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Abstract
The recent discovery of bacteria within the genus Nitrospira capable of complete ammonia oxidation (comammox)
demonstrated that the sequential oxidation of ammonia to nitrate via nitrite can also be performed within a single bacterial
cell. Although comammox Nitrospira exhibit a wide distribution in natural and engineered ecosystems, information on their
physiological properties is scarce due to the limited number of cultured representatives. Additionally, most available
genomic information is derived from metagenomic sequencing and high-quality genomes of Nitrospira in general are
limited. In this study, we obtained a high (90%) enrichment of a novel comammox species, tentatively named “Candidatus
Nitrospira kreftii”, and performed a detailed genomic and physiological characterization. The complete genome of “Ca. N.
kreftii” allowed reconstruction of its basic metabolic traits. Similar to Nitrospira inopinata, the enrichment culture exhibited
a very high ammonia affinity (Km(app)_NH3 ≈ 0.040 ± 0.01 µM), but a higher nitrite affinity (Km(app)_NO2-= 12.5 ± 4.0 µM),
indicating an adaptation to highly oligotrophic environments. Furthermore, we observed partial inhibition of ammonia
oxidation at ammonium concentrations as low as 25 µM. This inhibition of “Ca. N. kreftii” indicates that differences in
ammonium tolerance rather than affinity could potentially be a niche determining factor for different comammox Nitrospira.

Introduction

Nitrification, the biological oxidation of ammonia to nitrate
via nitrite, is a critical process within the global

biogeochemical nitrogen cycle. The nitrification process is
of great biotechnological relevance since it fuels the
reductive part of the nitrogen cycle and is widely employed
in drinking and wastewater treatment systems for the effi-
cient removal of excess ammonium. Traditionally, nitrifi-
cation was considered to be a two-step process catalyzed by
two functionally distinct microbial guilds. According to this
paradigm, ammonia-oxidizing prokaryotes first oxidize
ammonia to nitrite and subsequently nitrite-oxidizing bac-
teria (NOB) are responsible for the conversion of nitrite to
nitrate. While this dogma has been challenged by the the-
oretical prediction of complete ammonia oxidation
(comammox) [1, 2], it was the discovery of comammox
Nitrospira that has drastically altered our perception of
nitrification [3–5].

All comammox organisms described to date are affiliated
with Nitrospira sublineage II and can be further divided into
clade A and B based on phylogeny of the ammonia
monooxygenase, the enzyme catalyzing the first step of
ammonia oxidation [4]. Comammox Nitrospira were iden-
tified mainly via metagenomic sequencing in various natural
and engineered ecosystems, indicating their widespread
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occurrence and key role in nitrogen cycling [6–15]. This
ubiquitous abundance of comammox Nitrospira has raised
many questions regarding their ecophysiology and potential
biotechnological applicability. In order to provide the
necessary answers, in-depth understanding of the comam-
mox physiology is required. So far, the sole physiological
data available was obtained from Nitrospira inopinata, the
only existing pure culture of a comammox bacterium [4].
The extremely low apparent half saturation constant
(Km(app)) for ammonia and the high growth yield reported
for N. inopinata indicate an adaptation to nutrient-limited
environments [16] and corroborate the predicted comam-
mox lifestyle [1].

A general adaptation of comammox Nitrospira to oli-
gotrophic environments is suggested by their presence
mainly in ecosystems with low ammonium loads. However,
limited physiological data can highly bias our perception of
the ecophysiology of certain microbial groups and kinetic
parameters might vary between different comammox spe-
cies. This was for instance recently observed for ammonia-
oxidizing archaea (AOA) and bacteria (AOB), where
especially terrestrial AOA were found to have lower
ammonia affinities than previously assumed based on the
extremely low Km reported for the marine AOA Nitroso-
pumilus maritimus [16, 17]. For comammox Nitrospira,
though, the lack of pure cultures or high enrichments
hampers the thorough understanding of the ecophysiology
of these intriguing microorganisms.

In this study, we describe the enrichment of a novel
comammox Nitrospira species in a continuous membrane
bioreactor system and provide genome-derived insights into
its metabolic potential. Furthermore, we report the ammo-
nia- and nitrite-oxidation kinetics of this comammox
organism, including an apparent inhibition by ammonium
concentrations as low as 25 µM, findings that provide cru-
cial insights into the potential niche partitioning factors of
different comammox Nitrospira.

