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Abstract

Background: We applied machine learning to find a novel breast cancer predictor based on information in a mammogram.
Methods: Using image-processing techniques, we automatically processed 46 158 analog mammograms for 1345 cases and
4235 controls from a cohort and case–control study of Australian women, and a cohort study of Japanese American women,
extracting 20 textural features not based on pixel brightness threshold. We used Bayesian lasso regression to create individ-
ual- and mammogram-specific measures of breast cancer risk, Cirrus. We trained and tested measures across studies. We fit-
ted Cirrus with conventional mammographic density measures using logistic regression, and computed odds ratios (OR) per
standard deviation adjusted for age and body mass index.
Results: Combining studies, almost all textural features were associated with case–control status. The ORs for Cirrus meas-
ures trained on one study and tested on another study ranged from 1.56 to 1.78 (all P<10�6). For the Cirrus measure derived
from combining studies, the OR was 1.90 (95% confidence interval [CI] ¼ 1.73 to 2.09), equivalent to a fourfold interquartile
risk ratio, and was little attenuated after adjusting for conventional measures. In contrast, the OR for the conventional mea-
sure was 1.34 (95% CI ¼ 1.25 to 1.43), and after adjusting for Cirrus it became 1.16 (95% CI ¼ 1.08 to 1.24; P¼4 � 10�5).
Conclusions: A fully automated personal risk measure created from combining textural image features performs better at
predicting breast cancer risk than conventional mammographic density risk measures, capturing half the risk-predicting abil-
ity of the latter measures. In terms of differentiating affected and unaffected women on a population basis, Cirrus could be
one of the strongest known risk factors for breast cancer.

It is well established that there is information in a mammogram
that predicts a woman’s risk of a future breast cancer.
Mammographic density has conventionally been defined as the
white or bright regions on a mammographic image.
Considerable research has shown that, after adjusting for age
and body mass index (BMI), the residuals of the absolute and
percentage values of conventional mammographic density are
highly correlated with one another, and both sets of residuals
have been found by many studies to be associated with breast
cancer risk (1). Residuals are the appropriate way to consider
mammographic density as a risk factor for breast cancer

because, across the age range relevant to most mammographic
density studies, age and BMI are negatively associated with con-
ventional mammographic density measures (2) but positively
associated with breast cancer risk. These residuals are also
highly correlated over time (3,4).

For the conventional measures of mammographic density,
once adjusted for age and BMI, the risk increases by about 1.4-
fold per adjusted standard deviation (3,5,6), equivalent to an
approximately twofold interquartile risk ratio (IQRR) (7). In com-
parison, the risk gradient for the current best polygenic breast
cancer risk score based on common variants (single-nucleotide
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polymorphisms; SNPs), is about 1.6-fold per standard deviation
or a threefold IQRR (8,9).

The bench mark for measuring mammographic density has
been a computer-assisted thresholding technique using
Cumulus software (Sunnybrook Health Sciences Centre,
Toronto, Canada) (10). A digital version of the mammographic
image is divided into two segments based on a pixel brightness
threshold chosen by the measurer; one segment represents
what the measurer considers to be the white or bright regions
(ie, the dense tissues) and the remainder of the breast is consid-
ered to be nondense.

Although highly repeatable across trained measurers, the
semiautomated Cumulus measurements involve subjective
judgment and are too labor intensive for clinical use.
Automated measures of conventionally defined mammo-
graphic density, such as AutoDensity (11), LIBRA (12), and
Volpara (13) (which aims to estimate the volume of dense tis-
sue), have been developed. We have also found, using Cumulus
software, but in effect defining mammographic density at
higher pixel brightness thresholds, that stronger risk gradients
can be obtained (5,6,14). This raises the possibility that better
risk-predicting measures could be found by considering charac-
teristics of a mammogram other than the conventional concept
of mammographic density.

All the risk-predicting measures above summarize a mam-
mographic image by a single quantity: an estimate of the area
or volume of dense tissue. This is equivalent to counting the
number of pixels above a brightness threshold, and uses first-
order statistical information only. Even the volumetric Volpara
measure reduces to the same process, in that it defines mam-
mographic density as the number of voxels (3 D pixels) deemed
to be dense.

In this article, we describe an alternative and agnostic ap-
proach to discovering risk-predicting information in a mammo-
graphic image. We used machine learning to capture the
combination of textural and spatial information, not necessarily
observable by a human, that best predicts breast cancer risk. In
contrast to conventional approaches, we used second-order sta-
tistical information (ie, measures of variability and interrela-
tions between pixels).

