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Evaluation and integration 
of cancer gene classifiers: 
identification and ranking of 
plausible drivers
Yang Liu, Feng Tian, Zhenjun Hu & Charles DeLisi

The number of mutated genes in cancer cells is far larger than the number of mutations that drive 
cancer. The difficulty this creates for identifying relevant alterations has stimulated the development 
of various computational approaches to distinguishing drivers from bystanders. We develop and 
apply an ensemble classifier (EC) machine learning method, which integrates 10 classifiers that are 
publically available, and apply it to breast and ovarian cancer. In particular we find the following: 
(1) Using both standard and non-standard metrics, EC almost always outperforms single method 
classifiers, often by wide margins. (2) Of the 50 highest ranked genes for breast (ovarian) cancer,  
34 (30) are associated with other cancers in either the OMIM, CGC or NCG database (P < 10−22).  
(3) Another 10, for both breast and ovarian cancer, have been identified by GWAS studies. (4) Several 
of the remaining genes--including a protein kinase that regulates the Fra-1 transcription factor which 
is overexpressed in ER negative breast cancer cells; and Fyn, which is overexpressed in pancreatic 
and prostate cancer, among others--are biologically plausible. Biological implications are briefly 
discussed. Source codes and detailed results are available at http://www.visantnet.org/misi/driver_
integration.zip.

The identification of aberrant genes that alter cellular processes and thereby drive transformation, is 
among the most critical challenges in cancer biology1. There is no shortage of candidate genes or altera-
tions: high throughput sequencing2,3 has uncovered more than a million of mutations, and the number is 
growing rapidly. Most of these are, however, passengers, conferring no fitness advantage on the tumor4,5 
- and those that do, may not be seen frequently enough to be readily distinguishable from background 
mutations. Because the number of candidates is very large, and the expected number of targets is rela-
tively small, computational screening methods have become an important component of the search for 
drivers.

Not surprisingly, a number of methods have been developed, these falling into two main categories: 
gene level and module level. The gene level methods use mutation (frequency and tissue distribution) 
to make a statistical decision to classify a gene as a driver rather than a passenger. These approaches 
assume that driver genes independently confer a selective advantage on tumor initiation and progression, 
and that they can be identified by statistically significant attributes. The most common approach in this 
category identifies mutated genes that occur at unusually high frequency across a wide range of tumor 
samples6–8. Other methods identify genes that have a large number of functional variants associated with 
transformation9; or that have clustered mutations10. Exploiting the over-representation of mutations in 
protein phosphosites or protein kinase domains has also been effective11.
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Although gene level approaches have helped to identify numerous driver gene candidates, like all 
methods, they have limitations. Since mutations are large in number and diverse in type, the frequency 
of any particular mutation pattern across a set of samples is low. This makes statistical distinctions and 
reproducibility across different populations difficult to establish. In addition, genes seldom work alone, 
but instead generally cooperate to trigger phenotypic change.

The second category of methods, based on modules, exploits the idea that subsets of cancer causing 
genes subserve similar functions and interact strongly. Consequently they don’t necessarily rely on muta-
tions to infer candidates, and in principal can identify potential drivers even when mutation frequencies 
are too rare to be detected by gene-based methods.

Some module-based methods identify candidates by evaluating metrics that define their linkage to 
known cancer genes12. Others identify relevant gene sets by maximizing modularity based on either a 
Functional Linkage Network (FLN) (Huang et al, http://visantst.bu.edu:8080/) or a Human Interaction 
Network (HIN)13. Another widely applied method utilizes mutual exclusivity14,15 to systematically iden-
tify oncogenic modules. Module-based approaches usually integrate multiple data types including, among 
others, expression data, CNV data and functional similarity from distinct networks (Functional Linkage 
Network, Human Interaction Network, KEGG pathway etc.). This improves statistical power, and the 
consistency of predictions16. However, since all known drivers (genes identified as drivers in Cancer 
Gene Census (CGC) or the Online Mendelian Inheritance in Man (OMIM)) are identified solely on the 
basis of mutations (frequency and tissue distribution), module based decision criteria are less direct than 
the single gene methods based on mutation.

In addition to using methods independently, some attempts have been made to use more than one 
classifier by requiring that at least two agree in order to classify a gene as a driver17,18. The philosophy of 
using more than a single method is similar to ours, but the procedure differs substantially from machine 
learning approaches, which integrate methods and make assignments in a principled manner, as we now 
explain.

Machine learning (multivariate statistical) methods, have been widely applied in many areas of 
inquiry including biomedical science19–22, and invariably provide better performance than single feature 
classifiers. In effect, they all attempt to find an optimal boundary that separates categories such as tumor 
subtypes23 or protein binding sites24. It is noteworthy that finding an optimal boundary during training, 
and using it to make decisions, removes the arbitrariness of simple decision criteria that are used in both 
module and gene based methods. This allows an unambiguous assessment of true and false positive rates 
by cross validation. Such rates are not obtainable using decision thresholds, since the number of true and 
false positives will depend on where the threshold is set.

All machine learning methods begin with a vector of features, which takes on different values for 
each member of the two categories. For example, the separation of tumor subtypes might begin with the 
expression levels of a select set of human genes as the features19, so that each sample is characterized by 
a particular vector of expression levels. If there are m samples and n features, an appropriate multivariate 
(machine learning) method would be used to find an optimal boundary separating the samples in an n 
dimensional space. In general, the higher the dimensionality (i.e., the larger the number of features), the 
better the separation24,25. Thus separation based on multiple features, will almost always be more effective 
than separation based on a single feature, subject to the usual over-fitting caveat.

Here we formulate an ensemble classifier (EC) and apply it to the discovery of driver candidates in 
breast and ovarian cancer samples from the Cancer Genome Atlas (TCGA)26,27. We take as our definition 
of cancer drivers, mutated genes that have been classified as cancer causing in either the Cancer Gene 
Census (CGC) (http://cancer.sanger.ac.uk/cancergenome/projects/census/), or the Online Mendelian 
Inheritance in Man (OMIM) (http://www.omim.org/).

We compared the top 50 genes determined by EC (EC50), with the Top 50 genes identified by each 
of the 10 methods by two different criteria for breast and ovarian cancer. We find that EC ranks first or 
is tied for first, by both criteria, for both cancer types, and that its predictive power is more stable than 
that of the individual methods.

We also calculated the extent to which the top 50 predictions by each method was enriched in can-
cer associated genes from COSMIC, OMIM and the Network of Cancer Genes (NCG) (http://ncg.kcl.
ac.uk/)28. For the individual methods, the enrichments, or positive predictive values (PPV) for breast 
cancer ranged from 12–58% (average 37.4%) compared to 68% (34/50) for EC. For ovarian cancer, the 
PPVs ranged from 4–64% (average 36.2%) compared to 60% for EC (30/50). The PPV of 64%, slightly 
higher than that of EC, was achieved by the FLN and NetBox.