Materials and methods

Enrichment and reactor operation

A 7L continuous membrane bioreactor (Applikon, Delft, The
Netherlands), with a working volume of 5 L was inoculated
with biomass from a hypoxic (≤3.1 µM O2) enrichment culture,
that contained two distinct comammox Nitrospira species [3].
At the start of the system’s operation, 300mL of the previously
described comammox enrichment culture were resuspended in
4.7 L of substrate-free mineral salts medium (for composition
see below). The bioreactor was operated for 39 months at room
temperature (RT) with moderate stirring (200 rpm). The pH
of the culture was constantly monitored by a pH electrode

connected to an ADI1020 biocontroller (Applikon, Delft, The
Netherlands) and maintained at 7.5 by the automatic supply of
a 1M KHCO3 solution. Dissolved oxygen was kept at 50%
saturation by providing 10mL/min of a mixture of Argon/CO2

(95%/5% v/v) and air through a metal tube equipped with a
porous sparger. The gas ratio was manually adjusted through
the system’s operation period in order to maintain 50% oxygen
saturation in the system. The level of the system was controlled
by the ADI1020 biocontroller and maintained at 5 L working
volume by removal of effluent via the membrane filtration
system, ensuring biomass retention in the system. Following
inoculation, 1 L of sterile NOB mineral salts medium [18]
was supplied to the reactor per day. The medium was sup-
plemented with 1mL of a trace element stock solution com-
posed of NTA (15 g/L), ZnSO4⋅7H2O (0.43 g/L), CoCl2⋅6H2O
(0.24 g/L), MnCl2⋅4H2O (0.99 g/L), CuSO4⋅5H2O (0.25 g/L),
Na2MoO4⋅2H2O (0.22 g/L), NiCl2⋅6H2O (0.19 g/L),
NaSeO4·10H2O (0.021 g/L), H3BO4 (0.014 g/L), CeCl·6H2O
(0.24 g/L) and 1ml of an iron stock solution composed of NTA
(10 g/L) and FeSO4 (5 g/L). Initially, ammonium, nitrite and
nitrate (80/0/50 µM NH4Cl/NaNO2/NaNO3, respectively,
increased to 250/20/500 on day 27) were supplied via the
medium. After 2 months of operation, ammonium was sup-
plied as the sole substrate and the concentration in the medium
was slowly increased from initially 250 µM NH4Cl (day 60) to
a final concentration of 2.5mM (day 453; Fig. S1). After
15 months of operation a bleed was installed in addition to the
level-controlled media removal over the membrane, which
removed 100 to 300mL biomass per day, depending on the
density and activity of the biomass. Liquid samples from the
bioreactor were collected regularly for the determination of
ammonium, nitrite and nitrate concentrations.

Analytical methods

Ammonium concentrations were measured colorimetrically via
a modified orthophatal-dialdehyde assay (detection limit
10 µM) [19]. Nitrite concentrations were determined by the
sulfanilamide reaction (detection limit 5 µM) [20]. Nitrate was
measured by converting it into nitric oxide at 95 °C using a
saturated solution of VCl3 in HCl, which was subsequently
measured using a nitric oxide analyzer (detection limit 1 µM;
NOA280i, GE Analytical Instruments, Manchester, UK). Pro-
tein extraction and determination were performed using the B-
PER™ Bacterial Protein Extraction Reagent and Pierce™
BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham,
MA, USA), respectively.

Fluorescence in situ hybridization

Biomass samples were fixed using a 3% (v/v) paraf-
ormaldehyde (PFA) solution for 30 min at RT. Fluorescence
in situ hybridization (FISH) was performed as described
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elsewhere [3] using 16S rRNA-targeted oligonucleotide
probes (Table S1) that were fluorescently labeled with
Fluoresceine or the cyanine dyes Cy3 or Cy5. After
hybridization, slides were dried and embedded in Vecta-
shield mounting solution (Vector Laboratories Inc., Bur-
lingame, CA, USA). For image acquisition a Leica TCS
SP8x confocal laser scanning microscope (Leica Micro-
systems, Wetzlar, Germany) equipped with a pulsed white
light laser and a 405 nm diode was used. In order to
quantify the total Nitrospira biovolume in the enrichment
culture fixed biomass was hybridized with the genus and
phylum-specific probes Ntspa662 and Ntspa712 (labeled in
the same color), respectively, and EUB338mix (Table S1).
Subsequently, at least 15 image pairs were recorded at
random fields of view. The images were imported into the
image analysis software daime [21] and analyzed as
described elsewhere [22]. Similarly, the biovolumes of
sublineage I and II Nitrospira were quantified using the
probes Ntspa1431 and Ntspa1151, respectively, in combi-
nation with a mix of Ntspa662 and Ntspa712 (Table S1).

