

WHO recommends isoniazid (INH) as standard treatment for
tuberculosis either as a single agent, such as for prevention therapy
for latent tuberculosis and in HIV-infected individuals, or as a
comedication together with rifampin, pyrazinamide, and etham-
butol for the treatment of active pulmonary tuberculosis (2, 4).
Isoniazid is an antibiotic specific for M. tuberculosis and among
the first-line drugs used for the treatment of tuberculosis shows
the greatest early bactericidal activity (EBA) (5–7), which is usu-
ally measured as the average decline in the log number of CFU
(log10 number of CFU) in patient sputum samples during the first
days of treatment (8). In pulmonary tuberculosis, INH exposure
in the lungs determines the desired antimycobacterial activity.
Previous studies showed that low plasma INH concentrations
negatively affect treatment outcomes (9) and lead to longer treat-
ment response times, higher rates of treatment failure, and the
emergence of drug resistance (10, 11). Clinical observations linked
patient susceptibility to the trimodal pharmacokinetics (PK) of

INH, caused by the genetic polymorphisms of N-acetyltransferase
type 2 (NAT2) (12). Although various NAT2 polymorphisms are
known, patients can be categorized according to the number of
functional NAT2 alleles that they have into slow, intermediate,
and fast acetylator phenotypes (13). Besides acetylation, humans
metabolize INH into various compounds, some of which are
known to be toxic (14) (Fig. 1). Since the complex metabolism of
INH is mainly dependent on NAT2 pharmacogenomics, NAT2
polymorphisms alter the PK of the parent drug, INH, as well as the
PK of downstream metabolites, including the toxic compounds
hydrazine (Hz) and acetylhydrazine (AcHz).

While the therapeutic effect of INH is undisputed, adverse ef-
fects during INH therapy occur in 5 to 33% of all patients receiv-
ing standard oral INH treatment at 300 mg once a day (QD) (15).
These adverse events emerge from exposure to INH (16) and in
particular to its toxic metabolites, Hz and AcHz, in liver and brain
(17–19). Notably, both toxic metabolites are a substrate for NAT2
(20); thus, the enzyme is involved in both metabolite formation
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and subsequent detoxification. This results in an inevitable trade-
off between treatment efficacy and drug-induced toxicity in INH-
based chemotherapy. Although slow acetylators have an increased
risk of adverse reactions due to a higher exposure to toxic metab-
olites (21, 22) and fast acetylators, in turn, have to face reduced
treatment efficacies as a result of the lower plasma half-life of the
active drug (23, 24), patients still receive the same INH doses,
regardless of their acetylator or health status.

In the study described here, we used NAT2 acetylator-specific
physiologically based pharmacokinetic (PBPK) models of INH
and its metabolites to investigate the trade-off between treatment
efficacy and toxicity in INH-based chemotherapy. NAT2-specific
PBPK simulations were performed on a population scale to ana-
lyze various INH doses and treatment schedules with regard to the
risk-benefit ratios to be expected. PBPK models are in particular
well suited for mechanistic analyses, since different organs are
explicitly represented, allowing, among other things, estimation
of concentration-time profiles in various tissues (25). In our anal-
ysis, on-target INH exposure in the interstitial space of the lung as
well as intracellular exposure to the toxic metabolites Hz and
AcHz in off-target organs, such as the liver, were simultaneously
quantified. The established PBPK models were coupled with a
pharmacodynamic (PD) model (Fig. 2), accounting for the anti-
mycobacterial effect of INH on M. tuberculosis propagation in
human lungs. The resulting PBPK/PD model was used to system-
atically evaluate different INH dosing schedules for NAT2-specific
patient populations with a normal or an impaired immune sys-

tem. Based on our simulation results, we provide suggestions for
adjusted patient-specific dosing regimens that simultaneously
take into account the patients’ drug susceptibility and immune
status.

MATERIALS AND METHODS
Isoniazid PBPK model. An overview of the INH metabolism modeled is
shown in Fig. 1. INH is mainly acetylated by NAT2 (NAT2INH) to acetyli-
soniazid (AcINH). AcINH is then hydrolyzed by an unknown acetyliso-
niazid hydrolase into isonicotinic acid (INA) and acetylhydrazine (AcHz).
Here, we defined N-acylethanolamine acid amidase (NAAA) to be the
catalyst for this metabolization step (NAAAAcINH). INA is conjugated to

FIG 1 Isoniazid metabolism modeled in humans (67, 68), including enzy-
matic reactions (solid lines), renal excretion reactions (dashed lines), and
transport reactions (dotted lines).

FIG 2 Work flow of PBPK/PD model development. The references used for
model establishment and validation at the various steps are indicated. IV,
intravenous administration; PO, oral administration.
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glycine by an unknown transferase to form isonicotinylglycine (INAG).
On the basis of the chemical and structural similarity of INAG and hip-
puric acid, glycine-N-acyltransferase (GLYATINA) was assumed to cata-
lyze this reaction (26, 27). Due to its broad substrate spectrum (28), the
basolateral T-type amino acid transporter (SLC16A10) was used for active
INA and INAG transport (SLC16A10INA and SLC16A10INAG, respec-
tively). Besides the acetylation pathway, INH is directly converted into
INA and hydrazine (Hz) by an unknown INH hydrolase. Here, we also
assumed that NAAA catalyzed this reaction (NAAAINH), since the molec-
ular site of the reaction is the same as that in the hydrolysis of AcINH to
INA and AcHz. Hydrazine is acetylated by NAT2 (NAT2Hz) to AcHz,
which is further acetylated by NAT2 to diacetylhydrazine (DiAcHz) (29).

