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Abstract

Despite the demonstrated success of genome-wide genetic screens and chemical genomics studies at predicting functions for genes of
unknown function or predicting new functions for well-characterized genes, their potential to provide insights into gene function has
not been fully explored. We systematically reanalyzed a published high-throughput phenotypic dataset for the model Gram-negative
bacterium Escherichia coli K-12. The availability of high-quality annotation sets allowed us to compare the power of different metrics for
measuring phenotypic profile similarity to correctly infer gene function. We conclude that there is no single best method; the three metrics
tested gave comparable results for most gene pairs. We also assessed how converting quantitative phenotypes to discrete, qualitative
phenotypes affected the association between phenotype and function. Our results indicate that this approach may allow phenotypic data
from different studies to be combined to produce a larger dataset that may reveal functional connections between genes not detected in
individual studies.
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Introduction
Genome-wide genetic screens and chemical genomic studies, pio-
neered in yeast (Giaever and Nislow, 2014), are now widely used
to study gene function in many model organisms, including the
bacterium Escherichia coli (Nichols et al. 2011; Campos et al. 2018;
Price et al. 2018). Based on the same principle that underlies the
interpretation of forward genetic studies—that mutations that
cause similar phenotypes are likely to affect the same biological
process(es)—these high-throughput approaches have led to
insights into the biology of a variety of organisms (Hillenmeyer
et al. 2010; Arnoldo et al. 2014; Shefchek et al. 2020). It has been
concluded that the collective phenotypic expression pattern of
an organism can serve as a key to understand growth, fitness, de-
velopment, and diseases (Bochner 2009; Houle et al. 2010).

Despite the demonstrated success of high-throughput
phenotypic studies at predicting functions for genes of unknown
function or predicting new functions for well-characterized
genes, their potential to provide insights into gene function has
not been fully explored. There does not seem to have been a
systematic comparison of different metrics for measuring the
similarity of phenotypic profiles. Further, while the likely benefits
of combining information from high-throughput phenotypic
studies from different laboratories have been recognized, very
few methods of doing this have been described (Hoehndorf et al.
2013; Shefchek et al. 2020).

Here, we report reanalysis of the data from a published high-

throughput phenotypic study of Escherichia coli K-12 (Nichols et al.

2011). Escherichia coli is one of the best-studied bacterial

organisms, and the availability of high-quality annotation sets

with information on gene function and regulation allowed us to

compare the ability of different metrics for measuring phenotypic

profile similarity to correctly infer gene function. We conclude

that there is no single best method for comparing phenotypic

profiles. Overall, the three metrics we tested gave comparable

results for most gene pairs. However, there were instances

where the metrics behaved differently from one another. We also

assessed how converting quantitative phenotypes to discrete,

qualitative phenotypes affected associations between phenotype

and function. Our results indicate that this may be a viable

approach for combining phenotypic data from different studies,

creating a larger dataset that may reveal functional associations

not detected by individual studies alone.

Materials and methods
Sources of data
The high-throughput phenotypic profiling data as normalized fit-

ness scores were downloaded from Supplementary Table S2 of

the original paper (Nichols et al. 2011). Missing values (0.17% of

total fitness scores) were replaced with population mean as an
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imputation method. In Supplementary Table S2, fitness scores
were associated with the relevant mutant gene with ECK identi-
fiers. In order to map functional annotations to these genes,
the ECK identifiers were verified, corrected, and mapped to b
numbers and EcoCyc gene identifiers using information in the
genes.dat file from EcoCyc release 21.0. This and other EcoCyc
files were downloaded from their website (https://biocyc.org/
download.shtml).

The six annotation sets were obtained from various sources.
EcoCyc pathway annotations were mapped to each gene using in-
formation in the pathways.col file (EcoCyc release 21.0). EcoCyc
protein complex annotations were mapped to each gene using in-
formation in the protcplxs.col file (EcoCyc release 21.1) after re-
moval of homomeric protein complexes. KEGG module
annotations were obtained and mapped by retrieving module
name and b numbers from the KEGG website (https://www.kegg.
jp). Operon annotations were mapped to each gene using infor-
mation in the id_mapping/transunits.dat file (EcoCyc release
21.1). Regulon annotations were obtained and mapped to each
gene using a download of Regulon DB version 9.4 (http://regu
londb.ccg.unam.mx). The object_synonym.txt file was used to
map ECK12 gene identifiers to ECK gene identifiers. RegulonDB
annotations were then obtained from the file regulon_d_tmp.txt
and mapped to ECK identifiers.GO biological process annotations
were obtained from the Ecocyc gene_association.ecocyc file
(EcoCyc release 21.1) and mapped to each gene to produce the
file 2017_05_ECgene_association.ecocyc.csv. UniProt IDs retrieved
from the Bioconductor package UniProt.ws were used to associate
GO annotations from proteins to genes. The annotation sets, the
number of genes annotated by each annotation set, and the total
number of annotations are summarized in Table 1.

Statistical analysis and software
The statistical programming language R was used throughout
the study. Phenotypic profile similarity was calculated using
Pearson correlation coefficient (jPCCj), Spearman’s rank correla-
tion coefficient (jSRCCj), mutual information (MI), and semantic
similarity. PCC and SRCC were calculated using the cor() func-
tion, with the metric argument specified by either “pearson” or
“spearman.” Different implementations are needed to calculate
MI for continuous, quantitative data and discretized, qualitative

data. MI for quantitative data was calculated using the cminjk()
function provided in the mpmi package (https://cran.r-project.org/
web/packages/mpmi/index.html), while MI for discretized data
was calculated using the mutinformation() function provided in
the infotheo package (https://CRAN.R-project.org/package-
infotheo). For the plots of precision versus ranking based on phe-
notypic profile similarity (Figures 2–4 and 6), the negative control is
precision calculated for randomly ordered gene pairs that
were generated using the R function sample() to permute the rank-
ings of all possible gene pairs. For precision-recall curves
(Supplementary Figures S6-S8), the negative control is precision
calculated for 5000 gene pairs selected randomly without replace-
ment from the set of all possible gene pairs using the R function
sample(). For all negative controls, the number of co-annotated
gene pairs present in the set of all possible gene pairs differed
depending on which annotation set or combination of annotation
sets was used to identify co-annotated gene pairs, except Figure 2,
where only the negative control using the union of annotation sets
1–5 is shown.