We tested the risk predicting capability of each measure,
trained on a specific study, on the other studies. We then com-
bined these features and studies to produce a fully automated
mammography-based risk measure that we named Cirrus.
Although we are not the first to take such an approach [see
Gastounioti et al. (15) for a summary of texture-based approach-
es], we consider that our large sample sizes, the validation
across populations and designs, and the way that we handle
the highly correlated textural features are strengths.

Methods and Materials

Subjects

We analyzed digitized film mammograms of women with
breast cancer (cases) and women without a diagnosis of breast
cancer (controls) from three studies:

1) Caucasian cohort (Australia): a nested case�control study
of 669 cases and 2629 controls from the Melbourne
Collaborative Cohort Study for whom we obtained 36 897
mammograms (average six visits per woman) (16).

2) Caucasian case�control (Australia): a case�control study of
384 case patients with invasive disease and 1314 control
subjects from the Australian Breast Cancer Family Study
and the Australian Mammographic Density Twins and
Sisters Study for whom we obtained 6243 mammograms
(average two visits per woman) (5).

3) Japanese cohort (Hawaii): a nested case�control study
within the Multiethnic Cohort Study of Japanese American
women living in Hawaii, USA, consisting of 292 cases (23%
ductal carcinoma in situ and 77% invasive) and 292 controls,
for whom we obtained 3018 mammograms (average three
visits per woman) (17).

Supplementary Table 1 (available online) summarizes key
characteristics of the studies and subjects. All participants gave
written informed consent and the studies were approved by ap-
propriate human research ethics committees [see (5),(16), and
(17), respectively].

All film mammograms were digitizsed. Because our software
automatically handled removal of pectoral muscles from cra-
niocaudal (CC) views, but not from mediolateral oblique (MLO)
mammograms, analysis was restricted to CC view mammo-
grams. (Our pilot study of around 600 MLO views found that the
risk prediction was no different between CC and MLO views.)
We used both left and right mammograms at the same visits,
and multiple vists when available. The median number of
mammograms per woman was 10 (Australian cohort study), 2
(Australian case–control study), and 5 (Japanese American
study).

Quality Control

All datasets underwent quality control to remove inappropriate
mammograms (eg, negative images, MLOs misclassified as CCs,
damaged film mammograms, and case patient mammograms
used for their diagnosis) as well as mammograms that failed
the automatic preprocessing stage by being incorrectly seg-
mented (eg, when the range of contrast was abnormally low).
After quality control, less than 3% of mammograms in any data-
set were removed.

Image Analysis

We developed and applied an automatic preprocessing algo-
rithm that uses image-processing techniques to segment the
breast from the background noise, and to remove artefacts and
labels before feature extraction (Supplementary Methods, avail-
able online).

Feature Extraction

We applied algorithms to extract features of potential interest.
We required features to be invariant to rotation and translation,
so that a mammogram will yield the same features irrespective
of the positioning and orientation of the breast. In the image-
processing literature, texture refers to the relationship between
pixels in a neighborhood. Bringing second-order information,
texture essentially provides information on the types of pat-
terns present in an image; eg, whether areas of the image are
smooth or rough, or whether the rough and smooth areas are
scattered across an image or clustered together, etc.

We chose the gray-level co-occurrence matrix (GLCM) class
of features (18–20), based on the statistical properties of
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neighboring pixels. Many GLCM textures act as analogues of
quantities found in the physical sciences. For example, homo-
geneity measures the degree of “scatteredness” of the texture
within an image, so images with large areas of similar intensity
pixels have a higher degree of homogeneity than those com-
posed of a large number of small dissimilar regions.

A total of 20 GLCM features common in the literature were
extracted from all mammograms (see Table 1). Importantly, be-
cause the characteristics and behavior of digitizers vary by
manufacturer and study, we modified the standard GLCM fea-
ture algorithm so that our features would be resistant to
digitizer settings. All image analysis was performed using the
MATLAB computing platform. More details on the GLCM feature
extraction can be found in the Supplementary Methods (avail-
able online).