The PBPK model comprising INH and its metabolites (AcINH, INA,
INAG, AcHz, DiAcHz, and Hz), their metabolic reactions (NAT2INH,
NAT2Hz, NAT2AcHz, NAAAINH, NAAAAcINH, GLYATINA), active trans-
port reactions (SLC16A10INA, SLC16A10INAG), and urinary excretion re-
actions (INH, AcINH, INA, INAG, Hz, AcHz, and DiAcHz) was built
using the PBPK modeling software PK-Sim (version 6.0.3; Bayer Technol-
ogy Services GmbH, Leverkusen, Germany). Model parameter identifica-
tion and population simulations were conducted in MATLAB software
(version 8.5.0.197613; The MathWorks, Inc., Natick, MA) by use of the
MoBi toolbox for MATLAB (version 6.0.3; Bayer Technology Services
GmbH, Leverkusen, Germany). PK-Sim and MoBi are freely available for
noncommercial academic use. PK data were extracted from original pub-
lications with the WebPlotDigitizer web-based tool (version 3.9; Ankit
Rohatgi, Austin, TX, USA). The parameters provided in Tables 1 and 2
and in Table S1 in the supplemental material are sufficient to fully param-
eterize the PBPK models, such that all PK profiles of INH and its metab-
olites can be reproduced. The physicochemical properties (lipophilicity,
water solubility, molecular weight, and pKa values) of all modeled com-
pounds were calculated with MarvinSketch software (version 15.11.30.0;
ChemAxon Kft., Budapest, Hungary) and used to parameterize the basic
distribution model in PK-Sim. The INH fraction unbound (fu) in blood
was taken from the literature, while the unknown fu values of the down-
stream metabolites were estimated during model development (Table 1).

Data collection and generation of patient populations. PK data from
healthy volunteers and tuberculosis patients from different clinical studies
(Table 3) were used for model development and validation. Since no
comprehensive PK data set for both INH and all its considered metabo-
lites was available in the literature, we combined data sets from several
studies (30–32) and initially identified a set of kinetic and compound
parameters for slow acetylators (Tables 1 and 2 and Table S1 in the sup-
plemental material). Further, data from an oral administration study were
used to identify the intestinal absorption of INH (33). All other PK data
considered (29, 34–39) were used for subsequent model validation. For
each PK data set, patient anatomical and physiological characteristics as
well as the study design, including dose and administration intervals, were
specifically considered in the corresponding PBPK model.

For population simulations, mean patient PBPK models were used. A
virtual population of a mean PBPK model was created by varying anatom-
ical and physiological parameters (40) for 1,000 individuals (see Table S2
in the supplemental material).

Pharmacodynamics of isoniazid against M. tuberculosis. The PD
model describes the change in mycobacterial growth, due to the exposure
to INH in the interstitial space of the lung with an additional contribution
of the immune system (equation 1).

dN(t)

dt
� N0 · [� � �0 � �(C, Emax, MIC, Km)] (1)

where N is the number of bacteria, t is time, N0 is the initial bacterial load
of M. tuberculosis, C is the time-dependent concentration of unbound
INH in the interstitial space of the lung obtained from PBPK model sim-
ulations, Emax is the maximal antimicrobial effect of INH, MIC is the MIC
of INH taken from the literature (41) and represents a threshold for the
INH concentration needed to achieve an antimycobacterial effect, and Km

is the INH concentration at which half the maximal antimicrobial effect is
reached. To obtain the uninhibited mycobacterial growth in humans (�),
the growth rate of M. tuberculosis in sputum derived from untreated tu-
berculosis patients (23) was multiplied by the growth rate ratio in wild-
type mice (immunocompetent) and immune-deficient mice infected with
M. tuberculosis via the tail vein (42), therefore accounting for the immune
response of the host. The contribution of the immune system to antimy-
cobacterial inhibition (�0) was estimated during the exponential growth
phase in in vivo experiments in mice and humans (5–7, 23, 42–46). A
detailed description of the calculation of � and �0 can be found in the
supplemental material. The INH-induced killing (�) was modeled as a
previously described inhibitory sigmoidal Emax model (47), given by
equation 2:

�(Emax, C, MIC, Km) �
Emax · �C ⁄ MIC�h

Kmh � �C ⁄ MIC�h
(2)

where h is Hill’s constant describing the sigmoidicity of the inhibition
curve and the other terms are as defined above. Coupling of the two model
equations, equation 2 and equation 1, yields

dN(t)

dt
� N0 · �� � �0 �

Emax · �C ⁄ MIC�h

Kmh � �C ⁄ MIC�h� (3)