The semantic similarity of GO biological process annotations
was calculated using a graph-based method (Wang et al. 2007).
Calculations were performed using the GOSemSim package
(Yu et al. 2010) from Bioconductor. For the Mann–Whitney U test,
wilcox.test() function was used.

For violin plots, geom_violin() was used to plot the kernel den-
sity plot and geom_box() was used for the boxplot. Both functions
are from the ggplot2 package (Wickham 2016). In the box plot
associated with each violin plot, the middle line in the box repre-
sents the median; the whiskers indicate the 1.5 interquartile
range away from either Q1 (lower box boundary) or Q3 (upper box
boundary). For the violin plots that display the distribution of
MI values for gene pair profile similarity determined using
discretized, ternary fitness scores (Figures 5, A and B), the MI val-
ues were log transformed after addition of a constant (1 � 10�6)
to eliminate zero values.

For each pathway and protein complex in Supplementary
Figures S1 and S2, a permutation-based P-value was calculated
by randomly sampling the same number of phenotypic profiles
as the number of genes contained in each pathway or protein
complex, calculating the mean pairwise profile similarity based
on jPCCj, repeating 1000 times, and then calculating the fraction

Table 1 Sources of the gene annotations used in this study

Annotation set (source) Number of annotated
genesa

Total number of gene
annotationsb

1. EcoCyc pathways (EcoCyc) 885 2,317
2. Heteromeric protein complexes (EcoCyc)c 688 871
3. Operons (RegulonDB) 3,858 5,349
4. Regulons (RegulonDB) 1,572 3,886
5. Modules (KEGG) 333 524
6. GO biological process annotations 2,609 5,775
7. Annotation to both EcoCyc pathways and heteromeric

protein complexes (intersection of annotation sets 1 and 2)
188 818d

8. Annotation in each of annotation sets 1–5
(intersection of annotation sets 1–5)

77 922e

9. Annotation to either EcoCyc pathways or heteromeric
protein complexes (union of annotation sets 1 and 2)

1,385 3,269

10. Annotation in any of annotation sets 1–5
(union of annotation sets 1–5)

3,866 12,937

a Number of annotated genes that were deleted or otherwise mutated in the set of strains used in the original study (Nichols et al. 2011).
b Total number of annotations associated with the genes in the first column.
c We have excluded genes annotated to EcoCyc protein complexes that are homomeric complexes.
d This is the number of annotations associated with any of the 188 genes that are annotated to both annotation sets.
e This is the number of annotations associated with any of the 77 genes that are annotated in each of annotation sets 1–5.
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of these mean jPCCj values that has a higher mean jPCCj than the
actual jPCCj value for that pathway or protein complex.

Data availability
The code and data files used for calculations and reproducing
the results are available on GitHub: https://github.com/peterwu
19881230/Systematic-analyses-ecoli-phenotypes.

Supplementary material is available at figshare DOI: https://
doi.org/10.25387/g3.13350674.

Results
Phenotypic profiles and the functional annotation
sets used
We start with descriptions of the phenotype data and functional
annotation sets that were used for our analysis. The phenotypic
profiles come from a high-throughput chemical genomics study
of E. coli K-12 (Nichols et al. 2011). Growth phenotypes for 3979
mutant strains, which were primarily single-gene deletions of
nonessential genes, were based on sizes of spot colonies grown
under 324 conditions, which represented 114 unique stresses. For
each of the growth conditions, fitness scores were obtained and
scaled to a standard normal distribution. Positive scores indicate
increased fitness and negative scores indicate decreased fitness.

Six annotation sets were used as sources of information about
gene function. The number of genes annotated in each annota-
tion set and the total number of annotations for each annotation
set are shown in Table 1. Annotations of E. coli genes to metabolic
and signaling transduction pathways (annotation set 1) and to
heteromeric protein complexes (annotation set 2) were obtained
from EcoCyc (Keseler et al. 2017); annotation of genes to operons
(annotation set 3) and to regulons (annotation set 4) were
extracted from EcoCyc and RegulonDB (Gama-Castro et al. 2016);
and annotations of genes to KEGG modules (annotation set 5),
which associate genes to metabolic pathways, molecular com-
plexes, and also to phenotypic groups, such as pathogenesis or
drug resistance, were obtained from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al. 2016). For these five
annotation sets, genes were scored as co-annotated if they
shared the same annotation(s) from one or more of the annota-
tion sets, for example, being annotated to the same pathway or
protein complex, etc.