Statistical Analysis

For each feature, the information for a given woman was taken
to be the median of her features across all her mammograms
because this increased the amount of information for risk
prediction and produces a more stable predictor. Marginal (one-
at-a-time) estimation of the association between the 20 GLCM
features and breast cancer risk, unadjusted for covariates, was
first performed using logistic regression and presented as the
odds ratio (OR) per standard deviation of the unadjusted cross-
sectional measure.

A risk measure, Cirrus, was computed from features by apply-
ing the Bayesian lasso regression procedure (21), which is based
on a Bayesian interpretation of the lasso (22) penalty that auto-
matically estimates the regularization parameter to avoid statisti-
cal instability due to collinearity and makes best use of all the
available features [see (23)].The logistic regression models were
estimated by drawing 10 000 samples from the posterior distribu-
tion, with the first 1000 discarded as burn-in samples, and using
the Bayesreg Bayesian regression software (24) in MATLAB. The
measure of breast cancer risk was a linear combination of the es-
timated coefficients and the image features.

A separate Cirrus measure was constructed from each data-
set. Each trained measure was tested on the given dataset, to
assess its maximum risk prediction, and then tested on each of
the other two independent datasets, to see the extent to which
the discovery process could be externally validated.

We assessed risk-predicting performance using logistic regres-
sion and adjusting for age and BMI. Risk gradients were presented as
the change in the age- and BMI-adjusted OR per unit change in the
standard deviation of the residual of the measure after adjusting for
age and BMI using the controls, following the OPERA concept (7).
The nominal P values were determined using the Wald test. As
shown in the Supplementary Methods (available online), for a con-
tinuous risk factor satisfying a normality assumption and a rela-
tively rare disease, IQRR ¼ U logðORÞ � bð Þ=U a� logðORÞð Þ, where U

is the cumulative distribution function of the standard normal distri-
bution and a � U�1 0:25ð Þ ¼ �0:6745 and b � U�1 0:75ð Þ ¼ 0:6745.
The relationship between log (OR) and the area under the receiver
operator curve (AUC) are also shown in the Supplementary Methods
(available online).

We also created a Cirrus measure trained on the combined
data, and fitted it to the combined data using logistic regression
adjusting for age and BMI, with and without the conventional
risk measures of absolute and percentage mammographic den-
sity power transformed and adjusted for age and BMI. Based on
the Box–Cox transformation, we used the fourth root of absolute

density and the cube root of percentage density. We used the
conventional mammographic density measures, created using
the semiautomated computer software Cumulus (10), from the
published cohort (16) and case�control (5,17) studies, and the
subjects for whom BMI data were available.

Results

Table 1 shows that, for 11 of the 20 GLCM image features (con-
trast, correlation, dissimilarity, homogeneity, difference vari-
ance, difference entropy, entropy, information correlation 1,
information correlation 2, normalized inverse difference, and
moment normalized inverse difference), the directions and
magnitudes of their risk associations were similar across all
studies. This indicates that there is a relationship of features to
breast cancer risk that is robust to study variation.

Table 2 shows that the OR per adjusted standard deviation
of the Cirrus measures trained on each study were highest
when tested on that study itself, and in the range of 1.72 to 1.92.
Most importantly, the cross-study replication associations were
also high, ranging from 1.56 to 1.78 (all P< 10–6). All the replica-
tion log(OR)s were within 20% of their in-sample training
log(OR)s. The strongest cross-validation was for the Cirrus mea-
sure trained on the Australian cohort study and replicated on
the study of Japanese American women living in Hawaii.

Table 3 shows that, when all three datasets were combined,
nearly all the GLCM features were associated with case–control
status. Figure 1 shows that the 11 GLCM features that were con-
sistently associated across studies were highly correlated with
each other (all r> 0.9). These features also had similar absolute
log(OR)s in Table 2. Figure 1 shows that the other nine GLCM
features were also strongly correlated with each other, and
Table 3 suggests that they had similar but lower absolute
log(OR)s. Most pairs of features from the two different sets of 11
and 9 GLCM features were weakly correlated (absolute r< 0.4).
When we repeated the analyses using measures based on a sin-
gle mammogram (the earliest) we found the general findings of
Table 3 were repeatable across studies, although with greater
variation across studies, justifying our use of the measures
based on averaging over all mammograms.

Table 4 shows the skewness and excess kurtosis of each of
the 20 features in the combined dataset, along with the poste-
rior standard deviation and standardized weight used to create
the final Cirrus measure (see Supplementary Methods, available
online, for more details). This Cirrus measure was independent
of age and weakly negatively associated with BMI (r ¼ �0.1).