We find that of 10 of the remaining 16 breast cancer EC50 genes and 10 of the remaining 20 ovar-
ian cancer EC50 genes that are not annotated as cancer associated, have records in either the GWAS 
Catalog29 or the Genome Association Database (GAD)30. Consequently 6 (10) genes have not been pre-
viously associated with breast (ovarian) cancer in any large scale population studies.

The performance of the method, the high degree of enrichment, and the biological evidence, as indi-
cated in the discussion, suggest that the predicted candidates are plausible, and that they should be 
considered high priority targets for epidemiological validation.

http://visantst.bu.edu:8080/
http://cancer.sanger.ac.uk/cancergenome/projects/census/
http://www.omim.org/
http://ncg.kcl.ac.uk/
http://ncg.kcl.ac.uk/
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Results
Details of the algorithm are described in Methods. Briefly, method integration is achieved by separating 
drivers from passengers in a 10 dimensional space, where points are vectors whose elements are the 
values of 10 individual methods. Positive (known drivers) and negative (putative passengers) training 
sets were selected as described below, and extracted for use with the DECORATE (Diverse Ensemble 
Creation by Oppositional Relabeling of Artificial Training Examples)31 ensemble classifier. After 10-fold 
cross validation, the classifier was applied to all genes in protein coding regions except those used for 
training. We also applied the 10 publicly implemented methods individually (Fig. 1, Table 1) to obtain a 
reference set of predictions against which to assess the ensemble classifier.

All protein coding regions in the human genome, except those used for training, were ranked by the 
ensemble classifier as well as by the individual classifiers. We focus on the Top 50 genes generated by 
each method.

Breast Cancer.  Performance.  The true positive (TP) and true negative (TN) rates for the ensemble 
classifier (EC) were estimated at 0.65, 0.98, respectively, as described in Methods. The true negative rate 
(specificity) is included for completeness, but it is important to note that it is not informative. As indi-
cated in methods, because the number of drivers is small, the chance that a negative gene will be assigned 
to the positive set is extremely small.

We determined enrichment of cancer genes in the top 50 predictions (PPV) by testing genes that are 
annotated as cancer related in either CGC, OMIM or NCG (Fig. 2a), including those that have not yet 
been definitively classified as drivers, but excluding, as usual genes in the training set. We obtained a 
PPV (true positives/number of calls) of 34/50 = 0.68.

Of the 16 genes that were not classified as positive, ten (marked as asterisk in Fig.  2a) have cancer 
related records in either the GWAS Catalog29 or GAD30. The remaining 6: PRKCQ, ARAF, MAPK14, 
BRMS1, CDC42BPA, SP3, have not been confirmed in any large scale clinical studies and are considered 
predictions. The extent to which the individual methods identify these genes is shown in Fig. 2b.

Intergenic relations.  Most cancers have complex genotypes. We took two approaches to identifying 
genes that might contribute to the same cancer, either alone, or in combination with other genes. (i) 
We used the Fisher exact test to identify KEGG pathways (http://www.genome.jp/kegg/pathway.html) 
that might be statistically enriched in EC50 genes compared to the human genome background using 
DAVID32. We found 17 (FDR < 0.01) such pathways (Table 2). (2) We overlaid the pathways on a func-
tional linkage network (FLN)12. An FLN is a network of nodes (representing genes) connected in such 
a way that functionally related genes are in proximity to one another, with connections weighted in a 
principled manner by multiple sources of evidence12. Figure 2c is a VisANT33 display of the relation, on 
an FLN, between the three most significantly enriched signaling pathways: ErbB signaling, T-cell recep-
tor signaling and Neurotrophin signaling.

Figure 1.  Ensemble classifier (EC) flow chart. TCGA mutation data is used as input to 8 of the 10 publicly 
available classifiers; two of the module methods take OMIM data as input. EC is applied to the training set 
(Methods) as part of a ten-fold cross validation procedure, to obtain driver/passenger outputs. The vectors 
are separated in a ten dimensional space by the Decorate ensemble classifier. After training and cross 
validation, all known human genes, except those used for training, are scored.

http://www.genome.jp/kegg/pathway.html
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Predictive performance compared to individual classifiers.  The 10 independent classifiers fall into two 
categories: statistically based and module based. We took as candidates, genes with P < 0.05 using the 
former method, and genes within a module, using the latter. Unfortunately the original publications that 
introduced these methods contain very little information on the true positive and true negative rates 
7–11. In most cases this is undoubtedly because they use simple thresholds, so there is no well-defined 
number of true positives.

Although true positive rates for threshold based methods depend on where the threshold is set, we 
can look at performance in a slightly different way, by calculating the true positive and true negative 
rates for cancer associated genes (i.e. cancer related in either CGC, OMIM or NCG) in the top 50 of 
each of the 10 methods. This gives what we will refer to as sensitivity and specificity surrogates, to stress 
that they are not obtained the same way as the sensitivity and specificity is obtained using a training 
procedure, which finds an optimal boundary, and therefore doesn’t depend on threshold adjustment. The 
surrogate specificities were, as with EC, statistically indistinguishable from 1, again, not informative. The 
surrogate sensitivities ranged from 3-30%. These numbers are useful for comparing the 10 methods with 
one another, but they are not useful for comparison with EC.

Unlike sensitivity and specificity, the enrichment of cancer associated genes in the top 50 is unambig-
uously estimated for all methods. Enrichment scores (PPV) were determined in the same way they were 
for EC. The PPVs for the individual methods ranged from 12-58% (average 37.4%), compared to 68% 
for EC. The results are summarized in Fig. 3a.

We also used two additional criteria to compare performance. For each method we counted the 
number of genes in the Top 50 that (i) are identified by at least 5 individual methods (i.e. at least half 
the methods); and (ii) appear in two other well-known breast cancer studies26,34, and would therefore 
be considered candidate drivers (a total of 216). Each method is ranked by these criteria, and an overall 

Method How it works Feature

OncodriveFM9

Computes a metric of functional impact using three well-
known methods (SIFT, PolyPhen2 and MutationAssessor) 
and assesses how the functional impact of variants found 

in a gene across several tumor samples deviates from a null 
distribution.

Uses P-value, which indicates whether variants 
within a gene are significantly accumulated with 

high functional impact.

OncodriveCLUST10 Identifies genes whose mutations tend to cluster in 
particular location on the protein.

Uses P-value, which measures the significance of 
gene clustering score compared with a background 

model that assess only silent mutations.

MutSig7

Estimates the background mutation rate for each gene–
patient–category combination based on the observed silent 

mutations in the gene and non-coding mutations in the 
surrounding regions.

Uses P-value, which is determined by testing 
whether the observed mutations in a gene 

significantly exceed the expected counts based on a 
background model.