The pharmacodynamics of immunocompetent and immune-deficient
patients can be simulated with equation 3. To account for immune defi-
ciency, �0 is replaced by �* � �0 · d, where d accounts for the strength of
the immune response in an individual (the value of d ranges from 1 for a
fully immunocompetent individual to 0 for a fully immune-deficient in-
dividual). This allows the various stages of severity of immune defi-
ciency, such as those encountered during the progression of HIV in-
fection, to gradually be described. Immune-deficient populations were
generated by sampling d from a uniform distribution to equally ac-
count for the various severity stages. The parameters of d used for the

TABLE 2 Kinetic parameters for metabolic reactions of INH PBPK
model

Enzymatic
reaction

Vmax (�mol · liter�1 · min�1)

Km (�mol ·
liter�1)

All
subjects

Slow
acetylators

Intermediate
acetylators

Fast
acetylators

NAT2INH 50 225 400 1,950
NAT2Hz 6 27 48 320
NAT2AcHz 0.5 2.25 4 10
NAAAINH 4 2,000
NAAAAcINH 3 500
GLYATINA 0.25 10
SLC16A10INA 15 300
SLC16A10INAG 1 10

TABLE 1 Physicochemical parameters for INH and its metabolites

Compound
Mol wt
(g · mol�1)a log Pa fu pKa/pKb

a

Solubility
(g · liter�1)
at pH 7.4a

Isoniazid 137.14 �0.67 0.9b 13.61/2.36, 3.36 42.15
Acetylisoniazid 179.18 �0.9 0.7c 11.43/9.04, 3.19 25.51
Isonicotinic acid 123.11 0.4 0.95c 3.73/2.35 5,326
Isonicotinylglycine 180.16 �0.7 0.95c 1.21/2.76, 3.88 2,400
Hydrazine 32.05 �1.96 0.99c �/5.4, 3.71 200
Acetylhydrazine 74.08 �1.33 0.98c 13.18/3.28 4,183
Diacetylhydrazine 116.12 �1.62 0.99c 12.14, 10.83/� 125.76
a Estimated; log P, partition-coefficient; pKa, acid dissociation constant; pKb, base
dissociation constant.
b Taken from reference 69.
c Identified from parameter optimization.
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immune-deficient populations can be found in Table S3 in the supple-
mental material.

Clinical indices. Clinical indices were used to describe treatment effi-
cacy (E) at the site of infection in the lungs and the toxicity (T) induced in
the off-target organ evaluated, the liver, due to the exposure to toxic me-
tabolites. Both were calculated for each individual in all populations rel-
ative to benchmarks, which were the treatment efficacy and toxicity for a
corresponding individual with a slow acetylation phenotype receiving the
recommended standard regimen of 300 mg INH QD over 2 days of treat-
ment (100%).

For each individual i in a virtual population of genotype g receiving dose d
in administration interval a, the EBA was estimated from the PBPK/PD
model by equation 3. The treatment efficacy relative to that for the same
individual i (Ei) who was a slow acetylator receiving the standard dose of 300
mg INH in a QD dosing regimen was than derived by equation 4:

Ei �
a
gEBAi

d

QD
slowEBAi

300mg (4)

Analogously to treatment efficacy, the toxicity index for individual i (Ti)
was calculated for each individual in all virtual populations by equation 5.
The toxicity index is a measure of the toxic events experienced due to
exposure to the toxic metabolites Hz and AcHz. Exposure to the two toxic
metabolites Hz and AcHz was defined as the area under the concentra-
tion-time curve (AUC) in the intracellular space in the off-target organ,
the liver, and was estimated from the PBPK model.

Ti �
�a

gAUC(Hz)i
d � a

gAUC(AcHz)i
d�

�QD
slowAUC(Hz)i

300mg � QD
slowAUC(AcHz)i

300mg�
(5)

Both clinical indices can exceed 100%, if a combination of dose and acet-
ylator phenotype results in a larger EBA after 2 days of treatment for
treatment efficacy or higher exposure to toxic metabolites for the toxicity
index. Negative values of treatment efficacy can occur if mycobacterial
growth (�) exceeds the antimycobacterial effects of immune-dependent
killing (�0, �*) and INH-induced killing (�).

RESULTS
PBPK model development. By following the model development
work flow outlined in Fig. 2, a PBPK model of intravenously ad-
ministered INH and its metabolites (AcINH, INA, INAG, AcHz,
DiAcHz) for slow acetylators was first established (Fig. 3A to D).
The metabolization reactions of INH and its metabolites (Fig. 1)
were described by Michaelis-Menten kinetics. Since no compre-
hensive PK data set for INH and all of its metabolites has been
published to date, data from several studies (30–32) were com-
bined. Physicochemical parameters, such as lipophilicity, the frac-

tion unbound, and molecular weight, were used to parameterize
the basic distribution model (25). Fine-tuning of these parame-
ters, as well as identification of the kinetic parameters in the Mi-
chaelis-Menten equations (Km, maximum rate of metabolism
[Vmax]), was subsequently done by minimizing the error between
the simulated and observed plasma concentration-time profiles
and urinary excretion ratios of INH and its metabolites. Notably,
all of the PK data used for model establishment were taken from
the initial data set for slow acetylators comprising data on the PK
profiles for single patients and population means. After parameter
identification, the simulated PK profiles were in good agreement
with the experimental data for slow acetylators (correlation coef-
ficient [R2] � 0.58, P � 0.001) (Fig. 3A to D). All model parame-
ters are given in Tables 1 and 2 and in Table S1 in the supplemental
material.