DNA extraction

After 17 and 39 months of enrichment, DNA was extracted
from 50 ml of culture using the PowerSoil DNA Isolation
Kit (MO BIO Laboratories Inc., Carlsbad, CA, USA) and a
CTAB-based DNA extraction method (17 months sample)
[23] or the DNeasy Blood & Tissue Kit (39 months sample;
Qiagen, Hilden, Germany). Concentration and quality of the
obtained DNA were checked using a Qubit™ dsDNA HS
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA)
on a Qubit Fluorometer (Thermo Fisher Scientific, Wal-
tham, MA, USA) and a NanoDrop™ 1000 Spectro-
photometer (Thermo Fisher Scientific), respectively.

Metagenome sequencing and analysis

Metagenome sequencing was performed using an Illumina
MiSeq benchtop DNA sequencer (Illumina Inc., San Diego,
California USA). Genomic sequencing libraries were pre-
pared using the Nextera XT Kit (Illumina Inc., San Diego,
California U.S.A.) following the manufacturer’s instruc-
tions, using 1 ng of input DNA normalized to a 0.2 ng/µl
concentration. The MiSeq Reagent Kit v3 (2 × 300 bp)
(Illumina Inc., San Diego, California USA) was used for
sequencing according to manufacturer’s recommendations.

Sequencing adapter removal, quality-trimming and con-
taminant filtering of Illumina paired-end sequencing reads
was performed using BBDuk version 37.76 from the BBTools
package (https://jgi.doe.gov/data-and-tools/bbtools). Processed
reads for all samples were co-assembled using metaSPAdes
v3.11.1 [24] with default parameters. MetaSPAdes iteratively
assembled the metagenome using k-mer lengths 21, 33, 55, 77,

99 and 127. Reads were mapped back to the assembled
metagenome for each sample separately using Burrows-
Wheeler Aligner (BWA) v0.7.17 [25], employing the “mem”
algorithm. The sequence mapping files were processed using
SAMtools v1.6 [26]. Metagenome binning was performed for
contigs ≥2000 bp. To optimize binning results, five binning
algorithms were used: BinSanity v0.2.6.1 [27], COCACOLA
[28], CONCOCT v0.4.1 [29], MaxBin 2.0 v2.2.4 [30] and
MetaBAT 2 v2.12.1 [31]. To obtain the final bins, the five bin
sets subsequently were supplied to DAS Tool v1.0 [32] for
consensus binning. The quality of the genome bins was
assessed through a single-copy marker gene analysis using
CheckM v1.0.7 [33]. The GTDB-Tk software was used for
taxonomic classifications to the obtained bins [34, 35]. Only
Nitrospira bins with estimated completeness ≥90% and con-
tamination ≤10% were included in subsequent analyses.

Nanopore sequencing and assembly of “Ca. N.
kreftii”

To assemble the complete genome of the dominant
Nitrospira species, single-molecule long-read data was
obtained after 17 months of enrichment using the Oxford
Nanopore MinION platform (Oxford Nanopore Technol-
ogies, Oxford, UK). Genomic DNA was extracted by
using the CTAB-based protocol as described above and
prepared for sequencing using the Ligation Sequencing
Kit 1D (SQK-LSK108, Oxford Nanopore Technologies)
according to the manufacturer’s instructions. Adapter-
ligated DNA was cleaned by adding 0.8 volumes of
AMPure XP beads (Beckman Coulter Inc., Brea, CA,
USA). Sequencing libraries were loaded on a SpotOn
Flow Cell (FLO-MIN106 R9.4, Oxford Nanopore Tech-
nologies) using the Library Loading Beads Kit (EXP-
LLB001, Oxford Nanopore Technologies) following
manufacturer’s specifications.