The annotations of E. coli genes with Gene Ontology (GO) bio-
logical process terms (annotation set 6) (Gene Ontology
Consortium 2017) were obtained from EcoCyc. The GO biological
process annotations of E. coli genes were treated separately from
the other five annotation sets because GO’s directed-acyclic
graph structure allows semantic similarity rather than co-
annotation to be used for assessing functional similarity
(Pesquita 2017). Simply looking for co-annotations with the same
GO term(s) will include co-annotations to high-level terms, such
as “GO:0044237 cellular metabolic process” or “GO:0051716 cellu-
lar response to stimulus,” terms that do not provide very specific
information about function. Also, co-annotations would not cap-
ture instances where two genes are annotated with related, but
not identical, terms. These limitations can be overcome by using
semantic similarity rather than co-annotation to estimate func-
tional similarity from GO annotations. The method for determin-
ing the semantic similarity of two GO terms developed by Wang
et al. (2007) takes into account the locations of the terms in the
GO graph, as well as incorporating the different semantic contri-
butions that a shared ancestral term may make to the two terms,
based on the logical relationship, such as “is_a” or “part_of,” that

connect the term to the shared ancestor. In addition, when calcu-
lating functional similarity, the Wang method includes both
identical GO terms and semantically similar GO terms associated
with the two genes being compared.

Functional connections between genes enriched
for higher phenotypic profile similarity
The association between phenotypic profiles and functional
annotations was examined from two perspectives: First, are gene
pairs that share the same annotation(s), that is, co-annotated
gene pairs, more likely to have higher phenotypic profile similar-
ity? Second, are gene pairs with higher phenotypic profile similar-
ity more likely to be co-annotated?

To address whether co-annotated gene pairs have higher phe-
notypic profile similarity, we used PCC to assess the phenotypic
profile similarity. This metric was chosen because it is probably
the most widely used metric to assess phenotypic profile similar-
ity and was the metric used in the original paper for comparing
phenotypic profiles (Nichols et al. 2011). To visualize the results,
the distributions of the absolute value of PCC (jPCCj) for gene
pairs were plotted as violin plots for various combinations of an-
notation sets (Figure 1). The first violin plot shows the distribu-
tion of jPCCj values for all possible gene pairs (mean jPCCj ¼
0.09). The majority have a jPCCj value < 0.25 and only 0.16% have
a jPCCj value >0.75 (an arbitrarily chosen cut-off based on Hinkle
et al. 2003). When only gene pairs that are co-annotated to the
same EcoCyc pathway were considered (second violin plot), there
was a statistically significant increase in the mean jPCCj value
(0.16), and the percentage of gene pairs with jPCCj > 0.75 in-
creased 20-fold. Similar results were seen for gene pairs that are
co-annotated to the same heteromeric protein complex (third vi-
olin plot, mean jPCCj ¼ 0.22). When considering only gene pairs
that are co-annotated to more than one annotation set (fourth
and fifth violin plots), even higher phenotypic profile similarity
was observed (mean jPCCj ¼ 0.39, 0.54, respectively), supporting
the expectation that gene pairs with stronger functional associa-
tions will have more similar phenotypic profiles. The trend of
there being a higher fraction of gene pairs with jPCCj>0.75 as
functional associations increased also continued; this fraction in-
creased from 0.16% for all gene pairs, to 3.2% for gene pairs in the
same EcoCyc pathways, to 4.9% for gene pairs in the same het-
eromeric protein complexes, to 19% for gene pairs in the same
EcoCyc pathways and heteromeric protein complexes, and to
30% for gene pairs that are co-annotated in annotation sets 1
through 5 (the union of EcoCyc pathways, heteromeric protein
complexes, operons, regulons, and KEGG modules).

A more detailed analysis within the EcoCyc pathway or het-
eromeric protein complex annotations was conducted by exam-
ining all pairwise combinations of gene pairs within pathways or
protein complexes that contain two or more gene products.
Supplementary Figures S1 and S2 show the distributions of jPCCj
values for all pairwise combinations of genes in each pathway or
protein complex. For 70% of the pathways and 67% of the protein
complexes analyzed the average jPCCj value is significantly
higher than random expectation (jPCCj ¼ 0.09).

Phenotypic profile similarity is explained by
functional annotations
To address the second question, which is whether gene pairs
with higher phenotypic profile similarity are more likely to be co-
annotated, we ranked gene pairs based on phenotypic profile
similarity and then calculated precision based on whether or not
gene pairs are co-annotated (Figure 2). Precision is the fraction of
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results that a test identifies as positive that represent true posi-
tives. Mathematically, precision, also known as the positive pre-
dictive value, is the number of True Positives divided by True
Positives plus False Positives, or TP/(TP þ FP). After ranking gene
pairs based on phenotypic profile similarity expressed as jPCCj
values, precision for each position n in the ranking was calculated
considering gene pairs ranked at or above position n to be TPs if
they are co-annotated or FPs if they are not co-annotated. For ex-
ample, for the 100th gene pair in the ranking, precision is calcu-
lated for gene pairs 1 through 100. Figure 2 shows the plots of
precision versus ranking for the top-ranking 500 gene pairs com-
puted for single annotation sets or combinations of annotation
sets. For gene pairs co-annotated to the same pathway(s), preci-
sion started at zero, because the highest ranked gene pair was
not co-annotated, but then increased to �0.8 before gradually de-
clining and leveling off at approximately 0.2. Surprisingly, for
gene pairs co-annotated to the same protein complex, precision
was very low and not significantly different from the precision
values computed for randomly ordered gene pairs. Combining
the annotation sets for pathways and protein complexes, brought
a slight increase in precision. When operon, regulon, and KEGG
modules were also included to define the broadest set of co-
annotations, precision increased dramatically.