ActiveDriver11

The method is based on a logistic regression strategy 
and identifies 22ignalling sites in proteins that involve 

unexpectedly many (or few) sequence variants considering 
the general variability of the protein, disordered and 

ordered regions, density of 22ignalling-related residues 
(such as phosphosites), and proximity of variants/mutations 

to 23ignalling residues.

Uses P-value, which indicates statistically 
unexpected mutated in protein phosphorylation 

sites or protein kinase domains.

Simon8
Accounts for the functional impact of mutations on 

proteins, variation in background mutation rate among 
tumors and the redundancy of the genetic code.

Uses P-value, which indicates genes whose 
mutation rate is significantly above background.

FLN12
Count connections of a gene with known cancer related 

genes based on FLN and provide Top 100 driver genes that 
with maximum connections.

Uses average weights (weights are obtained from 
FLN) between target gene and all Top 100 genes.

NetBox13 Identify driver module by maximizing modularity based on 
Human Interaction Network (HIN).

Uses total number of links between target gene 
and all genes interior to the module based on 
HIN. Target genes exterior to the module are 

assigned a weight of 1; interior genes are assigned 
a weight of 2.

MEMo14

Identify network modules whose members are recurrently 
altered across a set of tumor samples, are known to or are 
likely to participate in the same biological process and are 

mutually exclusive.

Uses total number of links between target gene 
and all genes interior to the module based on 

HIN. Exterior and interior genes are weighted 1 
and 2, respectively.

Dendrix15
Finds sets of genes, domains, or nucleotides whose 

mutations exhibit both high coverage and high exclusivity 
in the analysed samples.

Uses total number of links between target gene 
and all genes interior to the module based on 

HIN. Same weight as above.

FLNP (Huang et al., 
submitted)

Identify driver module by maximizing modularity based on 
Functional Linkage Network (FLN).

Uses average weights (weights are obtained from 
FLN) between target gene and all genes interior to 

the module.

Table 1.   Summary of 10 driver gene/module identification methods. This table describes the 10 methods 
that we use to do the integration, including the name of the method, how it works, how we use it as a 
feature.
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rank was assigned using the sum of the two ranks. Although a number of the methods do as well as EC 
in one or the other of the criteria (Fig.  3b,c), their performance is less stable. In particular, EC is tied 
for first place by both criteria, giving an overall rank of 2, somewhat higher than OncodriveFM, which 
placed second with a rank score of 5 (Fig. 3d). The high standing of EC by all 3 criteria supports the idea 
that the reliability is more stable than that of any other method.

Ovarian cancer.  Performance.  The average performance statistics for ovarian cancer were compa-
rable to those of breast cancer, with TP = 0.70, TN = 0.97. Again, the specificity is uninformative. Of the 
EC50 genes, 30 are annotated in either CGC, OMIM, or NCG (Fig. 4a), giving a PPV rate of 0.6.

Ten of the remaining 20 (marked with an asterisk) have cancer related records in either the GWAS 
Catalog or GAD. The remaining 10 – FYN, PRKCQ, MAPK3, EIF2AK3, ULK4, PRKCD, PRKD3, MAP4K3, 
MAST2, STK10 – are considered predictions (Fig. 4b).

A comparison of EC50 genes from breast and ovarian cancers indicates that 12 occur in both cancer 
types (Supplementary Table S1). Of these, 11 are identified by CGC, OMIM or NCG, as being present 
in at least 1 other cancer type. One gene, PRKCQ, is predicted to be present in both, and is not listed 
in any public databases. The biological implications of this finding are elaborated in the Discussion. In 
total, 34 of the EC50 breast cancer genes, and 30 of the EC50 ovarian cancer genes are in either CGC, 
OMIM or NCG and consequently occur in more than one cancer (Figs. 2a and 4a). More specifically, 16 
of the 34, and 18 of the 30 are found in at least 2 other cancer types. Consequently, in keeping with the 
growing consensus17, most of our predicted genes are not tissue specific.

Intergenic relations.  As with breast cancer, we searched for KEGG pathways that are statistically enriched 
in cancer drivers, and found 19 (FDR < 0.01) such pathways (Table 3). Figure 4c is a VisANT display of 
the relation between the three most significantly enriched signaling pathways: ErbB, Chemokine and 
Neurotrophin.

Predictive performance compared to individual classifiers.  The surrogate sensitivities of the individual 
methods, ranged from 4% to 29%. The PPVs ranged from 4% to 64% (average 36.2%). The PPV of 64%, 
slightly higher than that of EC, was achieved by the FLN and NetBox (Fig. 5a).

Just as with breast cancer, we compared the EC50 genes with the Top 50 genes selected by each of 
the 10 independent classifiers, using criteria (i) and (ii). The cancer genes were taken from two ovarian 
cancer studies27,35 that include 178 candidate drivers. EC identifies 3 genes that are classified as candidate 
drivers by at least 5 methods (Fig. 5b) and 11 genes that overlap with existing candidates (Fig. 5c), giving 
it the highest overall rank (Fig. 5d). The results are consistent with those obtained for breast cancer; an 
integrated procedure is unique in performing well against both criteria. This result along with the results 
for breast cancer adds another dimension to the evidence for increased stability of EC. It not only per-
forms at or near the top of the list when assessed against the individual methods, but does so for both 
cancer types.

Discussion
For breast cancer, of the six predicted candidates (PRKCQ, ARAF, MAPK14, BRMS1, CDC42BPA, SP3), 
three (PRKCQ, ARAF, MAPK14) are members of at least one KEGG cancer relevant pathway. PRKCQ is 
especially intriguing. It is a member of the protein kinase C (PKC) family, and ranks sixth in the EC50 
list. Equally importantly, like all PKC isoforms, its C1 domain binds phorbol esters, a class of tumor pro-
moters. PRKCQ signaling regulates the accumulation of the oncogenic transcription factor Fra-1 which 
is overexpressed in ER negative breast cancer cells36. The location of PRKCQ on the FLN lends weight 
to its importance as a driver. In particular, it is directly linked to 34 other driver candidates in EC50, 
including PTEN, MAPK8, CDKN1B, PRK3R1, which are well known drivers.

Although our analysis indicates that PRKCQ is a prominent candidates, it is missed by 9/10 individual 
classifiers (Fig. 2b). It is perhaps noteworthy that it only mutates in 7 of TCGA breast tumors samples, 
with 6 non-silent mutations and 1 silent mutation. Among these 6 non-silent mutations, there is only 
1 nonsense mutation with high impact on protein sequence, the other 5 are missense mutations that 
have little effects. Its low mutation rate (6/778 = 0.0078) might also contribute to the fact that it is only 
predicted to be significant (P = 0.02) by OncodriveFM, and undetectable by the 9 methods. This specific 
result illustrates our general finding that the sensitivity of EC is considerably greater than that of the 
methods used individually.