Next, an model for intravenous administration in fast acetyla-
tors was developed on the basis of the initially identified set of
parameters. Following earlier work (48), we hypothesized that
polymorphisms in NAT2 change the catalytic enzyme activity and
may be sufficient to explain the altered INH PK in the patients
with the fast acetylator phenotype. Therefore, the catalytic activi-
ties (Vmaxs) of NAT2-catalyzed reactions (Fig. 1) were changed by
use of a constant factor, while all other model parameters were
kept constant during the following analyses. We found that an
8-fold increase in NAT2 catalytic activity is sufficient to obtain
accurate descriptions of the PK profiles of both INH and its me-
tabolites (AcINH, INA, and INAG) in fast acetylators (R2 � 0.94,
P � 0.001) (30, 31) (see Fig. S2A to C in the supplemental mate-
rial). Hence, adjustment of a single parameter (Vmax) was enough
to explain the differences in PK between slow and fast acetylators,
as such, meeting the expectations from clinical practice.

On the basis of all previously identified parameters in the PBPK
model for intravenously administered INH, a PBPK model for
orally administered INH for slow and fast acetylators was built.
Only the intestinal permeation of INH was adjusted to account for
the changed route of administration. The intestinal permeation
parameter was found to be 1 � 10�4 cm · min�1, which is well
within the range of experimentally determined values from in
vitro studies (1.2 � 10�6 cm · min�1) (49) and in vivo studies
(9.2 � 10�4 cm · min�1) (50) in rats. To validate our model, we
next estimated the catalytic activity of intermediate acetylators in
the models of oral treatment by using the arithmetic mean of the

TABLE 3 Human PK studies considered for model establishment and validation

Routea Dose Genotypeb Measured biomarker(s) Sample Reference Usec

i.v. 8.38, 9.87 mg · kg�1 FF, SS INH, AcINH, INA, INAG Blood, urine 30 E/V
i.v. 5 mg · kg�1 FF, FS, SS INH, AcINH, INA, INAG Blood, urine 31 E
i.v. 10 mg · kg�1 SS INH, AcINH, AcHz, DiAcHz Blood 32 E
p.o. 300 mg FF, FS, SS INH, AcINH Blood 33 E/V
p.o. 300, 600, 900 mg FF, FS INH Blood 34 V
p.o. 4.75, 4.68 mg · kg�1 FF, SS INH, Hz Blood 35 V
p.o. 300 mg FF, SS INH, AcHz Blood 36 V
p.o. 300 mg FF, SS AcHz, DiAcHz Blood 37 V
p.o. 300 mg FF, SS INH, AcINH, AzHz, DiAcHz Blood 38 V
p.o. 5 mg · kg�1 FF, SS INH, AcINH, INA, INAG Urine 39 V
p.o. 20 mg · kg�1 FF, SS INH, AcINH, INA, INAG, AcINH, DiAcHz Urine 29 V
a i.v., intravenous; p.o., oral.
b FF, fast acetylator; FS, intermediate acetylator; SS, slow acetylator.
c E, establishment; V, validation.
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catalytic activity of slow and fast acetylators, as already demon-
strated in a previous study for statin pharmacogenomics (48). The
PK profile of the intermediate acetylator was hence a pure predic-
tion. As for the previous PBPK models, we found a good correla-
tion between the simulated and observed PK profiles (33) for INH
(Fig. 4A) and AcINH (Fig. 4B) (R2 � 0.93, P � 0.001), indicating
the structural correctness of the PBPK model with oral adminis-
tration.

Next, the model with oral administration was further validated
for different doses for fast (300 mg, 600 mg, 900 mg) and inter-
mediate (300 mg) acetylators (34), which were not considered
during the previous model validation steps. The simulated PK
profiles of INH were in good agreement with the experimental
data (R2 � 0.94, P � 0.001) (see Fig. S3 in the supplemental ma-
terial), as such, further supporting the validity of the PBPK model
of INH. Further, experimental PK data were used to additionally
verify the metabolite PK predictions (29, 34–39) (Table 4; see also
Fig. S5 to S8 in the supplemental material).

Population PBPK simulations. Representative anatomical
and physiological parameters of the PBPK models, such as organ

weights, blood flow rates, and tissue compositions, were varied
next (40) (see Fig. S2 in the supplemental material) to perform
simulations with virtual populations of slow acetylators (see Fig.
S4A and D in the supplemental material), intermediate acetylators
(see Fig. S4B and E in the supplemental material), and fast acety-
lators (see Fig. S4C and F in the supplemental material). Notably,
the model could correctly predict that the population median
concentrations of INH and AcINH and the experimentally mea-
sured deviations were well within the simulated interquartile
range.

