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P H Y S I C S

Quantum conformance test
Giuseppe Ortolano1,2, Pauline Boucher1, Ivo Pietro Degiovanni1, Elena Losero1,3, 
Marco Genovese1*, Ivano Ruo-Berchera1

We introduce a protocol addressing the conformance test problem, which consists in determining whether a pro-
cess under test conforms to a reference one. We consider a process to be characterized by the set of end products 
it produces, which is generated according to a given probability distribution. We formulate the problem in the 
context of hypothesis testing and consider the specific case in which the objects can be modeled as pure loss 
channels. We demonstrate theoretically that a simple quantum strategy, using readily available resources and 
measurement schemes in the form of two-mode squeezed vacuum and photon counting, can outperform any 
classical strategy. We experimentally implement this protocol, exploiting optical twin beams, validating our 
theoretical results, and demonstrating that, in this task, there is a quantum advantage in a realistic setting.

INTRODUCTION
Substantial progress has been made in recent years in the field of 
quantum sensing (1, 2) both for continuous parameter estimation 
(3–5) and for discrimination tasks in the case of discrete variables 
(6–8). The use of quantum states and resources brings an advantage 
that has been demonstrated in various specific tasks: both phase 
(9–13) and loss (14–20) estimation, quantum imaging (21–23), 
and discrimination protocols such as target detection (24–27) and 
quantum reading (28, 29).

In this class of problems, a parameter of interest is encoded in 
some quantum states, or channels, and the values it can take can 
belong to either discrete or continuous sets. The estimation of this 
parameter requires the choice of a probe, as well as a measurement 
scheme, i.e., a measurement strategy. Here, we consider an import-
ant discrimination problem that can find various important appli-
cations, the quantum conformance test (QCT). In this problem, one 
wants to assess whether a process is conform to a reference, or if it 
is defective. In the general case, the process is characterized by a 
physical parameter distributed according to some continuous prob-
ability density distribution. We experimentally have access to the 
end products of this process, which we can perform measurements 
on. Accordingly, the measurement outcomes belong to a continu-
ous set of possible values. However, the expected output of the pro-
cedure should be binary: conform or not conform. Such conformity 
tests appear frequently in many applications (30), one example be-
ing product safety testing.

Under energy constraints for the probe, quantum mechanical 
fluctuations set lower bounds to the probability of error that depend 
on the decision strategy. It is important to investigate whether, and 
to what extent, the use of certain quantum resources can reduce the 
probability of error below what is possible in the classical domain.

In this work, we introduce a formal description of the conformance 
test problem in the context of quantum information (31) and con-
sider the paradigmatic example of bosonic pure loss channels probed 
with light. We demonstrate that, under the same energy constraints, 
i.e., fixing the photon number, a quantum strategy making use of 

entangled photons as probe states, and photon counting (PC) as a 
measurement strategy, can deliver better results than any classical 
strategy. Last, we present an experimental optical implementation 
of our proposed quantum protocol, which validates our theoretical 
model and shows that a genuine quantum advantage persists even 
in the presence of experimental inefficiencies.

Quantum conformance test
The QCT can be modeled as follows. We define the binary random 
variable x ∈ {0,1}, which corresponds to the process from which the 
physical system under test (SUT) was generated, 0 being the refer-
ence and 1 being the defective one. We consider the monitoring of 
a physical process Px, producing a quantum object (the SUT), ℰ, 
which depends on a parameter . The process Px can be described 
by the ensemble {gx(), ℰ}: The parameter  is extracted from a set 
A, according to the probability distribution gx(), and it defines the 
physical object ℰ. The set A can be either discrete or continuous. 
The conformance test consists in ruling whether an unknown pro-
cess is conform to a “reference” process, P0, or if it should be labeled 
“defective,” P1, using measurements on the set of objects it produces {ℰ}.

A QCT is performed using a probe in a generic quantum state . 
After the probe has interacted with the SUT, the final state is mea-
sured by a positive-operator-valued measure (POVM)  and, after 
classical postprocessing of the measurement results, the outcome of 
the procedure is a final guess on the nature of the production pro-
cess, expressed by the binary variable y ∈ {0,1}.

The test is successful when y = x, i.e., when the guess is correct. On 
the other hand, if y ≠ x, the test fails. Two cases can be distinguished:

● False negative: In this scenario, a SUT produced by a conform 
process (x = 0) is labeled as defective (y = 1). In an industrial con-
text, this kind of outcome can be seen as an economic loss for a 
manufacturer, as a conform process is considered defective. We will 
denote the probability of false negatives as p10.

● False positive: A SUT produced by a defective process (x = 1) 
is labeled as conform (y = 0). This outcome represents a risk since 
possibly unsafe products are released. The false-positive probability 
will be referred to as p01.

The analysis of false positives and negatives plays a central part 
in conformity testing, and the specific choice, if required, of the tol-
erance on either one of those errors vastly depends on the situation 
considered. In a general scenario, a relevant figure of merit—when 
the energy of the probe is considered a limited resource and, therefore, 
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one compares the results at fixed energy—that can be used to assess 
the effectiveness of the test is the total probability of error, defined as

	​​ p​ err​​  = ​  1 ─ 2 ​(​p​ 01​​ + ​p​ 10​​)​	 (1)

In Fig. 1, we present some examples of error probabilities for the 
conformance test. In Fig. 1 (A and B), two possible scenarios for the 
conform and defective processes are shown. In Fig. 1A, we consider 
two distributions whose overlap is negligible, whereas, in Fig. 1B, we 
consider significantly overlapping distributions. In Fig. 1 (C to F), 
we show the probability distributions for the parameter, convoluted 
with the noise emerging from both the measurement process and 
the probe state, either classical (Fig. 1, C and D) or quantum 
(Fig. 1, E and F). From these distributions, the outcome y must be 
decided. One can observe that the noise present in the state, which 
probes the SUT, translates into an error in the discrimination.