The Pearson correlation coefficient is sensitive to
the extreme fitness scores on minimal media
To try to understand why precision was so low for protein com-
plex annotations (Figure 2), we inspected the gene pairs and saw
that 98 of the 100 top-ranking gene pairs consisted of genes cod-
ing for biosynthetic enzymes, and, in 84 of these 98 gene pairs,
the genes were annotated to different biosynthetic pathways. For
example, the top-ranked gene pair (jPCCj ¼ 0.96) contained the
genes ilvC and argB, which encode enzymes required for
isoleucine-valine and arginine biosynthesis, respectively. Mutant
strains lacking any of these biosynthetic genes would be auxo-
trophs and share the phenotype of little or no growth on unsup-
plemented minimal media. To test whether the jPCCj-based
measure of phenotypic profile similarity was dominated by the
large negative fitness scores associated with growth of

auxotrophic mutants on minimal media, we excluded the fitness
scores for the growth conditions that involved minimal media (10
out of 324 total conditions) and reassessed the relationship be-
tween precision and phenotypic profile similarity. As shown in
Figure 3, even though only a small fraction of conditions was ex-
cluded, this change resulted in dramatically higher precision
overall, not only for gene-pairs co-annotated to heteromeric pro-
tein complexes but also for gene-pairs co-annotated to either
EcoCyc pathways, the union of EcoCyc pathways and hetero-
meric protein complexes, or the union of annotation sets 1
through 5. In addition, when strains known to have auxotrophic
phenotypes were excluded from the analysis, little difference in
precision was seen whether growth conditions involving minimal
media were included or excluded (Supplementary Figure S3).

Alternative metrics for measuring phenotypic
profile similarity
There are other methods, besides the PCC, that can be used to as-
sess phenotypic profile similarity. We chose the absolute value of
jSRCCj or MI, which were implemented as described in the
Methods, to measure similarity, and used the union of annota-
tion sets 1 through 5 to score co-annotation. Violin plots of the
distributions of phenotypic profile similarity obtained using these
alternative metrics were not significantly different from the dis-
tributions seen using jPCCj as the metric (results not shown). In
contrast, as shown in Figure 4A, the correlation between pheno-
typic profile similarity and precision was dramatically higher for
jSRCCj and MI compared to jPCCj. For both jSRCCj and MI, preci-
sion was >0.9 for the top 100 ranked gene pairs and remained
>0.5 for approximately the top 500 pairs. This result suggests
that determining phenotypic profile similarity using SRCC or MI
is less sensitive to the presence of a relatively small number of
extreme phenotype scores than using the PCC, at least for this
phenotypic dataset. If we recalculate precision for all three met-
rics after excluding the 10 growth conditions where auxotrophic
mutants don’t grow, we see very little change in precision for
gene-pairs ranked based on jSRCCj or jMIj (compare Figure 4, A
and B). There is now very little difference in precision for the
three metrics (Figure 4B). In addition, we calculated precision

Figure 1 Higher phenotypic similarity was found for co-annotated gene pairs. Violin plots of the distributions of jPCCj values for, from left to right, all
possible gene pairs, gene pairs annotated to the same EcoCyc pathway, gene pairs annotated to the same heteromeric protein complex, gene pairs
annotated to the same EcoCyc pathway and heteromeric protein complex, and gene pairs that are co-annotated in annotation sets 1 through 5 (the
intersection of EcoCyc pathways, heteromeric protein complexes, operon, regulon, and KEGG module). Numbers above each violin plot indicate the
number of gene pairs in each plot. ***: P-value < 0.001 was determined by 1-sided Mann-Whitney U test, compared to all gene pairs. The dashed line
indicates jPCCj ¼ 0.75, which was chosen as an arbitrary cut-off.
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after removing the strains known to have an auxotrophic pheno-
type (Supplementary Figure S4). This result is consistent with
Figure 4B in that all three metrics have similar precision.

Simplified phenotypic profiles preserve biological
meanings
Combining phenotypic information from different studies is
expected to increase the likelihood of finding associations be-
tween genes and functions. However, the ability to combine data-
sets can be limited by differences in how quantitative
phenotypes are scored in different studies. In addition, there is a
need for methods to incorporate qualitative phenotypes, such as
changes in cell or colony morphology, which are inherently quali-
tative, as well as changes in phenotype that are reported in a
qualitative way, such as increased or decreased growth rate or in-
creased or decreased resistance to a chemical. To address both of
these issues we took the approach of converting quantitative
phenotypes to qualitative phenotypes. We chose this approach
because, if successful, it would allow a larger number of datasets
to be combined. It would also allow us to utilize microbial pheno-
type information that has been collected and annotated with
qualitative phenotype ontology terms in databases such as
PomBase (Harris et al. 2013), SGD (Cherry et al. 2012), and OMP
(Chibucos et al. 2014; Siegele et al. 2019).

The quantitative fitness scores in the phenotypic dataset were
discretized to create a qualitative dataset with the fitness scores
converted to 1, 0, or �1, where 1 stands for increased fitness, �1
for decreased fitness, and 0 for no difference in fitness compared
to the mean fitness for all strains in a particular growth

condition. The jPCCj cut-offs used to separate the quantitative fit-
ness scores into discretized, ternary bins were based on the 5%
false discovery rate (FDR) for each growth condition, which was
the cut-off used to identify significant phenotypes in the original
study (Nichols et al. 2011). Because the majority of strains have
no significant phenotype in the growth conditions used (Nichols
et al. 2011), after discretizing the data the majority of strains will
have fitness scores of 0. Therefore, the PCC was no longer suit-
able for measuring phenotypic profile similarity. Instead, MI
(Priness et al. 2007) was used as the scoring metric. The distribu-
tion of MI values for gene pairs were plotted as violin plots, after
addition of a constant (1 � 10�6) to eliminate zero values followed
by log transformation of the data. The first violin plot in
Figure 5A shows the distribution of MI values for all possible gene
pairs, followed by, from left to right, the distribution of MI values
for gene pairs co-annotated to either the same EcoCyc pathway;
the same heteromeric protein complex; to both an EcoCyc path-
way and a heteromeric protein complex; or are co-annotated to
the same EcoCyc pathway, heteromeric protein complex, operon,
regulon, and KEGG module. As was seen for the mean jPCCj val-
ues in the analysis of the quantitative data (Figure 1), the mean
MI values increased as the functional associations for a given
gene pair increased (Figure 5A).