PBPK/PD model development. Having established and vali-
dated a PBPK model for the description of INH pharmacokinet-
ics, we next addressed the efficacy and toxicity of INH therapies.
The PBPK model for oral administration was therefore coupled
with a pharmacodynamic (PD) model of mycobacterial growth in
human lungs to analyze the influence of the NAT2 phenotype,
INH dose, and administration intervals on the efficacy and toxic-
ity of INH-based tuberculosis treatment. The efficacy of INH for
tuberculosis chemotherapy was the result of INH exposure in the
human lungs, the site of infection. Simulated profiles of the con-

FIG 3 Results of simulation with the initial PBPK model for intravenously administered INH in slow acetylators. The plasma concentration profiles of INH and
its metabolites are shown. Simulations are shown as lines, and experimental data are shown as symbols. (A) Simulated and observed (30) PK of INH; (B)
simulated and observed (30) renal excretion as a fraction of the INH dose for AcINH, INA, and INAG; (C) simulated and observed (31) PK of INH, AcINH, INA,
and INAG; (D) simulated and observed (32) PK of INH, AcINH, AcHz, and DiAcHz.
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centration of unbound INH in the interstitial space of the lung, as
such, representing on-target drug exposure, were used as the ef-
fective drug input for the PD model (equation 3). A sigmoidal
Emax model was used (47) to describe the isoniazid-induced inhi-
bition of mycobacterial growth. The model also takes the antibac-
terial contribution of the immune system into account (see Mate-
rials and Methods). The resulting PBPK/PD model allows
simulation of the isoniazid-induced inhibition of mycobacterial
growth in the interstitium of the lung of an infected patient. In
particular, the effects of different cofactors, such as the adminis-
tered dose, dosing schedules, NAT2 acetylator phenotype, and
immune status, can thereby be simultaneously taken into account.
The PD model parameters used are listed in Table 5. The interplay
between PBPK and PD simulations with a dose of 600 mg INH QD
is exemplarily shown in Fig. 5A. The predicted EBA in slow, inter-
mediate, and fast acetylators receiving INH as a 600-mg, 300-mg,

150-mg, 75-mg, 37.5-mg, or 9-mg QD dosing regimen showed a
good overall correlation with the observed data (R2 � 0.6, P �
0.001) (Fig. 5B).

Patient immune status. The impact of different INH therapies
in terms of the administered dose or treatment schedule can be
immediately tested with the described PBPK/PD model. Different
acetylator phenotypes can be explicitly considered, such that the
therapeutic success to be expected can be specifically simulated.
Patient immune status can also be easily taken into account, since
the contribution of the host immune response to antimycobacte-
rial activity is explicitly considered in the PD model (see Materials
and Methods). Immune deficiency due to comorbidities, such as
HIV infections or comedication with immune-suppressant drugs,
is a potentially disadvantageous condition during isoniazid-based
therapies for tuberculosis (3). In addition to immunocompetent
individuals, we also considered immune-deficient patients in our
analysis. For an immune-deficient individual, the antimicrobial
inhibition mediated by the immune system is reduced. For the
virtual population, simulations of immune-deficient individuals
at various stages of immune deficiency were included to account
for comorbidities (see Materials and Methods). In the following
analysis, the impact of different daily INH doses (range, 9 mg to
1,200 mg) and two dosing schedules (QD and twice a day [BID])
on treatment efficacy for slow, intermediate, and fast acetylators in
immunocompetent and immune-deficient populations was sys-
tematically analyzed.

Clinical indices. An ideal therapy provides maximal treatment
efficacy with minimal toxicity. In INH-based tuberculosis chemo-
therapy, known side effects, such as jaundice and peripheral neu-
ropathy, occur in the liver and brain, respectively. These side ef-
fects are most likely caused by exposure to the toxic INH
metabolites Hz and AcHz (17–19). To identify optimal INH dos-
ing regimens for each NAT2 acetylator phenotype, we assessed the
on-target efficacy (Fig. 6A and B) in the lungs and off-target tox-
icity (Fig. 6C) in the liver. On the basis of the findings, the result-
ing trade-off (Fig. 6D) in INH-based tuberculosis chemotherapy
was assessed. The treatment efficacy of each dosing regimen rela-
tive to the treatment efficacy achieved in slow acetylators receiving
the recommended regimen of an oral dose of 300 mg INH QD was
calculated (equation 4). The toxicity index was considered analo-
gously. Here, exposure (i.e., the AUC) to the toxic metabolites Hz
and AcHz in the liver was used (equation 5).

Treatment efficacy. The treatment efficacy for each individual
in the virtual population of immunocompetent and immune-de-
ficient patients in the slow, intermediate, and fast acetylator
groups was simulated for oral INH doses ranging from 9 mg to
1,200 mg. The INH doses administered to intermediate and fast
acetylators were simulated as QD (Fig. 6A) and BID (Fig. 6B)
regimens. For slow acetylators, BID administration was not con-
sidered since INH exposure was already the highest compared to
that for the intermediate and fast acetylators. As expected, for all
acetylator phenotypes, treatment efficacy increased with higher
doses for doses ranging from 9 mg to 1,200 mg for both QD and
BID administration (Fig. 6A and B), irrespective of patient im-
mune status. In contrast to the treatment efficacy for slow acety-
lators, treatment efficacies were lower for the intermediate and
fast acetylators in both the immunocompetent and immune-de-
ficient populations. The average treatment efficacies for immune-
deficient intermediate and fast acetylator populations receiving
300 mg INH QD were 44.2%, and 28.2%, respectively, compared