For the Cirrus risk measure (Cirrus adjusted for age and BMI)
constructed from combining all datasets and all features and
adjusted for age and BMI (see Figure 2), the OR per adjusted
standard deviation was 1.90 (95% CI ¼ 1.73 to 2.09) (Table 5),
close to the value of 1.86 based on the standardized difference
in means for case and controls shown in Figure 2 being 0.622
and the theory explained in the Supplementary Methods (avail-
able online). In comparison, the ORs per adjusted standard devi-
ation for the risk factors based on absolute and percentage
density measures were 1.34 and 1.38, respectively.

Table 5 also shows that the log(OR) for the Cirrus measure
was reduced by less than 10% after adjusting for the conven-
tional measures, and the predicted IQRR was about 4.2-fold
(95% CI ¼ 3.3 to 5.4).

In contrast, the OR for the conventional measure was 1.34
(95% CI ¼ 1.25 to 1.43), and after adjusting for Cirrus it became
1.16 (95% CI ¼ 1.08 to 1.24) (P¼ 4 � 10�5). This was nearly a
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halving in log(OR), and a similar result applied to percentage
density. The correlations between the risk estimates for Cirrus
and the risk estimates for the absolute and percentage meas-
ures of conventional mammographic density were �0.3 and
�0.4, respectively. When the two conventional mammographic
density measures were modeled together, the percentage mea-
sure was not significant, consistent with risk being best cap-
tured by the absolute measure.

Figure 3 shows that, from considering the receiver operator
curves, the Cirrus measure gives better risk discrimination (AUC
¼ 0.662; 95% CI ¼ 0.635 to 0.690) than does a Cirrus measure
based on homogeneity alone (AUC ¼ 0.642; 95% CI ¼ 0.615 to
0.670), which gives better risk discrimination than does

percentage mammographic density measure (AUC ¼ 0.620; 95%
CI ¼ 0.593 to 0.648).

Discussion

From applying machine learning to textural features of film
mammograms, we have found novel information that predicts

Table 2. Odds ratio per standard deviation after adjusting for age
and BMI (95% confidence intervals) for the Cirrus measures trained
on one dataset and tested on the same (diagonal) or another (off-di-
agonal) dataset

Training
dataset

Testing dataset

Caucasian Caucasian
Japanese
American

Cohort case–control cohort
(Australia) (Australia) (Hawaii)

Caucasian 1.83 (1.65 to 2.03) 1.60 (1.41 to 1.82) 1.78 (1.46 to 2.17)
Cohort
(Australia)

Caucasian 1.56 (1.43 to 1.72) 1.72 (1.52 to 1.95) 1.75 (1.44 to 2.12)
Case–control
(Australia)

Japanese 1.58 (1.43 to 1.75) 1.61 (1.40 to 1.86) 1.92 (1.57 to 2.36)
cohort
(Hawaii)

Table 1. Marginal odds ratio (OR) per unadjusted standard deviation, with 95% confidence interval (CI) and P value, for each feature from each
study

Feature

Caucasian cohort (Australia) Caucasian case–control (Australia) Japanese cohort (Hawaii)

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Autocorrelation 0.89 (0.82 to 0.96) .004 1.14 (1.01 to 1.29) .03 1.18 (0.98 to 1.43) .07
Cluster prominence 1.11 (1.02 to 1.20) .01 1.05 (0.93 to 1.19) .4 0.92 (0.77 to 1.11) .4
Cluster shade 1.13 (1.04 to 1.22) .003 0.94 (0.83 to 1.07) .3 0.87 (0.73 to 1.05) .1
Contrast 0.57 (0.52 to 0.63) 10�28 0.60 (0.50 to 0.72) 3� 10�8 0.66 (0.53 to 0.81) 6� 10�5

Correlation 1.75 (1.59 to 1.94) 10�28 1.68 (1.40 to 2.01) 2� 10�8 1.56 (1.26 to 1.92) 4� 10�5

Difference entropy 0.58 (0.54 to 0.64) 10�31 0.60 (0.52 to 0.70) 10�11 0.67 (0.55 to 0.81) 4� 10�5

Difference variance 0.57 (0.52 to 0.63) 10�28 0.60 (0.50 to 0.72) 3� 10�8 0.66 (0.53 to 0.81) 6� 10�5