Another complication that can arise when trying to combine
phenotype information from different studies is variation in the
conditions used. For example, different studies may look at the
effects of the same chemical but use different concentrations. To
determine how removing concentration information affects phe-
notypic profile similarity, we reduced the original 324 growth

Figure 2 Increased co-annotation was found for gene pairs with higher phenotypic profile similarity. Gene pairs were ranked from high to low similarity
based on jPCCj values and plotted versus precision, which was calculated as described in the text (only the first 500 gene pairs are shown). The different
colored lines indicate either gene pairs that are annotated to the same EcoCyc pathway (blue), to the same heteromeric protein complex (pink), to
either the same EcoCyc pathway or protein complex (purple), or are co-annotated in any of annotation sets 1 through 5 (the union of EcoCyc pathways,
heteromeric protein complexes, operon, regulon, and KEGG module). Note that for the first few gene pairs the lines overlap, except the line for protein
complexes. The dashed line shows precision for randomly ordered gene pairs generated as described in the Methods (negative control). The
correspondence between ranking and jPCCj is shown below the graph.
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conditions to 114 unique stresses. When different concentrations
of a chemical were tested, for each strain only the concentration
with the most significant fitness score was included and assigned
a value of 1 or �1, as appropriate, or a score of 0 if no significant
phenotype was seen for that treatment. The violin plots in
Figure 5B show the distribution of MI values (after log transfor-
mation as described above) for all gene pairs and for different an-
notation sets or combinations of annotation sets for the reduced
set of conditions. As seen for the full qualitative dataset, the
mean MI values for co-annotated gene pairs in the reduced data-
set were significantly higher than the mean MI value for all possi-
ble gene pairs (Figure 5B). In addition, when the distributions of
gene pairs in the same co-annotation group are compared be-
tween Figure 5, A and B, significant differences of the means
were observed for every co-annotated group (P-value < 0.001).
Overall, these results indicate that useful inferences about gene
function can still be made after the conversion of quantitative
phenotypes to qualitative phenotypes and even after collapsing
the number of phenotypes for each chemical treatment.

We expected loss of information after converting quantitative
phenotype scores to discretized, ternary fitness scores. To com-
pare how many functional associations could still be retrieved
using the qualitative scores, gene pairs were sorted based on their
MI values determined using either quantitative phenotype scores,
the qualitative ternary fitness scores, or the qualitative ternary
fitness scores for the reduced set of conditions. Precision was
then calculated, as described earlier, and was plotted versus

ranking. As can be seen in Figure 6, precision is comparable for
the top 100 gene pairs for both quantitative and for discretized,
qualitative fitness scores. After this point, precision drops more
quickly for the qualitative data than for the quantitative data.
When precision for the reduced set of conditions is compared to
precision for either of the other datasets, we see that precision
drops off sooner and decreases more rapidly. Yet, precision is still
much higher than for randomly ordered gene pairs, which indi-
cates that functional associations can still be identified when
qualitative, discretized fitness scores are used.

Semantic similarity of GO annotations increased
for gene pairs with shared functional annotations
and with higher phenotypic profile similarity
Another way to assess whether two genes are likely to have simi-
lar functions is to compare the semantic similarity of the GO
terms annotated to each gene. In the dataset from Nichols et al.,
66% (2609 out of 3979) of the strains used have mutations of
genes that are annotated with GO biological process terms, which
seemed a sufficient number to justify using this approach.
Semantic similarity was computed using the method described
by Wang et al. (2007), and the distribution of semantic similarity
scores for all gene pairs where both members of the pair are an-
notated with at least one GO biological process term was com-
pared to the distributions for subsets of gene pairs that have
similar functions based on being co-annotated in one or more of
the non-GO annotation sets. As shown in Figure 7A, semantic

Figure 3 Precision increased when minimal media conditions were excluded. Gene pairs were ranked from high to low similarity based on jPCCj and
plotted versus precision, calculated as described in the text (only the first 500 gene pairs are shown). The four panels show (A) gene pairs annotated to
the same EcoCyc pathway, (B) gene pairs annotated to the same heteromeric protein complex, (C) gene pairs annotated to either the same EcoCyc
pathway or protein complex, and (D) gene pairs co-annotated in any of annotation sets 1 through 5. The dashed lines show precision for randomly
ordered gene pairs generated as described in the Methods (negative control). The correspondence between ranking and jPCCj is the same as in Figure 2.
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similarity increased when only co-annotated gene pairs were
considered. The mean pairwise semantic similarity increased
from 0.22 for all genes with GO biological process annotations
(first violin plot), to 0.54 for gene pairs co-annotated to the same
EcoCyc pathway (second violin plot), and to 0.80 for gene pairs
co-annotated to the same heteromeric protein complex (third vi-
olin plot). Mean profile similarity was even higher for gene pairs
that are co-annotated to both pathways and heteromeric protein
complexes (mean¼ 0.90) as well as for gene pairs that are co-
annotated in annotation sets 1–5 (mean¼ 0.89), as shown in the
fourth and fifth violin plots, respectively. These results show that
co-annotated gene pairs are also enriched for functional similar-
ity based on GO biological process annotations.