FIG 4 Validation of NAT2 phenotype-dependent INH (A) and AcINH (B)
PK. Results of a simulation with a QD oral dose of 300 mg INH are shown as
lines, and experimental data (50) are shown as symbols.
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to the treatment efficacy for the benchmark population, slow
acetylators receiving 300 mg INH QD. Reduction of the adminis-
tered dose to 150 mg QD maintained 84.1% of the original treat-
ment efficacy in immunocompetent slow acetylators. The simu-
lated treatment efficacy for intermediate and fast acetylators could
be significantly increased when higher doses were considered, as
such, compensating for the higher INH clearance in these sub-
groups. However, for intermediate and fast acetylators, even the
highest tested INH dose of 1,200 mg in a QD regimen resulted in
only 90% and 57.6% of the benchmark treatment efficacy, respec-
tively. For immune-deficient populations, the treatment efficacies
achieved were even lower: 81.4% and 48% of the benchmark treat-
ment efficacy for intermediate and fast acetylators, respectively.

Besides higher INH dosages, increased treatment efficacy
could be achieved by changing the administration schedule from
QD to BID. A 600-mg INH BID regimen (300 mg 2 times a day,
every 12 h) for an immunocompetent intermediate acetylator
population resulted in 92.8% of the benchmark treatment effi-
cacy. The 1,200-mg BID regimen achieved 87.4% of the bench-
mark treatment efficacy in fast acetylators in the immunocompe-

tent population, while it achieved 84% and 78.4% of the
benchmark treatment efficacy in intermediate and fast acetylators
in the corresponding immune-deficient population, respectively.

Our PBPK/PD simulations showed that bisecting the daily
INH dose for slow acetylators maintained 84.1% of the bench-
mark treatment efficacy. However, for an immune-deficient fast
acetylator population, even a 4-fold increase of the QD INH dose
up to 1,200 mg QD reached only 48% of the benchmark treatment
efficacy. Notably, for this population, a switch from a 300-mg QD
dosing regimen (which achieved 17.3% of the benchmark treat-
ment efficacy) to a 300-mg BID dosing regimen (which achieved
45.4% of the benchmark treatment efficacy) had a larger impact
on treatment efficacy than doubling of the administered QD dose
to 600 mg (which achieved 24.7% of the benchmark treatment
efficacy) (Fig. 6A and B).

Toxicity index. The toxicity index was simulated for INH
doses ranging from 9 mg to 1,200 mg in slow, intermediate, and
fast acetylator populations. Here, only immunocompetent pa-
tients were considered, since the immune status has no influence
on INH PK (51). For intermediate and fast acetylators, the admin-
istered INH doses were simulated as QD and BID dosing regi-
mens. Our simulations showed higher levels of exposure to the
toxic metabolites Hz and AcHz in the intracellular liver compart-
ment for slow acetylators than for intermediate and fast acetyla-
tors at all doses tested (Fig. 6C).

The average toxicity indices of the slow, intermediate, and fast
acetylator populations receiving 300 mg INH QD were 100%,
34.2%, and 18.4%, respectively. Bisecting the standard regimen to
150 mg QD for slow acetylators resulted in less than half (46.4%)
of the benchmark toxicity. Intermediate acetylators receiving 600
mg INH QD reached a toxicity index of 81.2%, while BID admin-
istration resulted in a toxicity index of 68.6%. In fast acetylators,

TABLE 4 PBPK model validation results

Routea

No. of
subjects Dose NAT2b

Pearson correlation coefficient (RMSDc)

ReferenceINH AcINH INA INAG Hz AcHz DiAcHz

i.v. 1 8.38 mg · kg�1 FF 0.99 (0.77) 30
i.v. 1 9.87 mg · kg�1 SS 0.98 (0.32) 30
i.v. 6 5 mg · kg�1 SS 0.82 (0.12) 0.99 (0.16) 0.82 (0.98) 0.19 (0.91) 31
i.v. 13 5 mg · kg�1 FS 0.95 (0.09) 0.96 (0.18) 0.72 (0.61) �0.21 (0.66) 31
i.v. 2 5 mg · kg�1 FF 1 (0.03) 0.98 (0.12) 0.9 (0.55) 0.33 (0.7) 31
i.v. 1 10 mg · kg�1 SS 0.99 (0.73) 0.91 (4.34) �0.04 (1.27) 0.02 (0.45) 32
p.o. 8 300 mg SS 0.97 (0.14) 0.75 (0.54) 33
p.o. 8 300 mg FS 0.98 (0.28) 0.79 (0.21) 33
p.o. 8 300 mg FF 0.97 (0.18) 0.91 (0.34) 33
p.o. 8 300 mg FS 0.99 (0.32) 34
p.o. 8 300 mg FF 0.99 (2) 34
p.o. 8 600 mg FF 1 (0.37)
p.o. 8 900 mg FF 0.97 (0.48)
p.o. 11 4.75 mg · kg�1 SS 0.7 (0.35) 0.28 (0.83) 35
p.o. 15 4.68 mg · kg�1 FF 0.93 (0.37) 0.7 (0.63) 35
p.o. 3 300 mg SS 0.83 (0.31) 0.7 (0.82) 36
p.o. 2 300 mg FF 0.66 (0.52) 0.21 (0.61) 36
p.o. 3 300 mg SS 0.71 (0.77) 0.85 (0.46) 37
p.o. 3 300 mg FF 0.75 (0.89) 0.72 (0.77) 37
p.o. 1 300 mg SS 0.94 (0.66) �0.09 (0.96) 0.89 (0.6) 0.89 (0.83) 38
p.o. 1 300 mg FF 0.98 (0.31) �0.06 (1.87) 0.003 (0.66) 0.2 (0.73) 38
a i.v., intravenous; p.o., oral.
b FF, fast acetylator; FS, intermediate acetylator; SS, slow acetylator.
c RMSD, root mean square deviation.