Other candidates are ARAF and BRMS1. The former is a proto-oncogene that regulates cell growth, 
development and differentiation and is involved in focal structural events in breast cancer37. BRMS1 
has a posterior probability Prb of 0.87 (Prb, a measure of distance from the decision boundary, which 
is at Prb = 0.5, see Methods), and is identified by both MutSig and ActiveDriver (Fig. 2b). There is some 
evidence that it suppresses metastatic breast cancer and is a potential inhibitor of tumor progression38. 
BRMS1 promoter methylation was evaluated as a prognostic biomarker in primary breast tumors and a 
subset of corresponding circulating tumor cells39.

Figure  2c shows EC50 genes and enriched signaling pathways mapped onto a functional linkage 
network (FLN)12. The FLN has the property that neighboring nodes (genes) are functionally related, as 
indicated by evidence weighted links. The enrichment of the three signaling pathways (Fig. 2c) -- ErbB, 
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Jak-STAT, TGF-beta -- is not surprising, but confirmatory: they have been widely discussed in the breast 
cancer literature (e.g.16,40,41). Perhaps of greater interest is that they strongly overlap functionally, sharing 
a number of genes. More specifically, our newly predicted gene ARAF is in the ErbB pathway. Equally 
suggestive is that ARAF has 29 strong functional connections in the FLN with other genes in EC50, and 
that it is tightly linked with a number of oncogenes or tumor suppressor genes including ERBB3, JAK2, 
PTEN, PIK3R1, MAP3K1.

The identification of the cellular processes pathways -- Cell cycle, Adherens junction, and Focal adhe-
sion – is also a confirmatory result. They have all been implicated in breast cancer by previous studies42–44.

The remaining 11 enriched pathways are organismal system (immune system, endocrine system, 
nervous system) related. Standish et al45 have demonstrated that activation of immune response path-
ways; specifically, the T cell receptor46 plays an important reactive role in breast cancer by suppressing 
cell proliferation and tumor growth. On the other hand, the neurotrophin signaling pathway, which 

Figure 2.  Ensemble predictions for breast cancer. (a) Thirty-four of the top 50 genes selected by EC 
(EC50) are either in CGC, OMIM, or NCG. The Venn diagram displays their distribution among the three 
databases. Of the remaining 16 genes, 10 have been discovered in GWAS studies (indicated by asterisk). (b) 
EC50 genes identified by the 10 independent classifiers. (c) EC50 genes and enriched signalling pathways 
mapped onto the FLN as explained in the text. Only links with weights greater than 0.1 are retained.
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has been studied primarily in the central nervous system, may be a driver, rather than a reactive breast 
cancer pathway47,48. There is also one newly predicted gene, MAPK14, in the immune/nervous/endocrine 
system pathways that appears to be causal. It is involved in 29 pathways according to KEGG and linked 
to 39 of the Top 50 genes in the FLN, interacts strongly with other oncogenes or tumor suppressor genes, 
including ERBB3, JAK2, PIK3R1, PTEN. It may have a role as an integration point for multiple biochem-
ical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, 
transcription regulation and development.

For ovarian cancer, thirty of the EC50 genes are annotated in either CGC, OMIM or NCG, 10 are in 
genome-wide association study, and another 10 are predictions. We focus on the 10 predictions. First, 

Pathway Count Genes P-value FDR

ErbB signaling 12
CDKN1B, GRB2, ERBB3, 

PIK3CB, JUN, ARAF, 
MAPK8, SHC1, RPS6KB1, 

PAK1, ABL1, PIK3R1
3.0E-11 7.4E-10

Neurotrophin signaling 12
GRB2, PIK3CB, MAP3K1, 
MAPK14, JUN, NFKBIA, 
NFKB1, MAPK8, SHC1, 

ABL1, IRS1, PIK3R1
1.5E-9 2.2E-8

T cell receptor signaling 11
PRKCQ, GRB2, PIK3CB, 
MAPK14, JUN, IFNG, 

NFKBIA, NFKB1, PAK1, 
PIK3R1, IL2

6.1E-9 6.6E-8

Jak-STAT signaling 10
TYK2, GRB2, PIK3CB, 
IL6ST, IFNG, CREBBP, 
JAK2, STAT3, PIK3R1, 

IL2
2.2E-6 1.6E-5

Cell cycle 9
E2F1, CDKN1B, HDAC2, 

HDAC1, CREBBP, 
SMAD4, SMAD3, 

SMAD2, ABL1
4.2E-6 2.9E-5

Toll-like receptor signaling 8
PIK3CB, MAPK14, 

JUN, NFKBIA, NFKB1, 
MAPK8, TLR4, PIK3R1

1.1E-5 6.2E-5

Adipocytokine signaling 7
PRKCQ, NFKBIA, 

NFKB1, MAPK8, JAK2, 
IRS1, STAT3

1.1E-5 6.0E-5

B cell receptor signaling 7
GRB2, PIK3CB, JUN, 

NFKBIA, NFKB1, 
PIK3R1, BTK

2.2E-5 1.0E-4

TGF-beta signaling 7
SP1, IFNG, CREBBP, 

SMAD4, SMAD3, 
SMAD2, RPS6KB1

5.1E-5 2.1E-4

Insulin signaling 8
GRB2, PIK3CB, ARAF, 

MAPK8, SHC1, RPS6KB1, 
IRS1, PIK3R1

7.1E-5 2.8E-4

Chemokine signaling 9
GRB2, PIK3CB, NFKBIA, 

NFKB1, JAK2, SHC1, 
PAK1, STAT3, PIK3R1

8.1E-5 3.0E-4

Fc epsilon RI signaling 6 GRB2, PIK3CB, MAPK14, 
MAPK8, PIK3R1, BTK 3.2E-4 1.1E-3

Natural killer cell mediated 
cytotoxicity 7

GRB2, PIK3CB, ARAF, 
IFNG, SHC1, PAK1, 

PIK3R1
5.3E-4 1.7E-3

Focal adhesion 8
GRB2, PIK3CB, JUN, 

MAPK8, SHC1, PAK1, 
PTEN, PIK3R1

8.3E-4 2.4E-3

GnRH signaling 6
MAP3K4, GRB2, 

MAP3K1, MAPK14, JUN, 
MAPK8

9.3E-4 2.6E-3

RIG-I-like receptor signaling 5 MAP3K1, MAPK14, 
NFKBIA, NFKB1, MAPK8 2.2E-3 5.8E-3