To test whether gene pairs that have higher phenotypic profile
similarity are more likely to have similar functions based on GO
biological process annotations, we compared the distributions of
semantic similarity values for all gene pairs annotated with GO
biological process terms and for subsets of these gene pairs that
have high phenotypic profile similarity based on jPCCj or MI. A
cut-off of jPCCj>0.75 for the second violin plot was chosen arbi-
trarily to represent a moderate to high correlation (Hinkle et al.
2003), while the cut-offs of MI> 0.15 and >0.32 for the third and
fourth violin plots, respectively, were chosen so that all three
subsets of gene pairs would contain the same number (�1200) of
gene pairs. Comparison of the first two violin plots in Figure 7B
shows that semantic similarity increased significantly for gene

pairs with jPCCj>0.75 (mean semantic similarity¼ 0.61) com-
pared to all gene pairs with GO biological process annotations
(mean¼ 0.22). Enrichment for higher semantic similarity was
also seen when phenotypic profile similarity was determined us-
ing discretized, ternary fitness scores either for all growth condi-
tions (third violin plot, MI> 0.15, mean¼ 0.59) or for the collapsed
set of 114 growth conditions (fourth violin plot, MI> 0.32, mean-
¼ 0.58). These results are consistent with those in Figure 1, which
show higher phenotypic profile similarity for co-annotated gene
pairs.

Discussion
We systematically reanalyzed a published high-throughput phe-
notypic profile dataset for the model Gram-negative bacterium E.
coli comparing different metrics for measuring phenotypic profile
similarity, and assessing the effect of converting quantitative fit-
ness scores to qualitative fitness on measurements of phenotypic
profile similarity. We re-examined the E. coli phenotypic profiles
in a pairwise fashion with the help of existing functional annota-
tions. Overall, we found that gene pairs with functional associa-
tions are enriched for phenotypic profile similarity and that gene
pairs with high phenotypic similarity scores tend to have func-
tional associations.

Six high-quality annotations sets were used as sources of
functional information. The gene annotations in EcoCyc,

Figure 4 Precision versus ranking when different metrics are used to measure phenotypic profile similarity. Gene pairs were ranked from high to low
similarity determined using either jPCCj, MI, or jSRCCj and plotted versus precision, using the union of annotation sets 1 through 5 to identify co-
annotated gene pairs. Only the first 500 gene pairs are shown. Phenotypic profile similarity was assessed using either (A) all growth conditions or (B)
excluding growth conditions with minimal media. The dashed line shows precision for randomly ordered gene pairs generated as described in the
Methods (negative control). The correspondence between ranking and similarity scores is shown below each graph.
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RegulonDB, KEGG, and GO come primarily from expert manual
curation (Karp et al. 2018; Keseler et al. 2014, 2017; Gama-Castro
et al. 2016; Kanehisa et al. 2016; Gene Ontology Consortium 2017).
The GO biological process annotations include �1200 annota-
tions (21%) that are inferred from electronic annotation without
additional human review. We decided to include the electronic
annotations in our analysis because most of them come from the
transfer of annotations from orthologous gene products or are
based on mappings from external sources, such as InterPro2GO
or EC2GO, which have been shown to be very accurate (Hill et al.
2001; Camon et al. 2005; Holliday et al. 2017). Indeed, no signifi-
cant difference was found in the semantic similarity of gene pairs
whether electronic annotations were included (Figure 7B) or ex-
cluded (Supplementary Figure S5).

One aim of this study was to determine whether different met-
rics for determining phenotypic profile similarity differed in their
ability to identify gene pairs with functional similarity.
Comparison of the profile similarity scores for the top-ranked
gene pairs showed that the three metrics used, jPCCj, jSRCCj, and
MI, produced comparable results for most, although not all, gene
pairs (data not shown). A more quantitative way to compare the
performance of the metrics is by introducing precision: the frac-
tion of positive results that are true positives. Gene pairs with
phenotypic profile similarity above a specified cut-off were con-
sidered as positive results, and true positives were defined as
gene pairs that are co-annotated in at least one of annotation
sets 1–5. We chose to use precision rather than accuracy, which
is the fraction of correct results, because the co-annotated and
non-co-annotated gene pairs constitute a highly imbalanced

dataset (Saito and Rehmsmeier 2015). Since the number of non-
co-annotated gene pairs is much larger than the number of co-
annotated gene pairs, high accuracy could be achieved by clas-
sifying all gene pairs as true negatives without being informa-
tive.

We chose to plot precision versus ranked gene pairs be-
cause when the data are graphed in this way, precision repre-
sents the fraction of gene pairs whose profile similarity is
above a specified cut-off value that are co-annotated. This pre-
sentation seemed the most useful for choosing for future
study non-co-annotated gene pairs that are likely to have a
functional association. We also plotted the data in a more
standard way as precision-recall curves. Recall, also known as
sensitivity, is the fraction of real positives that a test identifies.
It is equal to TP/(TP þ FN), where True Positives þ False
Negatives is the number of real positives. We scored as True
Positives gene pairs that are co-annotated in one or more an-
notation sets and whose profile similarity was above a speci-
fied cut-off value. Co-annotated gene pairs whose profile
similarity was below the specified cut-off were scored as False
Negatives. Precision and recall were calculated for the 5000
top-ranked gene pairs for each similarity metric. This cut-off
was chosen because the low correlation values seen for gene
pairs below the top 5000 are expected to be less useful in iden-
tifying functional associations. Supplementary Figure S7 shows
precision-recall curves for gene pairs ranked based on either
jPCCj, jSRCCj, or MI after minimal media conditions were ex-
cluded. This corresponds to the precision versus ranking
graphs presented in Figure 4B. Both representations of the data

Figure 4 Continued.