TABLE 5 PBPK/PD model parameters

Parameter Value Reference(s) or source

N0 10 log10 CFU · liter�1 Arbitrary
� 0.048 · day�1 (5, 6, 23, 43–46)a

�0 0.0219 · day�1 (42, 70)a

Emax 0.534 · day�1 Fitted
Km 25.19 �mol · liter�1 Fitted
h 0.56 Fitted
MIC 1.46 �mol · liter�1 41
a A detailed calculation is provided in the supplemental material.
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600 mg INH QD resulted in a toxicity index of 42.2%. The toxicity
index of the highest tested dose of 1,200 mg INH QD was 112.7%
of that for the benchmark population, while BID administration
resulted in a toxicity index below the benchmark toxicity (86.8%).
The switch to a BID administration scheme led to an overall re-
duction of the toxicity index for both intermediate and fast acety-
lators (Fig. 6C).

Changing the administration schedule from QD to BID for
intermediate and fast acetylator populations allowed the toxicity
index to be reduced such that the daily INH dose could be in-
creased above 600 mg without exceeding the benchmark toxicity.
For fast acetylators, the toxicity of doses even above doses of 900
mg QD and 1,200 mg BID did not exceed the benchmark toxicity.
The identified dose and administration regimens for intermediate
and fast acetylators resulted in treatment trade-offs (between effi-

cacy and toxicity) equivalent to those for slow acetylators receiv-
ing the standard treatment (Fig. 6D).

DISCUSSION

Several polymorphisms in N-acetyltransferase type 2 (NAT2) lead
to altered catalytic activities for INH acetylation (52–55). As a
consequence, the PK profiles of INH and its metabolites differ
significantly between individuals. Patients can be categorized ac-
cording to their number of functional NAT2 alleles into slow,
intermediate, and fast acetylator phenotypes. Besides the parent
drug, INH (20), the catalytic activity of NAT2 also affects the PK of
the toxic metabolites Hz and AcHz (35, 37, 56, 57) (Fig. 1).

In the study described here, we developed a PBPK model for
INH and six of its metabolites (AcINH, INA, INAG, Hz, AcHz,
and DiAcHz). The model was validated with various sets of PK
data, including those obtained by the use of intravenous and oral
administration routes; different daily doses; different dosing
schedules; and, most importantly, slow, intermediate, and fast
acetylator phenotypes (Table 4).

The initial PBPK model was established for intravenous ad-
ministration in slow acetylators. The kinetic parameters for INH
metabolization and excretion were identified on the basis of a
merged clinical data set (30–32) to allow the simultaneous consid-
eration of INH and its metabolites, including data from single
patients and population means. The different origins of the PK
data sets from the literature used for model establishment might
explain the deviations between the data from the simulations and
the experimental data, as seen, for example, in the overestimated
INH clearance in single patients (Fig. 3B and D). However, the use
of a single set of parameters from different publications to de-
scribe PK data is a rather demanding approach to ensure model
quality (Fig. 2). Furthermore, we carefully validated the overall
structure of the PBPK model by prediction of PK in intermediate
acetylators (Fig. 4) and by extrapolation to different doses (see Fig.
S3 in the supplemental material). In the next step, a PD model
describing the antibacterial activity of INH against M. tuberculosis
was developed. The PK profiles of unbound INH in the interstitial
space of the lungs were used as input for the mycobacterial growth
model, thus coupling the PBPK model to the PD model. Previous
studies showed that the INH concentrations in plasma, epithelial
lining fluid, and alveolar cells do not differ significantly (58);
therefore, we considered the unbound interstitial lung concentra-
tions to be a reasonable approximation of the on-target availabil-
ity of the therapeutic agent INH.

With the combined PBPK/PD model, we could show that the
simulated treatment efficacies were consistent with experimental
data describing the time-resolved EBA during the first 2 days of
INH treatment. Clinical treatment durations continuing for
months could not be analyzed with our model due to a lack of
adequate experimental data. Likewise, the emergence of resistant
mycobacterial subpopulations, as suggested by other authors (59,
60), was not considered. For our simulations, we chose a conser-
vative estimate of the MIC of 0.2 mg · liter�1 to include most
INH-susceptible M. tuberculosis strains (0.05 mg · liter�1 �
MIC � 0.1 mg · liter�1 for most strains) (41). As a consequence,
this high activity threshold causes the model to rather underesti-
mate the EBA, which can be seen as an additional margin of safety
for treatment and toxicity simulations.