Adherens junction 5 CREBBP, SMAD4, 
SMAD3, SMAD2, MLLT4 2.9E-3 7.6E-3

Table 2.   KEGG pathways enriched in breast cancer using DAVID (FDR < 0.01). This table shows enriched 
KEGG pathways in breast cancer (FDR < 0.01), with FDR ascending order. The second and third columns are 
the number and names of the Top 50 genes in a given enriched pathway. Bold face indicates that the gene is 
newly predicted by EC, i.e. it is not identified as breast cancer related in any of the databases.
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from a purely statistical view, FYN, which has the highest posterior probability (Prb = 0.95) of the pre-
dicted genes, would seem to be the strongest, or among the strongest candidates. It also participates as 
a member of the driver modules identified by FLN, NetBox and FLNP (Fig. 4b). The strong statistical 
results find some support in biology. FYN encodes a membrane-associated tyrosine kinase that has been 

Figure 3.  Comparison of performance metrics for the ensemble classifier and single feature classifiers 
for breast cancer. (a) Sensitivity and PPV for each of the methods. (b) The number of genes in Top 50 
that are identified by at least 5 methods. No genes can be selected by more than 5 methods in FLN and 
ActiveDriver. (c) The number of genes in Top 50 that are annotated in two breast cancer studies. (d) Overall 
ranking of each method based on the sum of rankings in (b) and (c).
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implicated in the control of cell growth. It is a Ras induced src family kinase that is overexpressed in a 
large number of cancers49.

PRKCD and PRKD3 belong to protein kinase C (PKC) family, whose members also serve as major 
receptors for phorbol esters, a class of tumor promoters. The family of protein kinases includes many 
oncogenes and growth factor receptors, some of which have been linked to the pathogenesis and pro-
gression of breast cancer50.

The FLN provides additional insight. PRKD3 has 40 connections with other EC50 genes in the FLN, 
including tumor suppressor genes, and oncogenes such as TP53, JAK2, RAF1. PRKD3 was found to 

Figure 4.  Ensemble predictions for ovarian cancer.(a) Thirty of the top 50 genes selected by EC (EC50) 
are either in CGC, OMIM, or NCG. The Venn diagram displays their distribution among the three 
databases. Of the remaining 20 genes, 10 have been discovered in GWAS studies (indicated by asterisk). (b) 
EC50 genes identified by the 10 independent classifiers. (c) Mapping of EC50 genes and enriched signalling 
pathways onto an FLN as explained in the text. Only links with weights greater than 0.1 are retained.



www.nature.com/scientificreports/

1 0Scientific Reports | 5:10204 | DOI: 10.1038/srep10204

Pathway Count Genes P-value FDR

ErbB signaling pathway 11
PTK2, MAP2K1, GRB2, 

JUN, SOS1, MAPK3, 
RAF1, SHC1, ABL1, MYC, 

SRC
9.2E-10 2.1E-8

Neurotrophin signaling 12
NTRK3, MAP2K1, GRB2, 

JUN, NTRK1, SOS1, 
MAPK3, TP53, RAF1, 
SHC1, ABL1, PRKCD

2.4E-9 4.1E-8

Chemokine signaling 13

MAP2K1, GRB2, RAF1, 
STAT1, VAV2, STAT3, 
PTK2, PTK2B, SOS1, 
MAPK3, JAK2, SHC1, 

JAK3

5.9E-9 6.7E-8

Focal adhesion 13
MAP2K1, GRB2, MET, 

RAF1, VAV2, SRC, PTK2, 
FYN, SOS1, JUN, MAPK3, 

PDGFRB, SHC1
2.4E-8 2.3E-7

Natural killer cell mediated 
cytotoxicity 10

MAP2K1, GRB2, PTK2B, 
FYN, SOS1, LCK, MAPK3, 

RAF1, SHC1, VAV2
5.5E-8 3.7E-7

Cell cycle 10
CREBBP, TP53, PRKDC, 
SMAD3, SMAD2, RB1, 

ABL1, MYC, CDK2, ATM
4.5E-7 2.8E-6

Adherens junction 8
FYN, CREBBP, MET, 

MAPK3, SMAD3, SMAD2, 
INSR, SRC

1.7E-6 8.6E-6

T cell receptor signaling 9
MAP2K1, GRB2, FYN, 

JUN, SOS1, LCK, MAPK3, 
RAF1, VAV2

2.2E-6 1.1E-5

GnRH signaling 8
MAP2K1, GRB2, PTK2B, 

JUN, SOS1, MAPK3, 
RAF1, SRC

1.1E-5 4.1E-5

Jak-STAT signaling 9
GRB2, SOS1, CREBBP, 

JAK1, JAK2, JAK3, STAT1, 
MYC, STAT3

1.5E-5 5.3E-5

B cell receptor signaling 7
MAP2K1, GRB2, JUN, 
SOS1, MAPK3, RAF1, 

VAV2
1.9E-5 6.1E-5

Fc epsilon RI signaling 7
MAP2K1, GRB2, FYN, 
SOS1, MAPK3, RAF1, 

VAV2
2.4E-5 7.2E-5

MAPK signaling 11
MAP4K3, MAP2K1, 
GRB2, JUN, NTRK1, 
SOS1, MAPK3, TP53, 
PDGFRB, RAF1, MYC

4.8E-5 1.4E-4

Gap junction 7
MAP2K1, GRB2, SOS1, 

MAPK3, PDGFRB, RAF1, 
SRC

9.2E-5 2.5E-4

TGF-beta signaling 6 SP1, CREBBP, MAPK3, 
SMAD3, SMAD2, MYC 4.5E-4 1.1E-3

Insulin signaling 7
MAP2K1, GRB2, SOS1, 
MAPK3, RAF1, SHC1, 

INSR
5.5E-4 1.3E-3

Axon guidance 7
PTK2, FYN, MET, 

MAPK3, FES, ABL1, 
CDK5

6.0E-4 1.4E-3

Dorso-ventral axis formation 4 MAP2K1, GRB2, SOS1, 
MAPK3 8.6E-4 1.9E-3

VEGF signaling 5 PTK2, MAP2K1, MAPK3, 
RAF1, SRC 2.6E-3 5.7E-3

Table 3.   KEGG pathways enriched in ovarian cancer using DAVID (FDR < 0.01). This table shows enriched 
KEGG pathways in ovarian cancer (FDR < 0.01), with FDR ascending order. The second and third columns 
are the number and names of the Top 50 genes in a given enriched pathway. Bold face indicates that the 
gene is newly predicted by EC.
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interact with HDAC1 in prostate cancer by suppressing its expression and decreasing its binding to the 
uPA promotor51, interestingly, HDAC1 is well known to deacetylates p53 and modulates its effect on cell 
growth and apoptosis, indicating there might be some undiscovered relations between PRKD3 and p53.