Sequencing was performed on the MinION sequencing
device with MinKNOW v1.7.10 software using the FLO-
MIN106 450 bps protocol. Base calling of the signal data was
performed using Guppy v2.3.7 (Oxford Nanopore Technol-
ogies) with the flipflop model -c dna_r9.4.1_450bps_flipflop.
cfg. Only NanoPore reads with a length ≥700 bp were used
for further analyses. The Nanopore reads were assembled de
novo using Canu v1.8 [36] with parameters “genomeSize =
50m” and “corOutCoverage = 1000”. Subsequently, all
Nanopore reads with a length of ≥700 bp were mapped to the
assembly using minimap2 v2.16-r922 [37], followed by
building genomic consensus sequences using Racon v1.3.1
[38]. This long read assembly approach resulted in a closed
Nitrospira genome whose taxonomic classification was con-
firmed using the classify_wf workflow of GTDB-Tk v0.3.2
[35] with default settings. All trimmed Illumina reads of the
17 months sample were mapped to this complete Nitrospira
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genome using bbmap v37.76 (sourceforge.net/projects/
bbmap/) with “minid 0.8”. A hybrid assembly was performed
using Unicycler v0.4.4 with the mapped Illumina reads and
the NanoPore reads as input and the NanoPore consensus
assembly as existing long read assembly. In addition, the
chromosomal replication initiator protein, DnaA of Nitrospira
moscoviensis (ALA56445.1) was used to set dnaA as starting
gene with the parameters “start_gene_id 60” and
“start_gene_cov 80”.

Phylogenomic analysis and genome annotation

Reference genomes that were downloaded from the NCBI
GenBank database (13/05/2019) and the Nitrospira
metagenome-assembled genomes (MAGs) retrieved in
this study were dereplicated using dRep [32] with default
parameters filtering for an estimated completeness ≥90%
and contamination ≤10%. The UBCG pipeline [39] was
used for phylogenomic analysis of the obtained Nitrospira
MAGs and 34 publicly available, high-quality genomes of
sublineage I and II Nitrospira. UBCG was used to identify
and extract 91 bacterial single copy core genes from all
genomes. After alignment in UBCG with default para-
meters, a maximum likelihood phylogenetic tree was
calculated based on the concatenated nucleotide align-
ment using RAxML v8.2.12 [40] on the CIPRES science
gateway [41] with the GTR substitution and GAMMA
rate heterogeneity models and 100 bootstrap iterations.
Two Leptospirillum genomes were used as outgroup.
Average nucleotide identity (ANI) values of the genomes
were calculated using the OrthoANIu tool [42].

All CDS of the high-quality draft genomes of Nitrospira
including the complete genome of “Ca. N. kreftii” were
automatically predicted and annotated using a modified
version Prokka [43] that performs a BLASTp search of all
CDS against the NCBI RefSeq non-redundant protein
database (version 92). Homologous proteins in these MAGs
and in selected Nitrospira genomes were identified by
reciprocal best BLAST. Only BLAST hits with an e-value
≤1e-06, amino acid similarity ≥35% and minimum align-
ment coverage of 80% were considered as homologous
proteins. In addition, the automatic annotation of selected
genes of “Ca. N. kreftii” was confirmed using the annota-
tion platform Genoscope [44]. The visualization tool Circos
v0.69-6 [45] was used to generate a whole genome map of
“Ca. N. kreftii”.

Adaptation to increased substrate concentrations in
batch culturing conditions

Biomass (1 L) from the enrichment culture was washed
twice in sterile NOB medium by centrifugation (1500 × g,

2 min) and subsequent resuspension in the same volume of
0.01M HEPES buffered (pH 7.5) sterile NOB medium
containing 0.1 mM KHCO3 supplemented with 1 mM
NH4Cl. The culture was incubated in the dark for 30 days
(RT, 150 rpm, rotary shaker). Upon full ammonium con-
sumption, substrate was replenished (approximately every
7 days). At the end of the adaptation period, a total of 4 mM
of NH4Cl were completely and stoichiometrically oxidized
to nitrate in the batch culture. In order to avoid potential
inhibition due to nitrate accumulation, the culture was
washed after 15 days of incubation. During the washing, the
complete culture was centrifuged (1500 × g, 2 min) and the
medium was exchanged with 1 L of fresh HEPES buffered
sterile NOB medium.