We next performed population simulations to consider the
effect of interindividual variability on the trade-off between treat-

FIG 5 PD simulations. (A) Exemplary simulation of mycobacterial counts in
human lungs following QD oral administration of 600 mg INH for 2 days of
treatment. Simulation results for an untreated immune-deficient (ID) patient,
an untreated immunocompetent (IC) patient, and an immunocompetent
INH-treated patient are shown. (B) Observed (23, 45) versus predicted EBA
after 2 days of INH chemotherapy for slow, intermediate, and fast acetylators
receiving QD INH doses ranging from 9 mg to 600 mg.
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ment efficacy and drug-induced toxicity. To this end, virtual pop-
ulations including 1,000 individuals each were generated for all
acetylator types. The treatment efficacy and drug-induced toxicity
of slow acetylators receiving the recommended standard therapy
of 300 mg INH QD were set as benchmarks for both clinical indi-
ces for all other populations varying in their immune and acetyla-
tor status. This enabled in particular the identification of acetyla-
tor-specific dosing regimens, balancing the inherent trade-off
between efficacy and toxicity during INH-based therapies. With
the developed PBPK/PD model, the influence of the NAT2 acety-
lator phenotype, the administered dose, the immune status, and
the dosing schedule on treatment efficacy and toxicity was system-
atically analyzed. Our simulation results suggest adjusted INH
doses and administration regimens that may be used for immu-
nocompetent and immune-deficient individuals of all acetylator
phenotypes.

Slow acetylators receiving the standard regimen were consid-
ered the benchmark, since the greatest EBA is seen in individuals
with this phenotype and such individuals have the greatest risk of

experiencing drug-induced toxicities during INH-based tubercu-
losis therapies (61). We found that slow acetylators could benefit
from reduced daily INH doses, since bisecting the standard dose to
150 mg QD would maintain high treatment efficacies and simul-
taneously reduce the exposure to the toxic metabolites Hz and
AcHz in the off-target organ evaluated, the liver. For intermediate
and fast acetylators, we found that the INH dose administered QD
could be increased up to 600 mg and 900 mg, respectively, without
the toxicity exceeding the benchmark toxicity. Furthermore, in-
termediate and fast acetylators could especially benefit from a
modified administration regimen. Here, a switch to a BID admin-
istration schedule would allow dosing with INH at dose of up to
900 mg and 1,200 mg for intermediate and fast acetylators, respec-
tively, without the toxicity exceeding the benchmark toxicity. The
simulated treatment efficacy for intermediate and fast acetyla-
tors is consistent with previous findings in the literature show-
ing that low plasma INH exposure increases the risk of experi-
encing treatment failure and relapse (9, 11). Our simulations
also showed that a switch from a QD to a BID administration

FIG 6 (A and B) Simulated treatment efficacy for immunocompetent (IC) and immune-deficient (ID) slow, intermediate (inter), and fast NAT2 acetylators
receiving INH QD (A) and BID (every 12 h) (B). (C) Simulated toxicity index for slow, intermediate, and fast NAT2 acetylators receiving cumulative QD and BID
INH doses ranging from 9 mg to 1,200 mg. Both treatment efficacy and the toxicity index were normalized to those for the slow acetylators receiving 300 mg INH
QD. (D) Trade-off between treatment efficacy and toxicity index for INH doses of 1,200 mg, 900 mg, 600 mg, 300 mg, and 150 mg administered QD and BID.
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regimen resulted in greater treatment efficacies than doubling
of the QD INH dose.

Irrespective of its clinical relevance, so far only a minority of
clinical trials have accounted for the individual NAT2 pharma-
cogenomics of enrolled patients and their mycobacterial drug sus-
ceptibility. Our study provides mechanistic insights into tubercu-
losis treatment outcomes in individuals by taking the patient’s
pharmacogenomics and the pathogen’s drug susceptibility into
account. Moreover, our work provides a rational dosing design to
balance the inherent trade-off between treatment efficacy and tox-
icity in INH-based chemotherapy. Previously, authors suggested
an adaptation of administered INH dosages according to patient
acetylator status (62–64). In a clinical trial, Azuma et al. modified
a INH QD dose of 5 mg · kg�1 of body weight to doses of 2.5 mg ·
kg�1 for slow acetylators, 5 mg · kg�1 for intermediate acetylators,
and 7.5 mg · kg�1 for fast acetylators, resulting in reduced adverse
effects in fast acetylators while maintaining overall treatment effi-
cacy in all acetylator phenotypes (63). In another clinical study, by
using a regression model that considered patient NAT2 pheno-
type and body weight, Jung et al. retrospectively adapted INH
dosages for slow and fast acetylators that would have maintained a
desired plasma INH concentration range of 3.0 to 6.0 mg · liter�1

at 2 h postadministration (65).
The findings of the PBPK/PD analyses presented here are in

concordance with these experimental findings, yet they extend the
conclusions of those studies to administration schedules; patient
characteristics, such as immune status; as well as the exposure to
toxic metabolites. Hence, we propose that, on the basis of the
findings of mechanistic modeling, rational adjustment of INH
doses by consideration of the regional prevalence of NAT2 acety-
lator phenotypes (66) and affiliation with risk groups can increase
overall treatment efficacy while simultaneously reducing the
probability that the patient will experience toxic events, treatment
failure, and the emergence of resistance in the future.
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