In the subsequent parts of this work, we focus on a specific class 
of SUTs: the bosonic pure loss channels. We show how, in this case, 
quantum resources can be used to notably mitigate the spurious ef-
fect of the noise and can improve the discrimination performance—
evaluated in terms of total probability of error—over any classical 
strategy. Subsequently, we analyze the case in which a constraint is 
imposed on either the false-positive or false-negative probabilities. 
We note that the quantum reading problem, originally proposed in 
(28) and experimentally tested in (29), can be considered to be a 
special case of the conformance test (i.e., in the case where g0 and g1 
are both Dirac delta functions).

RESULTS
Pure loss channels
A bosonic loss channel ℰ is characterized by its transmittance  ∈ [0,1]. 
The input-output relation for such a channel is ​​   a ​ → ​√ 

_
  ​ ​   a ​ + i ​√ 

_
 1 −  ​ ​   v ​​, 

where ​​   a ​​ is the annihilation operator of the input mode (32). The 
annihilation operator of the mode on the second port, ​​   v ​​, acts on the 
vacuum, as we are considering pure losses. The configuration for a 
conformance test over a pure loss channel is described in Fig. 2. A 
transmitter irradiates an optical probe state  on the SUT. In a general 
case, the state is bipartite, having a number M of signal modes inter-
acting with the SUT and a number L of idler ones that represent the 
ancillary modes. The state is measured at the receiver by a joint mea-
surement, and its outputs are processed to obtain the final outcome.

After the interaction with the SUT, an input state  will be 
mapped into either 0 or 1, with

	​​​ ​ 0​​  = ​ 𝔼​ ​P​ 0​​​​​[​​​(​​ ​ℰ​ ​​ ⊗ I​)​​​]​​ →  reference process​​	

	​​​ ​ 1​​  = ​ 𝔼​ ​P​ 1​​​​​[​​​(​​ ​ℰ​ ​​ ⊗ I​)​​​]​​ →  defective process​​	 (2)

and where ​​𝔼​ P​​ [ ·]​ represents the expectation value over the ensemble P 
and I is the identity operator.

In general, the output states of the reference and defective pro-
cesses, 0 or 1, will overlap. Accordingly, the discrimination between 
the processes will be affected by an error probability ​​p​err​ 

, ​(​P​ 0​​, ​P​ 1​​)​, 
which is a function of the processes considered, the input state, and 
the POVM—as well as the decision procedure applied to the mea-
surement result. The optimization of the QCT protocol is achieved 
by a minimization of ​​p​err​ 

,  ​(​P​ 0​​, ​P​ 1​​)​ over all possible input states  
and POVMs 

	​​ p​ err​​(​P​ 0​​, ​P​ 1​​) = ​min​ ​​ [​min​ ​​[ ​p​err​ 
, ​(​P​ 0​​, ​P​ 1​​ )]]​	 (3)

Without constraints on the energy, a trivial strategy is to let the energy 
of the probe system go to infinity, which, given a suitable measure-
ment, would nullify the quantum noise and lead to the minimum 
possible perr permitted by the problem, i.e., the overlap between the 

A C E

B D F

Fig. 1. Examples of error probabilities for the conformance test. (A and B) Distributions of the reference process (red) P0, and defective one (blue) P1: the two rows 
present opposite and archetypal situations. The graphics (C to F) are obtained considering a pure loss channel of parameter  =  as the SUT, and a PC measurement. 
(C and D) Resulting photon number distributions p(n), in the case where a classical state is used as a probe. The overlaps between the two distributions, highlighted in 
green and blue, the two colors distinguishing the cases where the reference or the defective process is most likely, are visualizations of the conditional error probabilities, 
at a given value of , while their weighted sum gives an appreciation of the total error probability. (E and F) Case in which quantum probes are used: Quantum correlations 
enhance the performance of the discrimination task.
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two initial distributions g0 and g1 (see Fig. 1). Nevertheless, in sever-
al relevant cases, one cannot dispose of, or use, states of arbitrarily 
large energy (e.g., in order not to damage the SUT). In the case we 
are considering, we fix the total energy of the probe, and the optimi-
zation problem is not easily solved directly—this is particularly true 
when experimental imperfections are taken into account. Moreover, 
any theoretical bound that could be found would not necessarily 
correspond to a viable experimental implementation (feasible input 
state and output measurement). Our goal is more practical: Follow-
ing the approaches used, for example, in (28, 33), we find the mini-
mum probability of error that can be achieved with any classical 
transmitter. Then, we show that a class of quantum transmitters, 
namely, multimode two-mode squeezed vacuum (TMSV) states, 
achieves probabilities of error below the classical bound, demon-
strating a quantum advantage.

Classical limit
First, we turn our attention to the derivation of the minimum error 
probability which can be achieved using classical input states. In the 
context of quantum optics, classical states can be defined as the states 
having a positive P-representation (34). A generic classical bipartite 
state can be represented as

	​​ ​​ cla​  =  ∫ ​d​​ 2M​ ​d​​ 2L​  P(, ) ∣〉〈∣⊗∣〉〈∣​	 (4)

where ∣⟩ and ∣⟩ are M- and L-mode coherent states, respectively 
(corresponding to the signal and idler channels), and P(, ) ≥ 0 is a 
probability density. The energy constraint for the signal system is 
expressed, in terms of mean signal photon number ​​​n ̄ ​​ S​​​, as

	​ ∫ ​d​​ 2M​ ​d​​ 2L​ P(, )​∣∣​​ 2​  = ​ ​ _ n ​​ S​​​	 (5)

While the choice of imposing the energy constraint only on the sig-
nal system is arbitrary—the alternative being, for example, a constraint 
on the total energy—it is a natural choice for real applications, where 
the energy irradiated over the SUT should be limited.