Substrate-dependent oxygen uptake rate
measurements

After 39 months of enrichment, the activity of the culture
was determined by microrespirometry. Biomass from 20mL
of the bioreactor or the batch cultures was harvested, washed
twice by centrifugation (1500 × g, 2 min) and finally resus-
pended in 2 mL of 0.01M HEPES buffered sterile NOB
medium containing 0.1 mM KHCO3. Oxygen consumption
rates were measured at 25 °C using a RC-350 respiration
chamber (Warner Instruments LLC, Hamden, USA), equip-
ped with an oxygen sensor (Model 1302, Warner Instru-
ments LLC, Hamden, USA) and connected to a picoammeter
PA2000 (Unisense, Aarhus, Denmark). NH4Cl or NaNO2

were injected from concentrated stock solutions (1 mM) into
the reaction vessel. At the end of the measurements, biomass
was harvested for protein and floc size determination. Con-
centrations of ammonium, nitrite and nitrate were determined
in the supernatant as described above.

Calculation of kinetic parameters

The kinetic constants of the enrichment culture were esti-
mated from oxygen consumption measurements using
substrate:oxygen consumption stoichiometries of 1:2 and
2:1 for ammonia and nitrite oxidation, respectively. Mea-
surements were corrected for background respiration, which
were determined from oxygen uptake rates prior to substrate
addition.

Ammonia oxidation by “Ca. N. kreftii” was best
described by the Haldane substrate inhibition model (Eq.
(1)) and Ki values were calculated based on fitting of the
data to this model. Due to the overestimation of the Km(app) and
Vmax values by the inhibition model, these were obtained by
fitting the experimental data obtained for non-inhibitory
ammonium concentrations to a Michaelis–Menten model
(Eq. (2)), which was also employed to calculate Km(app) and
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Vmax for nitrite oxidation.

V ¼ Vmax½S�
KmðappÞ þ S½ � þ S½ �2

Ki

ð1Þ

V ¼ Vmax S½ �
Km appð Þ þ S½ � ð2Þ

with V representing the observed oxidation rate, Vmax the
maximum rate (in µM h−1), Km(app) the apparent
Michaelis–Menten half saturation constant, Ki the inhibition
parameter that is equal to the maximum substrate
concentration that produces a rate of 1/2 Vmax, and [S] the
substrate concentration (in µM).

Floc size determination and statistical analyses

A representative biomass sample form the bioreactor
enrichment culture, as well as the collected biomass at the
end of the microrespirometry experiments (see below), was
used for the determination of the average floc size (area)
using image analysis. Microscopic images were acquired
using a Zeiss Axioplan 2 (Carl Zeiss AG, Oberkochen,
Germany) light microscope. Floc area was calculated
manually using the software platform ImageJ [46].

The Pearson’s coefficient (r), as well as the significance
level (p value, p) of the correlations between floc size and
the corresponding apparent half saturation affinity constants
for ammonium and nitrite were calculated using the ‘rstatix’
package (v.0.6.0) [47] in R (v.3.6.2) [48]. The degrees of
freedom (corresponding to the number of data points -2)
used to calculate r are indicated in brackets. All values are
reported according to the APA guidelines.

Results

Enrichment of comammox Nitrospira

A continuous laboratory-scale membrane bioreactor was
used for the enrichment of comammox Nitrospira. The
bioreactor was inoculated with biomass from an enrichment
culture containing two identified comammox Nitrospira
species (“Ca. Nitrospira nitrosa” and “Ca. Nitrospira nitri-
ficans”), which constituted together ~15% of the microbial
community [3]. Since comammox bacteria are speculated to
thrive under highly limiting substrate concentrations, med-
ium amended with low ammonium concentrations was
supplied to the system. Additionally, the system was oper-
ated at 50% oxygen saturation. The total ammonium load of
the system was, based on the consumption rate and biomass
concentration in the culture, gradually increased from

initially 0.016 to finally 2.5 mmol day−1 (Fig. S1A) and was
stoichiometrically oxidized to nitrate (Fig. S1B). Con-
centrations of ammonium and nitrite in the bioreactor
always remained below the detection limit (10 µM;
Fig. S1B).