Dissimilarity 0.58 (0.53 to 0.64) 10�29 0.61 (0.52 to 0.71) 10�10 0.66 (0.54 to 0.81) 4� 10�5

Energy 1.18 (1.09 to 1.27) 4�10�5 1.01 (0.90 to 1.15) .8 0.90 (0.75, 1.08) .3
Entropy 0.69 (0.63 to 0.75) 10�18 0.72 (0.63 to 0.82) 9� 10�7 0.82 (0.68 to 0.99) .04
Homogeneity 1.71 (1.56 to 1.88) 10�30 1.64 (1.41 to 1.90) 10�10 1.51 (1.24 to 1.84) 4� 10�5

Information correlation 1 0.58 (0.53 to 0.63) 10�32 0.58 (0.51 to 0.67) 10�13 0.63 (0.52 to 0.77) 4� 10�6

Information correlation 2 1.80 (1.64 to 1.98) 10�33 1.86 (1.58 to 2.19) 10�13 1.80 (1.47 to 2.20) 1� 10�8

Maximum probability 1.09 (1.00 to 1.17) .04 0.91 (0.81 to 1.03) .2 0.84 (0.70 to 1.01) .06
Moment normalized

inverse difference
1.75 (1.58 to 1.93) 10�28 1.67 (1.40 to 1.99) 1� 10�8 1.53 (1.24 to 1.87) 5� 10�5

Normalized inverse
difference

1.72 (1.56 to 1.89) 10�29 1.64 (1.41 to 1.92) 10�10 1.51 (1.24 to 1.84) 4� 10�5

Sum average 0.89 (0.82 to 0.97) .005 1.11 (0.99 to 1.26) .08 1.18 (0.98 to 1.41) .09
Sum variance 0.94 (0.87 to 1.01) .1 1.28 (1.14 to 1.45) 6� 10�5 1.28 (1.06 to 1.54) .009
Sum entropy 0.75 (0.69 to 0.81) 10�12 0.83 (0.73 to 0.93) .002 0.93 (0.77 to 1.11) .4
Variance 0.88 (0.81 to 0.95) .002 1.12 (0.99 to 1.27) .07 1.17 (0.97 to 1.41) .1

Table 3. Marginal odds ratio (OR) per standard deviation after adjust-
ing for age and body mass index, with 95% confidence interval (CI)
and P value, for each feature from analysis of the combined dataset

Feature OR (95% CI) P

Autocorrelation 1.01 (0.94 to 1.08) .9
Cluster prominence 1.06 (0.99 to 1.14) .09
Cluster shade 1.03 (0.96 to 1.10) .5
Contrast 0.55 (0.49 to 0.62) 10�22

Correlation 1.82 (1.62 to 2.05) 10�23

Difference entropy 0.57 (0.52 to 0.63) 10�32

Difference variance 0.55 (0.49 to 0.62) 10�22

Dissimilarity 0.57 (0.51 to 0.63) 10�28

Energy 1.08 (1.01 to 1.16) .03
Entropy 0.70 (0.65 to 0.76) 10�17

Homogeneity 1.75 (1.59 to 1.93) 10�29

Information correlation 1 0.55 (0.50 to 0.60) 10�35

Information correlation 2 1.97 (1.77 to 2.20) 10�33

Maximum probability 0.99 (0.92 to 1.07) .9
Moment normalized inverse

difference
1.81 (1.61 to 2.03) 10�23

Normalized inverse difference 1.76 (1.59 to 1.94) 10�28

Sum average 1.00 (0.93 to 1.07) 1.0
Sum entropy 0.79 (0.74 to 0.85) 10�9

Sum variance 1.09 (1.01 to 1.17) .02
Variance 0.99 (0.92 to 1.07) .8
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breast cancer risk. This finding was consistent and replicated
across three studies using different designs and populations.
Given replication and generalizability are key issues to achieve
our aims, the similarities and differences in sample characteris-
tics across these studies (details of which are summarized in
Supplementary Table 1 [available online] and can be examined
in detail by reference to the cited papers) has been

advantageous. Analyses suggested that the textural features
that differed in mean between the Caucasian and Japanese
women were those that did not, of themselves, predict breast
cancer risk (data not shown).