Given an input state cla, the output states, after interaction with 
the SUT, are ​​​0​ cla​​ and ​​​1​ cla​​, calculated according to Eq. 2. In this con-
text, the minimum probability of error for the QCT protocol with 
classical states is equal to the minimum probability of error in the 
discrimination of ​​​0​ cla​​ and ​​​1​ cla​​. The best performance in this task is 
achieved by using a POVM measurement which assumes the 
Helstrom projectors as elements (6). This optimal discrimination 
procedure yields a probability of error given by

	​​ p​ err​​  = ​  1 ─ 2 ​(1 − D(​​ 0​​, ​​ 1​​))​	 (6)

where D(0, 1) = ‖0 − 1‖/2 is the trace distance with ​‖ρ‖= ​√ 
_

 ​ρ​​ †​ ρ ​​. A 
lower limit for ​​p​err​ 

cla ​​ can be found by upper bounding D(0, 1). By 
exploiting the convexity of the trace distance (see the Supplementary 
Materials for details), the minimum error probability for classical 
states in the QCT protocol is bounded by

         ​C  ≔ ​ p​err​ 
cla ​  ≥ ​  

1 − ​𝔼​ ​P​ 0​​​​​[​​ ​𝔼​ ​P​ 1​​​​​[​​ ​√ 
_____________

  1 − ​e​​ −​​ _ n ​​ S​​​(​√ _ ​​ 0​​ ​−​√ _ ​​ 1​​ ​)​​ 2​​ ​​]​​​]​​
   ────────────────────  2  ​​	 (7)

The quantity C establishes a lower bound for the discrimination er-
ror probability when considering classical resources and an optimal 
measurement strategy. We note that this bound is not tight, which 
means that it may not be reached by any classical receiver.

Quantum strategy
In the following, we analyze the particular strategy, involving quan-
tum states, that is able to surpass the best classical performance C. It 
uses a transmitter  constituted of K replicas of a TMSV state and a 
PC receiver (29), whose output is processed by a maximum likeli-
hood decision.

The TMSV state (35) admits the following expression in the 
photon number basis: ​∣⟩= ​∑ n=0​ ∞ ​​ ​ √ 

_
 ​P​ ​n ̄ ​​​(n) ​∣​n⟩​ S​​∣​n⟩​ I​​​, where ​​P​ ​n ̄ ​​​(n)​ is a 

thermal distribution, ​​n ̄ ​​ is the mean photon number, and ∣n⟩i is the 
n-photon state in the i = S signal, or i = I idler mode. TMSV states 
can easily be produced experimentally by spontaneous parametric 
down-conversion (SPDC) (36–38) or four-wave mixing (39, 40, 41). 
A multimode TMSV state is a tensor product of K TMSV states 
⊗K ∣⟩. It admits a multithermal distribution for the total photon 
number in both the signal and idler modes ​​n​ i​​  = ​ ∑ k=1​ K  ​​ ​n​i​ 

(k)​​, denoted 
as ​​P​ ​n ̄ ​,K​​(​n​ i​​)​ (the same notation ​​n ̄ ​​ is used for the mean photon num-
ber) and preserves perfect photon number correlation between the 
channels, i.e., ​​P​ ​n ̄ ​,K​​(​n​ S​​, ​n​ I​​ ) = ​P​ ​n ̄ ​,K​​(​n​ I​​ ) ​​ ​n​ S​​,​n​ I​​​​​. The result of the PC mea-
surement is the classical random variable n = (nS, nI), whose distri-
bution p(n∣Px) = ⟨nS, nI∣x∣nS, nI⟩ is conditioned on the nature x 
of the process, where x is defined in Eq. 2. Using Bayes theorem and 
assuming the defective and reference processes to be equiprobable, 
p(Px = P0) = p(Px = P1) = 1/2, we can write the a posteriori proba-
bility p(Px∣n) as

      ​p(​P​ x​​ ∣ n ) =      ​ p(n∣​P​ x​​ ) p(​P​ x​​)  ─────────── p(n)  ​ =     ​   p(n∣​P​ x​​)  ───────────────  p(n∣​P​ 0​​ ) + p(n∣​P​ 1​​) ​​	 (8)

Fig. 2. Quantum conformance test. A probe  sends M signal modes through the loss channel ℰ, representing the SUT, while L idler modes directly reach the receiver—I 
represents the identity operator. A POVM  is applied to the output state. Using the result of this measurement and data processing (DP), a decision y is taken: The process 
generating ℰ is identified as conform (y = 0) or defective (y = 1).
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Let us first consider the action of a pure loss channel on the photon 
number distribution of a state. The distribution p(n∣) after the 
interaction is the composition of the joint distribution ​​P​ ​n ̄ ​,K​​(​n​ S​​, ​n​ I​​)​ 
with a binomial distribution

	​ p(n ∣  ) = ​∑ m=​n​ S​​​ ∞ ​​ ​ P​ ​ _ n ​,K​​(m, ​n​ I​​ ) ℬ(​n​ S​​ ∣ m, )​	 (9)

since the m signal photons can be seen as undergoing a Bernoulli 
trial each, with probability of success , resulting in the binomial 
distribution ℬ(nS∣m, ). Using the linearity of quantum operations, 
we can evaluate the effect of a loss channel with transmittance , 
p(n∣Px), as

	​ p(n ∣ ​P​ x​​) = ​∫ 
​A​ x​​

​ ​​ p(n ∣ τ) ​g​ x​​(τ) dτ​	 (10)

After the measurement, the decision is made by choosing the out-
come that maximizes the conditional probability: y is chosen such 
that ​y  = ​ arg max​ 

x∈{0,1}
​ ​  p(​P​ x​​ ∣n)​. We note that this condition for the 

choice of y is equivalent, due the constant prior, to a maximum like-
lihood decision, i.e., choosing y such that p(n∣Py) ≥ p(n∣P1−y). The 
probability of error for the quantum strategy, Q, is given by

	​​
Q  ≔ ​ p​err​ 

QCT​  = ​ ∑ 
n
​ ​​ ​min​ x​ ​  p(​P​ x​​∣n ) p(n)

​   
          = ​ 1 ─ 2 ​ ​∑ 

n
​ ​​ ​min​ x​ ​  p(n ∣ ​P​ x​​)

  ​​	 (11)

Classical states and PC
We have derived a limit C on the performance that can be achieved 
with an optimal classical strategy, i.e., optimal classical input states 
and an unspecified optimal receiver. We also defined the performance, 
Q, of a quantum strategy using TMSV and PC. In this section, we 
consider the case in which classical states are paired with a PC re-
ceiver. The bound found in Eq. 7 is not tight, meaning that it may 
not be possible to reach it. Moreover, in the case where a POVM 
could be found that saturates the bound, its implementation may be 
of difficult practical realization. The analysis of the best classical 
performance achievable with the PC receiver will give a second classi-
cal benchmark, whose performance can be experimentally validated.