8 | G3, 2021, Vol. 11, No. 1



show that highly correlated gene pairs were enriched for func-

tional associations.
Precision-recall curves were also made that correspond to the

precision versus ranking graphs shown in Figures 3 and 6. These

are Supplementary Figures S6 and S8, respectively. The conclu-

sions from these precision-recall curves are consistent with the

conclusions made from the graphs of precision versus ranking.
Based on the precision scores for the top 500 ranked gene

pairs, it initially appeared that jSRCCj and MI outperformed jPCCj
(Figure 4A). However, when phenotypic profile similarity was

recalculated after removing conditions involving growth on mini-

mal media, the precision for gene pairs ranked based on jPCCj in-

creased significantly, and there was now little difference in the

performance of jPCCj, jSRCCj or MI (compare Figure 4, A and B).

We suggest that this observed increase in precision for gene pairs

ranked by jPCCjmight be due to the sensitivity of the PCC to out-

liers in the data (Schober et al. 2018). We realized that the collec-

tion of strains used by Nichols et al. contains many mutants that

have little or no growth on minimal media because the gene for a

biosynthetic enzyme is deleted. Precision was low when minimal

media growth conditions were included because so many combi-
nations of genes from different biosynthetic pathways shared

large, negative fitness scores on the 10 conditions involving mini-

mal media but did not share a functional annotation in the anno-

tation sets used. In general, the auxotrophic mutants did not

have a significant phenotype in most of the other 314 growth con-

ditions tested, which used rich media, so the large negative fit-

ness scores on minimal media were essentially outliers. When

these outliers were excluded, precision increased for the gene-
pairs ranked based on jPCCj. We suggest that when high-

Figure 5 Phenotypic profile similarity after converting fitness scores from quantitative to qualitative, ternary values. Violin plots of the distributions of
phenotypic profile similarity based on MI for, from left to right, all gene pairs, gene pairs annotated to the same EcoCyc pathway, gene pairs annotated
to the same heteromeric protein complex, gene pairs annotated to the same EcoCyc pathway and heteromeric protein complex, and gene pairs that are
co-annotated in annotation sets 1 through 5. The MI values were log transformed after addition of a constant (1 � 10�6) to eliminate zero values. The
middle line within the box plots represents the median. Panel (A) shows the results when profile similarity was determined using all 324 growth
conditions. The mean values of the distributions in (A) are 0.0006, 0.014, 0.014, 0.039, and 0.057. Panel (B) shows the results when profile similarity was
determined after collapsing the growth conditions to 114 unique stresses. The mean values of the distributions in (B) are 0.0021, 0.026, 0.025, 0.073, and
0.1. ***: P-value < 0.001 determined by 1-sided Mann–Whitney U test, compared to all gene pairs.
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throughput phenotype studies include conditions that involve
defined media, such as testing for utilization of carbon or nitro-
gen sources, it would be useful to supplement the base minimal
media with amino acids, nucleosides, and enzyme co-factors to
reduce the phenotypic clustering of mutant strains unable to
synthesize these compounds.

The results presented in Figure 4, A and B show that when
gene-pairs are ranked by similarity calculated using the metrics
jSRCCj or jMIj, precision did not change very much when condi-
tions involving minimal media were excluded. While this obser-
vation might indicate that jSRCCj or MI are more useful for
determining phenotypic profile similarity in high-throughput
studies, we think it is premature to draw this conclusion based
on analysis of only one phenotypic dataset. Moreover, for gene
pairs ranked by jPCCj, many of the gene pairs that were excluded
by eliminating the minimal media growth conditions would have
been recognized as true positives if the annotation sets included
annotations to cellular processes such as amino acid biosynthe-
sis or nucleotide biosynthesis in addition to the annotations to
metabolic pathways for individual compounds.

We conclude that there is no single best way to measure phe-
notypic profile similarity, and suggest it may be advantageous to
use more than one correlation metric to look for functional asso-
ciations. When we compared the 10,000 top-ranked gene pairs
identified using either jPCCj or jSRCCj with minimal media

conditions excluded, we found that each metric identified gene
pairs not identified by the other. There were 204 gene pairs with
jPCCj � 0.5000 that were not present among the top 10,000 gene
pairs ranked based on Spearman ranked correlation, and 87 gene
pairs with jSRCCj � 0.5000 that were not present among the top
10,000 gene pairs ranked based on Pearson correlation.

We also found differences among the highly ranked gene pairs
when we compared gene pairs ranked by jPCCj when minimal
media growth conditions were included or excluded. For most
gene pairs that did not include an auxotrophic mutant, the phe-
notypic profile similarity based on jPCCj changed very little when
minimal media conditions were removed (data not shown).
However, there were a few gene pairs where a possible functional
association could have been missed if the minimal media condi-
tions were not removed. We illustrate this with a gene pair where
the functions of the gene products are known to have a func-
tional association. The exbD and fepA genes are both needed for
transport of ferric iron-enterobactin across the outer membrane
(Noinaj et al. 2010). When profile similarity was calculated using
the fitness scores for all conditions, jPCCj ¼ 0.4773. After minimal
media conditions were removed, jPCCj increased to 0.6204, a high
enough correlation that this gene pair would be a reasonable can-
didate for future experiments to test the prediction.

To make it easier to compare results for the different similar-
ity metrics, we have made the dataset from Nichols et al.

Figure 6 Precision versus ranking for quantitative versus discretized, ternary fitness scores. Gene pairs were ranked from high to low similarity based
on MI and plotted versus precision using the union of annotation sets 1 through 5 to identify co-annotated gene pairs. Only the first 500 gene pairs are
shown. Phenotypic profile similarity was determined with either the original quantitative fitness scores (black line), the discretized ternary scores for all
growth conditions (brown line), or the discretized, ternary scores for growth conditions collapsed to 114 unique stresses (orange line). The cut-offs used
to convert the quantitative scores to discretized, ternary scores were based on the 5% FDR for each condition. The dashed line shows precision for
randomly ordered gene pairs generated as described in the Methods (negative control). The correspondence between ranking and similarity scores is
shown below the graph.
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available in a searchable, interactive format that allows queries
for strains, conditions, and phenotypic profile similarity of gene
pairs determined by jPCCj with all conditions, jPCCj with minimal
media conditions excluded, jSRCCj, MI, and semantic similarity
(org/wiki/index.php?title¼Special:Ecolispecialpage).