It is noteworthy that PRKCD, PRKD3, MAP4K3 are novel findings that can’t be identified by any 
of the 10 methods (Fig. 4b), although they are also highly plausible based on what we know about the 
physiology of the processes they are involved in. These genes provide an especially informative contrast 

Figure 5.  Comparison of performance metrics for the ensemble classifier and single feature classifiers 
for ovarian cancer. (a) Sensitivity and PPV for each of the methods. (b) The number of genes in Top 50 
that are identified by at least 5 methods. (c) The number of genes in Top 50 that are annotated in two 
ovarian cancer studies. No genes can be overlapped with these two studies in MEMo. (d) Overall ranking of 
each method based on the sum of rankings in (b) and (c).
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between the outcomes of integration and independent classifiers. In particular EC identifies them as 
strong candidates, whereas none of the classifiers used independently identify them. As an example, 
PRKD3 only mutates in 3 ovarian tumors, with a mutation rate as low as 0.0095 (3/316 = 0.0095), and all 
3 are missense mutations that have mild impact on protein structure. Since PRKD3 very rarely mutates 
in ovarian cancer, it is difficult to detect by the individual methods.

Of the 19 KEGG pathways that are enriched in ovarian cancer, 14 overlap with enriched pathways in 
breast cancer. Some of the pathways that appear to be ovarian cancer specific such as MAPK signaling 
and VEGF signaling are generally altered tumors. Their lack of enrichment in the breast cancer EC50 
suggests that they are likely false negatives, possibly reflecting stage-related biases in the cancer samples, 
compounded by the small number of genes that we are considering.

Four predicted genes are included in these 19 pathways (shown in bold face in Table 3). It is interest-
ing that both of MAPK3 and MAP4K3 are members of mitogen-activated protein (MAP) kinase family. 
Relations between MAP kinase family and ovarian cancer have been discussed broadly before52,53: it is 
perhaps not surprising, but nevertheless supportive of the method, that the MAPK3 (17 pathways), and 
MAP4K3 (1 pathway) system is enriched in EC50 genes.

Several factors may impact our results, including the proper selection of training sets, and limitations 
of sample size.

For the positive gene set, we manually searched both CGC and OMIM by keywords for a particular 
cancer. Undoubtedly these two databases are incomplete, but they are the most thorough catalog of 
driver genes currently available. Due to our limited knowledge of cancer or mistakes during sequenc-
ing, the classifier built on our selected positive and negative sets will not be perfect. We have, however, 
reduced the effect of noise on the training set by imposing a stringent condition on acceptance, as 
described in methods.

Stringency in choosing data sets of course leads to a potential problem of an overly limited training 
set. We approached this by choosing to select an ensemble classifier, DECORATE, specifically designed 
to address the problem of limited data. As discussed under “Methods”, DECORATE is designed to 
iteratively generate artificial training examples so that an effective diverse committee could be created. 
Computational experiments31 have demonstrated that DECORATE work effectively by achieving higher 
accuracy than other methods, especially when training the set is small.

Methods
Individual classifiers.  We identify 10 methods by screening the literature and select those that are 
publicly available, and that provide the data required for execution. For example, we omit MuSiC6 because 
the binary version of sequence alignment data (.bam) which is a required input file, is not open access.

We first implement each algorithm separately, to obtain a matrix G of driver candidates, where the 
element gij is 1 if algorithm j classifies gene i as a driver, and 0, otherwise. Here j runs from 1 to 10 and 
i labels the genes that are predicted by at least one algorithm (see Supplementary Table S1). For those 
classifiers requiring explicit mutation data (OncodriveFM, OncodriveCLUST, MutSig, MEMo, Dendrix, 
ActiveDriver, Simon, NetBox), we use the Cancer Genome Atlas (TCGA) breast cancer26 data set (.maf), 
which includes 52,164 somatic mutations identified in 17,042 genes from 778 breast cancer (BRCA) 
patients; and the TCGA ovarian cancer data27, which includes 19,356 somatic mutations in 9,968 genes 
from 316 ovarian (OV) cancer patients.

Training and testing.  The positive sets are obtained by searching keywords of breast cancer or ovar-
ian cancer in both CGC (http://cancer.sanger.ac.uk/cancergenome/projects/census/) and OMIM (http://
www.omim.org/), giving 37 positive genes for breast cancer, and 27 for ovarian cancer. Unfortunately, 
there is no gold standard for a negative set. However, two key characteristics of drivers--their distribu-
tions across cancer types, and their frequencies of occurrence across large sample sets -- can help us 
inform the selection of negatives. We assume that a gene is unlikely to be a driver if (i) it is mutated 
no more than once across all samples, 1/778 for breast cancer and 1/316 for ovarian cancer -- and (ii) 
it has no causally implicated mutations in other cancer types included in CGC, OMIM and NCG. We 
expect that the resulting set of 3943 and 4344 for breast and ovarian cancer, respectively, will have a low 
frequency of drivers. The primary effects of contamination of the negative set with drivers, will be that 
some of the predictions classified as false positives, will in fact be actual positives; i.e. our FP rate should 
be an upper bound.

The large set of negatives is expected, since most mutated genes will be passengers. However, the 
result is a highly unbalanced training set. This problem is moderated by repeatedly selecting a random 
sample of 37 genes from the 3943 negatives in breast cancer (or 27 of the 4344 negatives in ovarian can-
cer), and using it together with the positives to repeatedly train the classifier. The random selections are 
done through an undersampling method SpreadSubsample in weka54 to balance positives and negatives 
by setting a parameter distribution spread to 1. We repeat these trials 50 times to obtain 50 different 
training sets. Each training set is used with DECORATE and the results are averaged to obtain a poste-
rior probability (Prb), on the basis of which an assignment is made.

Performance measures for EC are estimated by 10-fold cross validation. During training in each of the 
50 trials, 10% of the genes (positives plus negatives) are set aside, and used to determine the true positive 

http://cancer.sanger.ac.uk/cancergenome/projects/census/
http://www.omim.org/
http://www.omim.org/
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and true negative rates (sensitivity and specificity). The overall performance is assessed by averaging the 
performance over the 50 trials.

For each method we compute the PPV on the top 50 breast cancer predictions (after excluding any 
overlap with our positive training set) by testing overlap of top 50 with 2191 genes annotated as cancer 
related in either CGC, OMIM or NCG, but excluding breast cancer. We obtained a similar list of 2201 
genes for evaluation of ovarian cancer prediction. The PPV is then the number of such genes occurring 
in the Top 50 divided by the number of calls, which is 50.

We evaluated the sensitivities and specifies for the 10 publicly available methods using 37 and 27 pos-
itives (P) respectively for breast and ovarian cancer, and samples of the same numbers for the negatives 
(N). This was done in order to keep the estimates for the 10 public classifiers consistent with the numbers 
used for EC. The sensitivity was then the fraction of P that are true positives in Top 50, and the specificity, 
the fraction of N that are true negatives outside of Top 50. Because the number of calls is so small, the 
allocation of a negative gene to the list almost never occurs. Hence the specificity is essentially 1.