The analysis is analogous to the one performed for the quantum 
strategy. However, since the input states considered are limited to 
classical ones, the use of idler modes cannot improve the perform
ance. Classical states are statistical mixtures of coherent states that 
are Poisson distributed in the photon number: Their variance is 
lower bounded by the Poisson one (34). In this scenario, the best 
performance is achieved using signal states having a Poisson pho-
ton number distribution. The error probability perr is proportional 
to the overlap of the measurement outcomes, as shown in Fig. 1, 
which, in the case of a PC measurement, are the photon number 
distributions. Using a state with a narrower photon number distri-
bution will lead to better discrimination performances. We denote 
the best performance that can be achieved using classical states and 
PC as Cpc and write it in the form

	​​ C​​ pc​  ≔ ​ p​err​ 
cla,pc​  = ​  1 ─ 2 ​(1 − ​q​ p​​)​	 (12)

where 0 ≤ qp ≤ 1. The form of the function qp depends on the dis-
tributions of the considered processes, g0 and g1. In the following, 
we report on the case where both the reference and defective pro-
cesses have Gaussian distributions ​​G​ ​ ̄ ​,​​​ (where ​​ ̄ ​​ and 2 are the mean 

and the variance). The distributions that we consider are thus ​​g​ 0​​  = ​
G​ ​​ ̄ ​​ 0​​,​​ 0​​​​​ and ​​g​ 1​​  = ​ G​ ​​ ̄ ​​ 1​​,​​ 1​​​​​ for the reference and defective processes, re-
spectively. For more general solutions and a more in-depth analysis, 
we refer the reader to the Supplementary Materials.

As pointed out in previous sections, the probability of error de-
pends on the overlap of the two measurement distributions p(P0∣nS) 
and p(P1∣nS). Under the assumption of Gaussian distributions for 
both processes, and of a large photon number in the initial probe 
state ​​​n ̄ ​​ s​​  ≫  1​, the photon number distribution at the outcome can 
be well approximated by a Gaussian: ​p(​P​ x​​∣n ) ≈ ​G​ ​​ ̄ ​​ x​​​​n ̄ ​​ s​​,​​ ​G​​ (x)​​​​​​, with ​​
(​​G​ (x)​)​​ 2​  = ​​ n ̄ ​​ s​​ ​​ ̄ ​​ x​​ + ​​n ̄ ​​s​ 2​ ​​x​ 

2​​ (details can be found in the Supplementary 
Materials). An expression for the overlap can be found after the de-
termination of the solutions of the equality p(P0∣n) = p(P1∣n). In 
general, this equation admits two solutions in the case where the 
distributions are Gaussian. If we can assume the variances ​​​G​ (x)​​ to be 
of the same order, and ​​​ ̄ ​​ 0​​  < ​​  ̄ ​​ 1​​​, often only one of the solutions, la-
beled nth, will be in a range where p(P0∣n) and p(P1∣n) are not 
negligible. Under these conditions, we can derive a closed form for 
the function qp in Eq. 12 as

	​​ ​q​ b​​  = ​  1 ─ 2 ​​(​​erf​[​​ ​ ​n​ th​​ − ​​ _ n ​​ s​​ ​​
_ ​​ 0​​ ─ 

​√ 
_

 2 ​​​G​ (0) ​
 ​​ ]​​ − erf​[​​ ​ ​n​ th​​ − ​​ _ n ​​ s​​ ​​

_ ​​ 1​​ ─ 
​√ 
_

 2 ​​​G​ (1) ​
 ​​ ]​​​)​​​​	 (13)

As indicated before, the expression in Eq. 13 holds for certain re-
gimes, and a more general solution, as well as an explicit expression 
for nth, is reported in the Supplementary Materials.

Numerical study
In the strategies described in the previous sections, the performance 
of the QCT is a function of the mean photon number ​​​n ̄ ​​ S​​​, as well as 
the form of the distributions of the processes considered, g0 and g1.

A visualization of the discrimination problem is depicted in 
Fig. 1, where the measurement strategy considered at the receiver is 
PC. In Fig. 1A, the distributions of the processes to be discriminated 
are shown, g0 in red and g1 in blue. In the first row, the two distribu-
tions barely overlap. Nonetheless, when a probe with finite energy is 
used to perform the discrimination, the intrinsic noise of the state 
on the photon number distribution results in a substantial amplifi-
cation of the overlap of the measurement outcome distributions. 
This is shown in Fig. 1C, where the two possible photon number 
distributions, after the interaction with the SUT, and for the classi-
cal input state discussed in the previous sections, are plotted. The 
overlap area, highlighted in blue-green, is a visual representation of the 
probability of error: perr is equal to half that area. This overlap cannot 
be reduced using classical states without an increment to the total 
energy used. However, using the same signal energy, an improve-
ment can be achieved using quantum correlations. If we consider as 
input a TMSV state, as described earlier in the text, we can analyze 
the photon number distribution for the signal system, conditioned 
to having measured a given photon number in the idler branch. 
This analysis is shown in Fig. 1E, where the overlap between the two 
distributions is markedly reduced, leading to much more efficient 
discrimination. The nature of the advantage resides in the photon 
number correlations, which are used to greatly reduce the photon 
number noise of the initial state. In the second row, is depicted a sit-
uation in which the overlap of the parameter distributions is high. 
In Fig. 1B, the considered distributions have the same mean value 
but different variances. In this case, using a classical discrimina-
tion strategy performs very poorly, as shown in Fig. 1D, where 
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the two processes are almost indistinguishable. Figure 1F shows how, 
once again, quantum correlation can be used to greatly improve the 
performance. We note that the best performances (shown in 
Fig. 1, E and F) are achieved in the limit of large K so that ​​​n ̄ ​​ S​​ / K  ≪  1​.