Our new mammography-based risk measure, Cirrus, is fully
automated. It was better at predicting breast cancer risk than
the conventional mammographic density risk measure and

Correla�on -1.00 Absolute correla�on
Difference entropy 0.96 -0.96 0.0–0.19
Difference variance 1.00 -1.00 0.96 0.2–0.39

Dissimilarity 0.98 -0.98 0.99 0.98 0.4–0.59
Entropy 0.83 -0.83 0.89 0.83 0.88 0.6–0.79

Homogeneity -0.97 0.97 -1.00 -0.97 -1.00 -0.89 0.8–0.99
Informa�on correla�on 1 0.95 -0.95 0.99 0.95 0.99 0.88 -0.99
Informa�on correla�on 2 -0.91 0.91 -0.88 -0.91 -0.90 -0.60 0.89 -0.90

Moment normalized inverse difference -1.00 1.00 -0.97 -1.00 -0.99 -0.83 0.98 -0.95 0.91
Normalized inverse difference -0.98 0.98 -0.99 -0.98 -1.00 -0.89 1.00 -0.99 0.90 0.98

Autocorrela�on 0.33 -0.33 0.40 0.33 0.39 0.75 -0.40 0.37 0.04 -0.34 -0.39
Cluster prominence -0.38 0.38 -0.43 -0.38 -0.42 -0.78 0.43 -0.41 0.03 0.38 0.43 -0.94

Cluster shade -0.37 0.37 -0.44 -0.37 -0.42 -0.78 0.43 -0.41 0.00 0.38 0.43 -0.99 0.97
Energy -0.45 0.45 -0.53 -0.45 -0.51 -0.85 0.53 -0.50 0.10 0.46 0.52 -0.97 0.96 0.98

Maximum probability -0.30 0.31 -0.37 -0.30 -0.36 -0.74 0.37 -0.35 -0.06 0.31 0.36 -0.98 0.97 0.99 0.98
Sum average 0.34 -0.34 0.41 0.34 0.39 0.76 -0.41 0.38 0.03 -0.35 -0.40 1.00 -0.95 -1.00 -0.98 -0.99
Sum entropy 0.63 -0.63 0.73 0.63 0.70 0.96 -0.72 0.72 -0.35 -0.64 -0.71 0.88 -0.90 -0.90 -0.95 -0.89 0.89
Sum variance 0.23 -0.22 0.29 0.23 0.27 0.65 -0.28 0.24 0.16 -0.23 -0.28 0.99 -0.90 -0.97 -0.93 -0.96 0.98 0.80

Variance 0.36 -0.36 0.43 0.36 0.42 0.77 -0.43 0.40 0.01 -0.37 -0.42 1.00 -0.93 -0.99 -0.97 -0.98 1.00 0.90 0.98
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Figure 1. Correlations between the 20 textural features.

Table 4. The skewness and excess kurtosis of each of the 20 features in the combined dataset, along with the posterior standard deviation (SD)
and standardized weight used to create the final Cirrus risk measure

Feature Skewness Excess kurtosis Posterior SD Standardized weight

Autocorrelation 0.34 0.40 1.651 0.218
Cluster prominence �0.26 0.33 0.008957 1.630
Cluster shade �0.34 0.21 0.07228 0.267
Contrast 3.17 19.5 26.020 0.397
Correlation �3.18 19.6 235.51 �0.321
Difference entropy 1.14 2.37 9.0306 �2.156
Difference variance 3.17 19.5 25.889 0.399
Dissimilarity 1.79 5.77 42.727 0.429
Energy 0.03 0.30 35.733 0.675
Entropy 0.60 0.63 17.761 �1.452
Homogeneity �1.51 3.88 91.983 �0.983
Information correlation 1 1.09 2.03 35.328 �1.338
Information correlation 2 �2.17 8.14 136.29 �1.193
Maximum probability �0.33 0.48 22.878 �1.473
Moment normalized inverse difference �2.96 16.9 1976.2 1.096
Normalized inverse difference �1.65 4.81 392.33 �0.600
Sum average 0.33 0.39 5.2236 �0.228
Sum entropy 0.19 0.002 19.135 1.919
Sum variance 0.26 0.46 0.6445 0.664
Variance 0.34 0.38 1.5106 �0.795
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captured half of that measure’s risk-predicting ability. In terms of
differentiating affected and unaffected women of the same age
on a population basis, Cirrus is one of the strongest risk factors
for breast cancer with an IQRR that could be as high as fourfold.