The relationship between precision and ranking based on pro-
file similarity shown in Figure 4B suggests that a shared function
is known for most of the highly correlated gene pairs. To test this
idea, we used a cut-off of jPCCj >0.75 to define highly correlated
gene pairs and then manually examined the non-co-annotated
gene pairs. If fitness scores for the growth conditions involving
minimal media were excluded, there were only 10 non-co-
annotated gene pairs (summarized in Table 2). We found func-
tional associations that could explain the observed phenotypic
profile similarity for 7 of the 10 gene pairs. In one case, the two
genes (dsbB and dsbA) showed up as non-co-annotated because
they are in a pathway that was not yet included in EcoCyc release
21.0. The other six gene pairs highlight some of the challenges of
creating (and using) annotation, such as deciding where path-
ways start and end and determining appropriate levels of granu-
larity. For example, the gene pairs rfaF(waaF)-rfaE(hldE) and

rfaF(waaF)-lpcA (gmhA) are non-co-annotated, even though all
three genes are required for synthesis of the lipid A-core oligosac-
charide component of outer membrane lipopolysaccharide. The
explanation is that rfaF(waaF) is annotated to the central assem-
bly pathway for building the lipid-core oligosaccharide moiety,
while rfaE(hldE) and lpcA(gmhA) are annotated to a branch path-
way that builds one of the saccharide subunits of the core (Raetz
and Whitfield 2002). The functional association between the
three genes would have been revealed if we had included GO
annotations, since all three genes are annotated to the GO term
for the lipopolysaccharide core region biosynthetic process
(GO:0009244).

We did not find a shared function for the last three non-co-
annotated gene pairs. Given that so many of the other highly cor-
related gene pairs do share a function, it is possible that future
experiments will uncover a shared function for these three gene
pairs. However, it also possible that the observed phenotypic pro-
file similarity is fortuitous, as we saw for mutants with an auxo-
trophic phenotype or mutants with increased sensitivity to DNA
damage. For example, this may be the most likely explanation for
the phenotypic similarity of the mnmE and apaH genes. Both are
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Figure 7 Higher semantic similarity and phenotypic profile similarity were found for co-annotated gene pairs. (A) Violin plots of the distributions of
semantic similarity for, from left to right, all gene pairs annotated with GO biological process term(s), gene pairs annotated to the same EcoCyc
pathway, gene pairs annotated to the same heteromeric protein complex, gene pairs annotated to both the same EcoCyc pathway and the same
heteromeric protein complex, and gene pairs co-annotated in annotation sets 1 through 5. Numbers above each violin plot indicate the number of gene
pairs in each plot. (B) Violin plots of semantic similarity for, from left to right, all gene pairs annotated with GO biological process term(s), the subset of
gene pairs with jPCCj>0.75, the subset of gene pairs with MI >0.15 (calculated based on qualitative fitness scores for all growth conditions), and the
subset of gene pairs with MI >0.32 (calculated based on qualitative fitness scores for the collapsed set of growth conditions). The cut-offs of MI >0.15
for the third violin plot and MI >0.32 for the fourth violin plot were chosen so that all three subsets of gene pairs would contain the same number of
top-ranked gene pairs. ***: P-value <0.001 was determined by 1-sided Mann–Whitney U test, compared to all gene pairs.
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required for growth at pH 4.5 (Nichols et al. 2011, Vivijs et al.

2016), but appear to function independently. MnmE, partnered

with MnmG, modifies 2-thiouridine residues in the wobble posi-

tion of tRNA anticodons (Elseviers et al. 1984), while ApaH is a dia-

denosine tetraphosphatase (Guranowski et al. 1983) and mRNA

decapping enzyme (Luciano et al. 2019). Both MnmE and ApaH

are proposed to affect resistance to pH and other stresses

through their effects on gene expression (Dedon and Begley 2014;

Vivijs et al. 2016; Luciano et al. 2019).
A significant conclusion from this study is that functional

associations can still be inferred from phenotypic profiles after

quantitative fitness scores are converted to discretized, ternary

scores. While some information was lost compared to using the

original quantitative fitness scores, the precision based on the

ternary fitness scores was much greater than for randomly or-

dered gene pairs (Figure 6). This result suggests that discretized,

ternary scores could be used to combine quantitative phenotype

information from different studies. Using discretized scores

might also allow qualitative phenotype information, such as

aspects of cell morphology, to be incorporated into phenotypic

profiles along with discretized quantitative phenotype informa-

tion. This approach would also allow information from pheno-

type annotations, available from databases such as PomBase,

SGD, or OMPwiki, to be incorporated into phenotypic profiles. The

phenotype annotations typically capture information in a discre-

tized fashion and have previously been shown to be useful for in-

ferring gene function (Hoehndorf et al. 2013; Ascensao et al. 2014).
The precision of the discretized data could be increased by

partitioning the quantitative scores into a larger number of bins,

as shown in Supplementary Figure S9. Precision increased incre-

mentally as the number of bins was increased from 3 to 5 bins,

from 5 to 7 bins and from 7 to 9 bins. However, because the

results from many phenotypic studies are not amenable to being

partitioned into a larger number of bins, we believe that using

ternary scores will maximize the number of datasets that can be

combined and allow more inferences about gene function to be

made from phenotypic information.
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