From this point on, to reduce the number of considered parameters, 
we assume the reference process P0 to be strongly peaked around 0 
so that we can approximate it as ​​g​ 0​​() ≈  ( − ​​ 0​​)​, where () is the 
Dirac delta distribution. We also consider two different noteworthy 
forms for g1: the Gaussian distribution ​g  = ​ G​ ​ ̄ ​,​​​, and the uniform 
one ​g  = ​ U​ ​ ̄ ​,​​​. Using a Gaussian probability distribution for the 
transmittance  is justified by the wide range of physical phenome-
na it can describe. In this case, the processes are fully characterized 
by their mean value ​​ ̄ ​​ and variance 2. On the other hand, the uni-
form distribution, ​​U​ ​ ̄ ​,​​​, is well suited to describe situations in which 
there is a complete lack of knowledge of the nature of the process, 
whose range can be limited by the physical constraints of the appa-
ratus. Once more, the processes are characterized by two parameters 
only: their mean ​​ ̄ ​​ and half-width . To make a fair comparison of 
the error probabilities for Gaussian and uniform distributions, we 
choose their parameters such that the resulting variances are equal. 
In particular, we will use ​  = ​ √ 

_
 3 ​ ​, since Var​[​U​ ​ ̄ ​,​​ ] = ​​​ 2​ / 3​.

In Fig. 3, we show how, for each of the three strategies studied—
the classical optimal, C, the classical strategy with PC, Cpc, and the 
quantum strategy Q—the error probability depends on the reference 
process transmittance 0. The number of signal photons is fixed to 
ns = 105, as well as the mean value of the transmittance of the defec-
tive process ​​​ ̄ ​​ 1​​  =  0.997​. In Fig. 3A, the performances of the different 
strategies are plotted in the case of a uniformly distributed defect, 
while in Fig. 3B the case of a Gaussian distributed one is reported. 
In both cases, the results for different values of the variance of the 
process (denoted by different colors) are shown. In the range studied, 
it can be seen that the quantum strategy (solid lines) outperforms 

both the classical lower bound (dashed lines) and the strategy using 
a classical probe and PC (dotted lines). Both classical and quantum 
strategies have a maximum error probability when ​​​ 0​​  = ​  ̄ ​​. This 
shared feature does not depend on the noise but on the nature of the 
problem. In this configuration, the overlap between the initial dis-
tributions is maximum and, as a result, the error probability is 
maximum as well. In both panels, we see how, in this high overlap 
region, the effect of the probe state’s noise is such that, when using 
a classical strategy, the process results are completely (perr = 0.5), or 
almost completely, indistinguishable, while distinguishability is re-
covered when quantum states with reduced noise are used.

Experimental results
To validate the presence of a quantum advantage for the conform
ance test, we experimentally implemented the protocol described in 
the “Quantum strategy” section—with the substantial difference that 
we operate with a nonideal detection efficiency . The detection 
efficiency encompasses different processes: the nonunit quantum 
efficiency of the detectors, the losses due to the different optical ele-
ments, and, in the case of correlated photon sources, the imperfect 
efficiency affecting the measurement of the correlated photons. These 
losses cannot be distinguished from those caused by a pure loss 
channel. Hence, the fit with theoretical curves must be made using 
the substitution  → . In general, the effect is equivalent to a re-
duction of the probe energy of the same factor . For the quantum 
strategy, however, another effect is the reduction of the degree of 
correlation of the state. Because of this, in general, it is expected that 
the quantum advantage will be reduced as  becomes lower. The 
setup used is thoroughly described in Materials and Methods.

Our results are presented in Fig. 4. Using a sample presenting a 
varying spatial transmittance, we acquired data for different values 
of . We used this experimental dataset to realize different defect 

A B

Fig. 3. Error probabilities. The error probabilities as functions of the mean value of the reference process ​​​τ ̄ ​​ 0​​​ are displayed, for different values of standard deviation of 
the defective process  (the numerical values are reported in the legend), and for the different discrimination strategies described in the main text: the quantum strategy 
(solid line), the classical strategy with PC (dotted line), and the optimal classical strategy (dash-dotted line). The reference distribution is considered strongly peaked: 
​​g​ 0​​  ≈  δ(τ − ​​τ ̄ ​​ 0​​)​. In (A), the defect distribution, g1(), is uniform; in (B), it is Gaussian. The distributions g1() for different values of variance are plotted on the first row panels. 
In both bottom panels, the mean number of signal photons is fixed to ns = 105 and the mean value of the defective process is ​​​τ ̄ ​​ 1​​  =  0.997​.
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distributions: In Fig. 4, we plot perr (see Eq. 1) when uniform distributions 
are considered with ​A : {  =  0.001, ​ ̄ ​  =  0.999}​, ​B : {  =  0.002, ​ ̄ ​  =  0.994}​, 
and ​C : {  =  0.003, ​ ̄ ​  =  0.997}​. For each acquisition, the mean 
numbers of photons nS and nI, and the efficiencies S and I of the 
signal and idler channels, are estimated, as well as the electronic noise 
 of the camera. These values are used to draw the theoretical curves: 
the quantum and classical error probabilities with PC, Q, and Cpc, as 
well as the classical optimal bound C, defined in Eq. 7. We display 
the results in Fig. 4 (D to F). As a comparison, we also plot the ideal 
case S = I = 1 in Fig. 4 (A to C). For the quantum error probability, 
we also report the confidence region at two standard deviations as a 
colored band around the curve. The two sets of experimental data 
reported in Fig. 4 correspond to the quantum and classical PC strat-
egies, respectively. More details on the elaboration of these results 
and data analysis can be found in Materials and Methods.