The risk discrimination of our Cirrus risk measures trained
on a given dataset and tested on the other two were similar
across all three datasets. The largest decrease in risk discrimi-
nation from training data to test data was only 20% on the
log(OR) scale, and this was from training on the smallest sample
(Japanese American women living in Hawaii) and testing on
Australian women. The strong consistency across studies sug-
gests that the identified risk-predicting features and their risk
gradients are reliable predictors of breast cancer. It also sug-
gests that our modification to the GLMC technique to make it

resistant to regularity and collinearity effects across manufac-
turers and digitizers was successful.

An intriguing aspect of our findings is that the texture fea-
tures used by the Cirrus measure are not based on absolute
brightness thresholds, as are conventional mammographic den-
sity measures and the newer ones, Altocumulus and
Cirrocumulus, defined at higher pixel brightness thresholds.
Cirrus uses only relative brightness between pixels, yet achieves
superior performance than the conventional measure across all
studies, and has similar risk-predicting performance as do
Altocumulus and Cirrocumulus for the Australian case–control
study (5).

Our new study, and recent studies of Altocumulus and
Cirrocumulus (5,6,14), raise the question as to whether the
amount of what has conventionally been considered to be
dense tissue should continue to be viewed as the gold standard
of mammography-based risk estimation. The strong risk associ-
ation we found with second-order textural information suggests
that it may be a combination of the quantity and the spatial
configuration of specific types of tissue that underlies the bio-
logical mechanisms determining breast cancer risk.

Almost all of the 20 GLCM features we studied were associ-
ated with breast cancer risk. Our statistical method helped us
extract most of the information from the feature set even
though they were correlated, and had some similarities to that
used by Yaghian et al. (25) and Wang et al. (26) to find specific
textural features predictive of masking and risk. There was a
high correlation between some textural features, meaning that
many capture the same textural information. This high level of
collinearity likely explains the apparent lack of concordance in
specific findings across studies using GLCM-type features [eg,
Huo et al. (27),Wang et al. (26)]; when features are so highly cor-
related it is largely at random which features will be ranked as
the “best” from analysis of any given dataset. Our aim was to
build the best predictor, not to find the best individual predic-
tor(s), so we used the Bayesian shrinkage procedure because it
is known to be a better way to achieve our aim (23). This distin-
guishes our work from the previous studies (26,27).

For example, using a standard lasso procedure, Wang et al.
(26) selected sum average, which tends to identify dispersed
patterns of density, as the best predictor of risk. We, however,

Figure 2. Distribution of the Cirrus measure created on the combined studies,

adjusted for age and BMI, for cases (gray line) and controls (dark line). Risk

increases with increasing Cirrus. The difference in the mean between cases and

controls is equal to the log of the OR per standard deviation, which in turn is lin-

early related to the area under the receiver operator curve (AUC) in the range of

0.5 to 0.7; see theory and references in the Supplementary Methods (available

online). See also Figure 3, which shows the corresponding receiver operator

curve.

Table 5. Odds ratio (OR) adjusted for age and body mass index (BMI)
for the mammography-based risk measures, age- and BMI-adjusted
Cirrus, absolute and percentage mammographic density, and log
BMI, fitted alone and in combination, from analysis of the combined
dataset

Feature OR (95% CI) P

Cirrus 1.90 (1.73 to 2.09) 10�38

Absolute mammographic density 1.34 (1.25 to 1.43) 10�17

Percentage mammographic density 1.38 (1.29 to 1.48) 10�20

Log BMI 1.07 (0.99 to 1.15) .07

Cirrus 1.76 (1.59 to 1.95) 10�27

Absolute mammographic density 1.16 (1.08 to 1.24) 4� 10�5

Log BMI 1.04 (0.96 to 1.12) .3

Cirrus 1.74 (1.57 to 1.93) 10�25

Percentage mammographic density 1.16 (1.07 to 1.25) 2� 10�4

Log BMI 1.04 (0.97 to 1.12) .3

Cirrus 1.74 (1.56 to 1.93) 10�24

Absolute mammographic density 1.11 (1.00 to 1.23) .04
Percentage mammographic density 1.06 (0.95 to 1.19) .3
Log BMI 1.04 (0.97 to 1.12) .3

Figure 3. Receiver operator curves based on fitting: Cirrus created on the com-

bined studies (continuous line); homogeneity alone (dashed line); and percent-

age mammographic density (dotted line). The corresponding areas under the

receiver operator curves are 0.662, 0.642, and 0.620, respectively.
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found no evidence that this feature was a major predictor of dis-
ease. They also noted that “the features that were not selected
by lasso are not necessarily non-predictive of risk.” On the other
hand, Wang et al. commented that “it was slightly surprising
that . . . some previously reported texture features such as . . .

contrast . . . were not selected, although contrast was signifi-
cantly and negatively associated with risk in both the training
and validation studies, in line with Huo et al.” We too found
that contrast was negatively associated with risk, and this was
highly significant in our study. A study of our risk predictors
and statistical approaches with those of Wang et al. on the
same dataset would be instructive.