Screening.  We download genes from ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/ 
on March 2014, retaining the 20,624 genes annotated as protein-coding. The ensemble classifier is applied 
to the genes that remained after excluding the training sets.

Ensemble classifier (EC).  As a minimalist approach, we use each method as a feature; i.e. we assign 
a 10-dimensional feature vector to each gene (Table 1). When a vector for a gene is incomplete, miss-
ing elements are assigned a value of 1 for gene methods (OncodriveFM, OncodriveCLUST, MutSig, 
ActiveDriver, Simon) based on P-values, or 0 for module methods (FLN, NetBox, MEMo, Dendrix, 
FLNP) based on linkage weights. Consequently, each gene is represented by a point in a 10 dimensional 
space.

We create ensembles of training sets using DECORATE (Diverse Ensemble Creation by Oppositional 
Relabeling of Artificial Training Examples)31, which is available on the Weka workbench54. The 
DECORATE ensemble classification model is used with the following parameters: artificialSize = 1 (the 
number of artificial examples added to the original training set, specified as a fraction of training data), 
desiredSize = 15 (the pre-defined number of ensemble classifiers in Decorate), numIteration = 50 (the 
maximum number of iterations to build an ensemble). The final classification is determined by using the 
average posterior probabilities of four base classifiers: NaiveBayes55, Sequential Minimal Optimization 
(SMO) algorithm for training a support vector classifier56, C4.5 decision tree57, and forest of random 
trees58.

We choose DECORATE because there is some evidence31 that for small training sets, it achieves 
higher accuracy than bagging59, or boosting60. DECORATE is a meta-learner classification algorithm 
that works on a base learner to build an effective diverse committee. It randomly generates new artificial 
examples in the training set by picking data points from an approximation of the training-data distri-
bution.

Conclusions
We developed and evaluated a principled approach to the integration of 10 driver gene/module identifi-
cation methods. We found that its performance is superior to that of methods used independently, and 
that its reliability is more stable. The ensemble classifier identified a number of genes that are currently 
unrecognized as cancer related, but whose biological properties and other evidence suggest that they can 
reasonably be expected to play a role in cancer physiology.

References
1.	 Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 144, 646–674 (2011).
2.	 Chin, L. et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 

1061–1068 (2008).
3.	 Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).
4.	 Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).
5.	 Watson, I. R., Takahashi, K., Futreal, P. A. & Chin, L. Emerging patterns of somatic mutations in cancer. Nat. Rev. Genet. 14, 

703–718 (2013).
6.	 Dees, N. D. et al. MuSiC: Identifying mutational significance in cancer genomes. Genome. Res. 22, 1589–1598 (2012).
7.	 Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 

(2013).
8.	 Youn, A. & Simon, R. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics 27, 175–181 (2011).
9.	 Gonzalez-Perez, A. & Lopez-Bigas, N. Functional impact bias reveals cancer drivers. Nucleic Acids Res. 40, e169 (2012).

10.	 Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N. OncodriveCLUST: exploiting the positional clustering of somatic mutations 
to identify cancer genes. Bioinformatics 29, 2238–2244 (2013).

11.	 Reimand, J. & Bader, G. D. Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. 
Mol. Syst. Biol. 10, 5633; DOI:10.15252/msb.20145633 (2014).

12.	 Linghu, B., Snitkin, E. S., Hu, Z., Xia, Y. & Delisi, C. Genome-wide prioritization of disease genes and identification of disease-
disease associations from an integrated human functional linkage network. Genome. biology 10, R91; DOI:10.1186/gb-2009-10-
9-r91 (2009).

13.	 Cerami, E., Demir, E., Schultz, N., Taylor, B. S. & Sander, C. Automated Network Analysis Identifies Core Pathways in 
Glioblastoma. Plos. One 5, e8918; doi:10.1371/journal.pone.0008918 (2010).

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/


www.nature.com/scientificreports/

1 4Scientific Reports | 5:10204 | DOI: 10.1038/srep10204

14.	 Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis identifies oncogenic network modules. Genome. Res. 
22, 398–406 (2012).

15.	 Vandin, F., Upfal, E. & Raphael, B. J. De novo discovery of mutated driver pathways in cancer. Genome. Res. 22, 375–385 (2012).
16.	 Liu, Y. & Hu, Z. Identification of collaborative driver pathways in breast cancer. BMC genomics 15, 605 (2014).
17.	 Tamborero, D. et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci. Rep. 3, 2650; 

DOI:10.1038/srep02650 (2013).
18.	 Cheng, W. C. et al. DriverDB: an exome sequencing database for cancer driver gene identification. Nucleic Acids Res. 42, D1048–

D1054 (2014).
19.	 Noble, W. S. What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006).
20.	 Liu, Y., Li, M., Cheung, Y. M., Sham, P. C. & Ng, M. K. SKM-SNP: SNP markers detection method. J. Biomed. Inform. 43, 

233–239 (2010).
21.	 Liu, Y. & Ng, M. Shrunken methodology to genome-wide SNPs selection and construction of SNPs networks. BMC systems 

biology 4 Suppl 2, S5; DOI:10.1186/1752-0509-4-S2-S5 (2010).
22.	 Wu, Q. Y., Ye, Y. M., Liu, Y. & Ng, M. K. SNP Selection and Classification of Genome-Wide SNP Data Using Stratified Sampling 

Random Forests. Ieee T Nanobiosci. 11, 216–227 (2012).
23.	 Golub, T. R. et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 

286, 531–537 (1999).
24.	 Holloway, D. T., Kon, M. A. & DeLisi, C. Machine learning methods for transcription data integration. Ibm. J. Res. Dev. 50, 

631–643 (2006).
25.	 Holloway, D. T., Kon, M. & DeLisi, C. In silico regulatory analysis for exploring human disease progression. Biology direct 3, 24; 

DOI:10.1186/1745-6150-3-24 (2008).
26.	 Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
27.	 Bell, D. et al. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).
28.	 An, O. et al. NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes. Database 

2014, bau015; DOI:10.1093/database/bau015 (2014).
29.	 Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–1006 

(2014).
30.	 Becker, K. G., Barnes, K. C., Bright, T. J. & Wang, S. A. The genetic association database. Nature genetics 36, 431–432 (2004).
31.	 Melville, P. & Mooney, R. J. Creating Diversity in Ensembles Using Artificial Data. Information Fusion: Special Issue on Diversity 

in Multiclassifier Systems 6, 99–111 (2004).
32.	 Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional 

analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).
33.	 Hu, Z. et al. VisANT 4.0: Integrative network platform to connect genes, drugs, diseases and therapies. Nucleic Acids Res. 41, 

W225–231 (2013).
34.	 Vogelstein, B. et al. Cancer Genome Landscapes. Science 339, 1546–1558 (2013).
35.	 D’Antonio, M. & Ciccarelli, F. D. Integrated analysis of recurrent properties of cancer genes to identify novel drivers. Genome. 