For the three regimes considered, most points fall within the 
confidence interval. These results show that, even in the case of de-
graded detection efficiency, the quantum strategy always brings an 
advantage with respect to the classical one based on PC. However, 
within the range of the defect distribution, the optimal classical 
bound C on the error probability becomes smaller than the quan-
tum strategy error probability in some regions. To bring this point 
into perspective, we point to Fig. 4 (A to C), which are constructed 
with the same experimental parameters but unit detection efficien-
cy. In this case, the quantum strategy overcomes any classical one. 
We note that, as expected, while the classical error probabilities are 
little modified by the change in efficiency , the quantum one im-
proves substantially in case of  = 1. This effect stems from the fact 
that, as mentioned, spurious losses  reduce the photon number 
correlations between signal and idler channels.

Constrained probability of error
Up until now, the figure of merit considered was the total probabil-
ity of error perr (Eq. 1). However, this quantity may not be the most 
relevant one to optimize, depending on the nature of the process 
under test. In some instances, it can be required to impose a con-
straint in either one of the conditional probabilities p01 or p10, in-
stead of their sum. These two types of errors represent different 
outcomes, and the minimization of one can be deemed more im-
portant than that of the other. To proceed further, we use the notion 
of cost, which quantifies the fact that, in the mislabeling of a pro-
cess, the false positives and false negatives may not be equivalent for 
the operator making the decision: One type of error may be more 
“costly” than the other. We introduce the coefficient 0 < S < 1 and 
define the total cost C of the conformance test as

	​ C  = ​ Sp​ 10​​ + (1 − S ) ​p​ 01​​​	 (14)

From Eq. 14, it follows that, if we use the cost C as the figure of 
merit for the evaluation of the QCT, the minimum probability of 
error is achieved for S = 1/2. If S ≠ 1/2, the minimization of the cost 
will, in general, not minimize the total error probability perr.

In the following, we analyze how the strategies presented in the 
previous sections, consisting of PC and a maximum likelihood de-
cision, for both classical and quantum probes, can be modified to 
minimize the cost C. In the formalism of the previous sections, we 
write the general term for the probabilities pij as

	​​ p​ 01​​  = ​ ∑ 
n
​ ​​p(n∣​P​ 1​​ )  [ p(n∣​P​ 0​​ ) − p(n∣​P​ 1​​ ) ]​	

A D

B E

C F

Fig. 4. Error probabilities for the QCT. (A to F) Error probabilities are plotted as a 
function of the reference parameter 0, for different values of the defective process’s 
mean value ​​ ̄ ​​ and half-width : ​A : {  =  0.001, ​ ̄ ​  =  0.999}​, ​B : {  =  0.002, ​ ̄ ​  =  0.994}​, 
and ​C : {  =  0.003, ​ ̄ ​  =  0.997}​. On the left-hand side, we show the theoretical curves 
(quantum and classical probability of error with PC Q and Cpc, as well as classical 
bound C) in the ideal case of unitary detection efficiency (S = I = 1) for different 
sets of parameters  and ​​ ̄ ​​. In the right column, we show the experimental error 
probabilities obtained using the quantum PC protocol (black dots—Exp Q) and the 
classical PC one (black circles—Exp C). The efficiencies of the channels in the exper-
imental realization are S ≃ I ≈ 0.76, while the mean number of signal photons is 
nS ≈ 105. The theoretical error probabilities using the estimated experimental 
parameters (black and light green solid lines—Q and Cpc) are plotted for both pro-
tocols, as well as the confidence interval for the quantum case (green shaded 
areas—± one SD). The classical bound C is also displayed as a comparison.
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	​​ p​ 10​​  = ​ ∑ n​ ​​ p(n∣​P​ 0​​ )  [ p(n∣​P​ 1​​ ) − p(n∣​P​ 0​​ ) ]​	 (15)

where  is the step function.
The false-positive and false-negative probabilities are plotted as 

functions of the number of signal photons in Fig. 5A for the previ-
ous section’s strategies, in the case where perr is the optimized quan-
tity. In both the classical (red lines) and quantum (blue lines) cases, 
the false-negative probability tends to be smaller than the false-
positive one, meaning that the procedure is more likely to select the 
reference process. This unbalance comes from the fact that we con-
sider as a reference process a distribution strongly peaked around 
0, while, for the defective process, we consider a uniform distribu-
tion. In terms of photon count probability, this results in the fact 
that, when an overlap is present, the most peaked process, P0, is 
chosen, while the defective one is selected in a range that is larger, 
but also less likely to be measured. This results in a bias toward P0.

The maximum likelihood postprocessing used up until now mini-
mizes the probability of error by construction. To minimize the cost 
C, a different postprocessing is needed. We can modify the maximum 
likelihood condition used for the decision, p(n∣Py) ≥ p(n∣P1 − y), 
to make it more likely that one specific process is selected according 
to some parameters. We select y when

	​​ B​​ (y)​ p(n∣​P​ y​​ ) ≥ ​B​​ (1−y)​ p(n∣​P​ 1−y​​)​	 (16)

where

	​​ B​​ (0)​  = ​  1 − b ─ 2  ​​	

	​​ B​​ (1)​  = ​  1 + b ─ 2  ​​	 (17)

and where b ∈ [ − 1,1] is a real constant. We call this modified post-
processing biased maximum likelihood. Selecting a positive b results 

in the defective process being chosen more often, while a negative b 
results in a more likely selection of the reference one. In other words, 
the value of b can be varied to shift p01 and p10, reducing the cost func-
tion C at the cost of the increase of the total error probability. This 
is shown in Fig. 5B: p01 and p10 have been brought closer to each 
other and the total error probability slightly increased, in both the 
quantum and classical cases. It is worth highlighting how the quantum 
advantage that we had with maximum likelihood processing is well 
preserved when the biased maximum likelihood one is used. The 
optimization of C is performed by varying the coefficient b. As an 
example, we consider the particular situation in which S = 1/4, 
meaning that each false positive is considered three times as costly 
as a false negative. In this situation, it is convenient to use a positive 
value for b, whose effect is to reduce the number of times the refer-
ence process P0 is selected overall, thus reducing the false-positive 

A B

C D

Fig. 5. Cost analysis in QCT. (A) Dependence on the signal photon number nS of the total error probability (perr), false positive (p01), and false negative (p10). The maxi-
mum likelihood postprocessing used in this case minimizes perr. The reference process is considered strongly peaked around the value 0 = 0.8, while the defective one is 
chosen uniformly distributed with mean ​​ ̄ ​  =  0.9​ and half-width  = 0.09. (B) A situation similar to that of (A) is considered, but we use a biased maximum likelihood 
postprocessing with bias coefficient b = 0.6 (see the main text for details). (C) We fix photon number to nS = 500 and analyze the dependence of the cost C on b. All the 
other parameters are equal to those of the previous panels. (D) Optimum value of b as a function of S.