Given our aim was to build the best predictor, use of the
Bayesian lasso procedure mitigates the instability problem from
procedures that try to first select features by estimating associa-
tions for all features. Notwithstanding, homogeneity was one of
the strongest associated features, almost as good as the combi-
nation in predicting risk, and performed better than the conven-
tional mammographic density measures (data not shown).
However, considering that feature alone gave poorer internal
and external risk prediction than using the combined measure,
Cirrus, as is illustrated in Figure 3.

Supplementary Figure 1 (available online) shows mammo-
grams from women with extreme (high and low) Cirrus risk
measures, but whose conventional mammographic density risk
measures were average (almost all between the 30th and 70th
percentiles). The low-risk Cirrus images appear to be slightly
darker overall.

Supplementary Figure 2 (available online) shows the same
mammograms after processing and quantizing by the GLCM al-
gorithm (see the Supplementary Methods, available online). The
differences between the high- and low-risk Cirrus mammo-
grams are clearer. The low-risk Cirrus mammograms have a
scattered pattern with thin spiderwebs of brightness cutting
through the darker regions. In contrast, the high-risk Cirrus
mammograms appear to be composed of several large, well-
defined, homogeneous connected regions. This would appear to
reflect the homogeneity textural feature that we identified to be
an important predictor of risk. Given its simple interpretation,
homogeneity has the potential to be a useful new biomarker for
breast cancer risk.

Some strengths of our study are our consistent findings re-
lated to textural features and strengths of association within
and between study findings despite the variation in 1) ethnic or-
igin of women, 2) the machines used to produce the mammo-
grams, and 3) the digitization of mammograms. The strong
cross-predictive performance suggests that we selected impor-
tant aspects of a mammogram that are robust to differences in
image acquisition. Cirrus appears to be essentially uncorrelated
with age, and only weakly correlated with BMI and with both
the absolute and percentage measures of conventional density.
Further analyses (data not shown) suggest Cirrus is not highly
correlated with family history and weakly corelated with num-
ber of live births and menopause status similar to Cumulus, and
we are conducting detailed analyses of these issues as we did
for Cumulus (2) for future publication. There appears to be room
for improvement by, eg, extending the measure to incorporate
more conventional mammographic risk features, such as dense
area–like quantities defined by different pixel brightness
thresholds (5,6).

The two main weaknesses of our study are 1) we combined
interval and screen-detected cancers, which could weaken the
ability of our measure to predict specifically risk or specifically
masking and 2) our study was composed entirely of digitized

film mammograms. Although the GLCM features account for
some differences between images and machines, there is no
guarantee that our current Cirrus measure will perform as well
when ported to digital mammography; it could require further
modification. It might also be that different features, or differ-
ent weightings of features, provide better predictors of risk from
digital mammograms. Not being able to readily identify and
“see” the Cirrus measure and the individual features that un-
derlie this phenomenon might be considered another weak-
ness, and we have tried to address this. However, given that the
consequence of applying machine learning is an automated
mammography-based risk measure that does not require visual
measurement, this might not be an impediment to future clini-
cal use of measures like Cirrus when based on machine learning
applied to digital mammograms.

In conclusion, we have used machine learning to create a
new and fully automated mammography-based risk measure
that has reliability within and across studies. Note that al-
though we averaged mammograms to discover the predictor,
we have created a risk predictor applicable to a single mammo-
gram, thus allowing future studies of changes in time for a par-
ticular woman. One of the powerful features of using machine
learning to create an automated measure of risk is that is it not
necessary to have a human interpretation of the features—the
human perception of the features will not be used on their own
in practice. Our risk measure performs better at predicting
breast cancer risk than the conventional mammographic den-
sity risk measures and captures half the risk-predicting ability
of those measures. In terms of differentiating affected and unaf-
fected women on a population basis, Cirrus could be one of the
strongest known risk factors for breast cancer.
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