biology 14, R52; DOI:10.1186/gb-2013-14-5-r52 (2013).
36.	 Belguise, K. et al. The PKCtheta pathway participates in the aberrant accumulation of Fra-1 protein in invasive ER-negative breast 

cancer cells. Oncogene 31, 4889–4897 (2012).
37.	 Craig, D. W. et al. Genome and Transcriptome Sequencing in Prospective Metastatic Triple-Negative Breast Cancer Uncovers 

Therapeutic Vulnerabilities. Mol. Cancer Ther. 12, 104–116 (2013).
38.	 Zhang, Y. et al. Expression of breast cancer metastasis suppressor-1, BRMS-1, in human breast cancer and the biological impact 

of BRMS-1 on the migration of breast cancer cells. Anticancer research 34, 1417–1426 (2014).
39.	 Chimonidou, M., Kallergi, G., Georgoulias, V., Welch, D. R. & Lianidou, E. S. Breast cancer metastasis suppressor-1 promoter 

methylation in primary breast tumors and corresponding circulating tumor cells. Molecular cancer research : MCR 11, 1248–1257 
(2013).

40.	 Hernandez-Vargas, H. et al. Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells. 
Epigenetics-Us 6, 429–440 (2011).

41.	 Giampieri, S. et al. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. 
Nature cell biology 11, 1287–1296 (2009).

42.	 Caldon, C. E., Daly, R. J., Sutherland, R. L. & Musgrove, E. A. Cell cycle control in breast cancer cells. Journal of cellular 
biochemistry 97, 261–274 (2006).

43.	 Bertocchi, C., Vaman Rao, M. & Zaidel-Bar, R. Regulation of adherens junction dynamics by phosphorylation switches. Journal 
of signal transduction 2012, 125295; DOI:10.1155/2012/125295 (2012).

44.	 Lazaro, G. et al. Targeting focal adhesion kinase in ER+ /HER2+ breast cancer improves trastuzumab response. Endocrine-related 
cancer 20, 691–704 (2013).

45.	 Standish, L. J. et al. Breast cancer and the immune system. Journal of the Society for Integrative Oncology 6, 158–168 (2008).
46.	 Campbell, M. J., Scott, J., Maecker, H. T., Park, J. W. & Esserman, L. J. Immune dysfunction and micrometastases in women with 

breast cancer. Breast Cancer Res. Tr. 91, 163–171 (2005).
47.	 Hondermarck, H. Neurotrophins and their receptors in breast cancer. Cytokine Growth F R 23, 357–365 (2012).
48.	 Louie, E. et al. Neurotrophin-3 modulates breast cancer cells and the microenvironment to promote the growth of breast cancer 

brain metastasis. Oncogene 32, 4064–4077 (2013).
49.	 Yadav, V. & Denning, M. F. Fyn Is Induced by Ras/PI3K/Akt Signaling and Is Required for Enhanced Invasion/Migration. Mol. 

Carcinogen 50, 346–352 (2011).
50.	 Cance, W. G. & Liu, E. T. Protein-Kinases in Human Breast-Cancer. Breast Cancer Res. Tr. 35, 105–114 (1995).
51.	 Zou, Z. et al. PKD2 and PKD3 promote prostate cancer cell invasion by modulating NF-kappaB- and HDAC1-mediated 

expression and activation of uPA. Journal of cell science 125, 4800–4811 (2012).
52.	 Davis, S. J. et al. Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer. 

Bmc Cancer 11, 173; DOI:10.1186/1471-2407-11-173 (2011).
53.	 Denkert, C. et al. Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. 

Int. J. Cancer 102, 507–513 (2002).
54.	 Hall, M. et al. The WEKA Data Mining Software: An Update. SIGKDD Explorations 11, 10–18 (2009).
55.	 John, G. H. & Langley, P. Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of the Eleventh Conference 

on Uncertainty in Artificial Intelligence: Montreal, Quebec. (Morgan Kaufmann Publishers Inc.  San Francisco, CA, USA, . 338–345 
(1995 Aug 18).

56.	 Platt J. C. Fast training of support vector machines using sequential minimal optimization in Advances in kernel methods-Support 
Vector Learning (eds Schoelkopf, B. et al.) 185–208 (MIT Press,  1998).

57.	 Quinlan, R. C4.5: Programs for Machine Learning in Quinlan1993 (Morgan Kaufmann Publishers,  1993).
58.	 Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001).



www.nature.com/scientificreports/

1 5Scientific Reports | 5:10204 | DOI: 10.1038/srep10204

59.	 Breiman, L. Bagging predictors. Machine Learning 24, 123–140 (1996).
60.	 Freund, Y. & Schapire, R. E. Experiments with a new boosting algorithm. In Proceedings of the Thirteenth International Conference 

on Machine Learning: Bari, Italy. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA. 148-156 (1996 July).

Acknowledgements
This work is supported by National Institutes of Health (R01GM103502-05).

Author Contributions
Y.L., F.T., Z.J.H. and C.D. contributed to the study design. Y.L. and C.D. contributed to the concepts. Y.L. 
coded the program, and ran the experiments. C.D. and Y.L. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Liu, Y. et al. Evaluation and integration of cancer gene classifiers: 
identification and ranking of plausible drivers. Sci. Rep. 5, 10204; doi: 10.1038/srep10204 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers

	Results

	Breast Cancer. 
	Performance. 
	Intergenic relations. 
	Predictive performance compared to individual classifiers. 

	Ovarian cancer. 
	Performance. 
	Intergenic relations. 
	Predictive performance compared to individual classifiers. 


	Discussion

	Methods

	Individual classifiers. 
	Training and testing. 
	Screening. 
	Ensemble classifier (EC). 

	Conclusions

	Acknowledgements

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Ensemble classifier (EC) flow chart.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Ensemble predictions for breast cancer.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Comparison of performance metrics for the ensemble classifier and single feature classifiers for breast cancer.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Ensemble predictions for ovarian cancer.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Comparison of performance metrics for the ensemble classifier and single feature classifiers for ovarian cancer.
	﻿Table 1﻿﻿. ﻿  Summary of 10 driver gene/module identification methods.
	﻿Table 2﻿﻿. ﻿  KEGG pathways enriched in breast cancer using DAVID (FDR < 0.
	﻿Table 3﻿﻿. ﻿  KEGG pathways enriched in ovarian cancer using DAVID (FDR < 0.



 
    
       
          application/pdf
          
             
                Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10204
            
         
          
             
                Yang Liu
                Feng Tian
                Zhenjun Hu
                Charles DeLisi
            
         
          doi:10.1038/srep10204
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep10204
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep10204
            
         
      
       
          
          
          
             
                doi:10.1038/srep10204
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10204
            
         
          
          
      
       
       
          True
      
   