Fig. 6. Theoretical and experimental conditional probabilities of error for the 
quantum and classical strategies with PC receiver. The distribution is taken 
such that ​​ ̄ ​  =  0.999​ and  = 0.001. The mean number of signal photons is ns ≈ 105, 
and the channel efficiencies are S ≃ I ≈ 0.76. In the legend, the quantum case is 
denoted as q ij and the classical as c ij, with i,j = 0,1.
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probability p01. The dependence of C on b is shown in Fig. 5C. In 
both the quantum and classical cases, as expected, there is a single 
optimum value for b, for which one has a minimum cost. The de-
pendence of the optimum value of b on S, with respect to the cost C, 
is shown in Fig. 5D.

The false-positive and false-negative probabilities of the classical 
and quantum strategies with a PC receiver can be evaluated experi-
mentally with the same procedure as the one described in Materials 
and Methods for the total probability of error. The experimental 
points, along with the theoretical curves, are reported in Fig. 6.

DISCUSSION
In this work, we proposed a protocol addressing the conformance 
test task, exploiting specific probe states and measurement strate-
gies. We investigated the specific scenario in which the systems un-
der test, representing possible outputs of the unknown process, can 
be modeled by pure loss channels.

In this context, we found a lower bound on the error probability 
that can be achieved in the discrimination task, using any classical 
source paired with an optimal measurement. We then showed that 
a particular class of quantum states, namely TMSV states, can be 
used in conjunction with a simple receiver consisting of a PC measure-
ment and a maximum likelihood decision to improve the performances 
over those of any classical strategy. This enhancement is due to the 
high degree of correlation (entanglement) of TMSV states, whose nature 
is fundamentally quantum. We also analyzed the particular case of 
a classical source paired with PC measurements at the receiver.

We demonstrated that the quantum advantage persists for a 
wide range of parameters, even in the presence of losses due to pos-
sible experimental imperfections, and we validated our results by 
performing an experimental realization of the protocol. We showed 
an experimental advantage in a realistic scenario where experimen-
tal losses amounted to more than 20%, highlighting the robustness 
of the proposed protocol.

We emphasize the fact that these results are particularly import-
ant because they are achieved using states that are easily produced, 

as well as a receiver design of simple implementation, allowing 
practical applications of the protocol with present technology. We 
found an advantage, although the bound C on the performance of 
classical states is not tight, meaning that the actual quantum advan-
tage could effectively be higher. For a thorough study, one can con-
sider a scenario in which a set of objects is tested instead of one. In 
this scenario, we find an informational limit using the Holevo 
bound and we showed how our proposed quantum strategy, relying 
on an independent measurement over individual systems, surpasses 
a more general classical strategy, where joint measurements over a 
collection of systems are allowed. A detailed description of this re-
sult will be presented in a forthcoming paper. The proposed QCT 
protocol could be used in the foreseeable future in notable problems 
concerning the monitoring of production processes of any object 
probed with quantum states. For example, our results on loss channel 
QCT can be used to boost the accuracy in the identifications of 
issues in concentration and composition of chemical production by 
transmittance measurement.

MATERIALS AND METHODS
Experimental setup
The experiment is based on SPDC and is depicted in Fig. 7. A multi-
mode TMSV state ⊗K∣⟩ is generated using a 1-cm3 type II -barium 
borate crystal and a continuous-wave laser at p = 405 nm, delivering 
a power of 100 mW. The down-converted photons are correlated in 
momentum. This correlation is mapped into spatial correlations 
using a lens in f-f configuration: The “far-field” lens (fFF = 1 cm) is 
positioned at one focal length of the output plane of the crystal. The 
absorption sample is positioned in the conjugated plane, which 
corresponds to the far field of the source. It consists of a coated glass 
plate, which presents different transmittance regions, realized with 
depositions of varying density. A blank coated glass is inserted in 
the idler beam’s path to match the optical paths of both beams. 
The sample is imaged using a second “imaging” lens onto a charge-
coupled device camera (Princeton Instruments PIXIS:400BR 
eXcelon), working in linear mode with high quantum efficiency 
(>95% at 810 nm) and low (few electrons per pixel per frame) elec-
tronic noise. Individual pixels of the camera are binned together in 
12 × 12 macropixels to increase the readout signal-to-noise ratio 
and the acquisition speed.

The photon counts nS and nI of the signal and idler beams are 
obtained by integrating over two spatially correlated detection areas 
SS and SI, which are subparts of the “full” correlated areas. The two 
full correlated areas are schematically defined by the two illuminat-
ed regions on the camera, i.e., the spatial extent of the idler and 
signal beams. Their precise definition is made using a procedure 
described in (22). The total number of spatial modes collected is 
Ks ∼ 103, and that of temporal mode is Kt ∼ 1010 [see (42) for more 
details on the estimation]. The mean photon number measured in 
one region Si is ​​​n ̄ ​​ i​​  ∼  1 ​0​​ 5​​. Hence, the mean occupation number per 
mode is very small ​​​n ̄ ​​ i​​ / (​K​ s​​ × ​K​ t​​ ) ∼ 1 ​0​​ −8​​. Under these conditions, the 
multithermal marginal photon number distributions can be well 
approximated by Poisson distributions (34). When the absorptive 
sample is replaced with an equivalent coated glass plate without any 
deposition, we estimate, for each pair of regions SS and SI, the corre-
sponding detection efficiencies S and I, by exploiting the correla-
tions of the SPDC process (43, 44). The phase matching conditions, 
the interference filter, the quality of the optical alignment, and the 

Fig. 7. Schematic of the experimental setup. Pumping a -barium borate (BBO) 
crystal with a laser at 405 nm, a multimode TMSV is generated. Using a lens of focal 
fFF, the correlation in momentum is converted into correlation in position in the 
sample plane, which is then imaged on the camera using a second lens. The signal 
beam passes through the sample of transmittance  and is then detected in the SS 
region of the charge-coupled device (CCD). The idler beam goes directly to SI with-
out interacting with the sample, although its optical path is matched with the sam-
ple’s one using a nonabsorbing glass. Integrating the signals over the two detection 
regions, nS and nI are collected.
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pixels’ properties on the camera all introduce small differences in 
the photon number correlations that need to be accounted for. 
With the absorptive sample, for each pair of regions, i.e., for all the 
different values of , ND = 2 · 104 frames are recorded (D designates the 
experimental dataset for transmittance ).

Data analysis
Using the experimental data, two error probabilities, p01 and p10, 
must be evaluated to access to the total error probability

	​​ p​ err​​  = ​  1 ─ 2 ​(​p​ 01​​ + ​p​ 10​​)​	 (18)

In our analysis, the reference process P0 is strongly peaked around 
0. Hence, the evaluation of p10 with experimental data is rather 
straightforward. We use the dataset D0, composed of M measure-
ment outcome (ns; ni), when the transmittance 0 is inserted in the 
signal branch to compute the experimental frequency of error f10. In 
particular, for each data pair (ns; ni) ∈ D0, a label y ∈ {0,1} is as-
signed according to the maximum likelihood strategy described in 
the main text. In the evaluation, experimental parameters such as 
the mean photon number of the source and the detection efficien-
cies are used, estimated in a calibration phase. f10 is then defined as 
the number of wrong decisions, which, in this case, is simply the 
number of occurrences of y = 1 over M. f10 will converge to the real 
probability of error p10 as the number of experimental points in the 
dataset M becomes large.

On the other hand, the evaluation of p01 requires a more careful 
approach. One has to construct an ensemble of experimental data 
DP1, whose data are taken with parameters  distributed in a way 
that is representative of the true probability density g1(). Experi-
mentally, we acquire ​​M ̄ ​​ photon number pairs for each of the trans-
mittance i, i ∈ {1, …, L}, i.e., ​​M  ̄​ · L​ data points in total. The transmittance 
values i are selected in an interval [min, max]. They may not be dis-
tributed uniformly in this interval because of a nonperfect experi-
mental control of the position of the absorption layer, and the 
uncertainty on the estimation of i. Starting from the experimental 
dataset, and binning the interval [min, max] in K equal subintervals 
of size 2l (2l = (max − min)/K), we define the experimental distribu-
tion for the transmittance, g, as the normalized histogram

	​ g( ) = ​ ∑ 
k=1

​ 
K
 ​​ ​ ​d​ k​​ ─ 2lL ​ ​​ k​​()​	 (19)

where dk is the number of experimental transmittance values i that 
fall in the kth bin so that the relative number of pairs (ns; ni)k is ​​d​ k​​​M  ̄​​. 
k() is a step function, equal to unity in the kth bin and 0 else-
where. In an ideal case, the experimental distribution g in Eq. 19 
should be a uniform distribution in the interval [min, max], but, in 
practice, because of the experimental issues mentioned above, it can 
present substantial discrepancies with respect to it.

To approximate a general probability distribution f(t), we can mul-
tiply the coefficients in Eq. 19, by proper weights wk, with k ∈ {1, …, K}. 
Once the weights are determined by a proper optimization pro-
cedure, described in the Supplementary Materials, they are used 
to modulate the number of experimental data in each bin according 
to the substitution ​​d​ k​​​M ̄ ​  ⟼ ​ d​ k​​ ​w​ k​​​M ̄ ​​, where wk represents the frac-
tion of data kept in bin k. The ensemble of data randomly picked from 
the initial set, according to the weights, will define the final set DP1. 
We refer to the distribution of DP1 after the reweighting procedure, 
as gw(), where w = [w1, …, wK]. Since the experimental set cannot be 

increased, the constraint 0 ≤ wk ≤ 1 must be imposed. The proce-
dure will, in general, reduce the number of points in the dataset: An 
increase of the statistical uncertainty can arise. Thus, it may be use-
ful to introduce a second constraint on the size of the final dataset, ​​
M​ T​​  = ​ ∑ k=1​ K  ​​ ​d​ k​​ ​w​ k​​​M ̄ ​​, in the optimization procedure to put a lower 
bound on how much data are discarded.

For the optimization process, we define the objective function to 
be maximized as the Bhattacharyya coefficient between the distri-
butions f and gw

	​ T(w ) = ​∫​​ min​​​ 
​​ max​​

 ​​ ​√ 
_

 f( ) ​g​ w​​() ​ d​	 (20)

This quantity measures their similarity and ranges between 0 and 1. 
T(w) gives a quantitative measure of how close the experimental 
dataset can be arranged to resemble the objective distribution. We 
define a threshold value 0 ≤ Tth ≤ 1, above which the approxima-
tion of f ≈ gw is deemed “good enough,” i.e., T(w) ≥ Tth. In general, 
the optimal w and the corresponding T(w) depend on the interval 
[min; max], which should be chosen so that ​​∫​​ min​​​ 

​​ max
​​
 ​​ f(t)​ dt is close to uni-

ty. We note that the minimum number of data points MT and the 
initial distribution of the experimental data can affect the results of 
the optimization algorithm. For this reason, in our realization of 
this algorithm, we sampled the interval [min, max] with a dense 
array of values i, taken equispaced within the experimental uncer-
tainty, and we took a very large total number of data points with 
respect to the target MT. The approximated distribution for the data, 
reported in Results, had a coefficient T ∼ 1. A more formal descrip-
tion, as well as further details on the procedure, is reported in the 
Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm3093
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