After 27 months of operation, Nitrospira bacteria were
present in suspended flocs of an average area of 9.8 ± 4 µm2

(range 0.3–12.5 µm2) and constituted ~90% of the total
microbial community in the culture, as revealed by quan-
titative FISH (Fig. 1, Table S2). Subsequently, the relative
abundance of Nitrospira dropped due to a malfunction of
our sterilization system that resulted in the introduction of
heterotrophic bacteria into the bioreactor. Despite this
temporary reduction in the degree of enrichment, bacteria
belonging to the genus Nitrospira dominated the microbial
community over the whole 39 months of operation.

Quantification of the relative abundances of Nitrospira
affiliated with sublineages I and II revealed that up to 95 ±
6% of the total Nitrospira population consisted of sub-
lineage II Nitrospira, while sublineage I never constituted
more than 3.1 ± 1% (Fig. S2). FISH with probes targeting
the known AOA or betaproteobacterial AOB indicated their
absence from the culture at all time points analyzed (data
not shown), as was already the case for the inoculum [3].

Metagenomic retrieval of a novel clade A
comammox Nitrospira

Metagenome sequencing in combination with de novo
assembly and consensus binning of the microbial commu-
nity present in the bioreactor enrichment after 17 months of
operation resulted in the recovery of 28 metagenome-
assembled genomes (MAGs) of medium or high quality
(completeness ≥75% or ≥90%, respectively, and con-
tamination ≤10%; Dataset S1). Of these, four high-quality
MAGs were affiliated with the genus Nitrospira. The
number of reads mapped to these Nitrospira MAGs corre-
sponded to 36% of the total reads and total coverage data
suggested that one Nitrospira MAG dominated the micro-
bial community in the bioreactor system (Dataset S1).
Phylogenomic analysis revealed that this MAG belongs to a
novel clade A comammox Nitrospira (Figs. 2 and S3). The
remaining Nitrospira-like MAGs clustered with canonical
nitrite-oxidizing Nitrospira within sublineage I (2 MAGs;
Nitrospira spp. CR1.1 and CR1.2) and sublineage II (1
MAG; Nitrospira sp. CR1.3; Figs. 2 and S3). In combina-
tion with the lack of key genes for ammonia oxidation
(Fig. S4), this phylogenetic affiliation strongly indicated
that these Nitrospira were canonical nitrite oxidizers.

A hybrid assembly approach for scaffolding the Illumina
assembly with long Nanopore reads allowed the retrieval of
the complete genome of the dominant Nitrospira MAG,
with a total size of 4.13 Gb and an overall G+C content of
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54.5%. The average nucleotide identities (ANI) of this
genome to 34 high-quality genomes of sublineage I and II
Nitrospira available at the time of study (May 13, 2019) are
≤77% (Fig. S3), which is below the species cutoff of 95%
[49]. Together with the phylogenetic distance in the phy-
logenomic analysis (Fig. 2), this classifies it as a novel clade
A comammox Nitrospira, which we tentatively named
‘Candidatus Nitrospira kreftii’. Intriguingly, this novel
species apparently outcompeted the two comammox species
detected in the source enrichment [3], presumably due to the
changes in substrate and oxygen concentrations supplied to
the culture (see above).

Resequencing after additional 22 months of enrichment
indicated a clear decrease in diversity for both Nitrospira
and the overall microbial community. More specifically,
after a total of 39 months of enrichment, we retrieved 9
medium and 7 high-quality MAGs, out of which “Ca. N.
kreftii” was the only MAG affiliated with sublineage II of
the genus Nitrospira (Dataset S2). The metagenome con-
tained one additional MAG (Nitrospira sp. CR2.1) repre-
senting a canonical sublineage I Nitrospira, which was
highly similar (96% ANI) to the Nitrospira sp. CR1.2 MAG
obtained from the 17-month sample. However, this MAG
showed >10% estimated contamination, most likely indi-
cating wrong assignments of contigs belonging to Nitros-
pira sp. CR1.1 into this genome bin. Putatively
heterotrophic microorganisms accounted for the rest of the
microbial community present in the system (Dataset S2).
No canonical ammonia-oxidizing prokaryotes were identi-
fied in the metagenomic datasets, confirming that “Ca. N.
kreftii” was indeed the only ammonia oxidizer in the system
(Datasets S1 and S2).

Metabolic potential of “Ca. N. kreftii”

Analysis of the complete “Ca. N. kreftii” genome revealed
the presence of all genes for the enzyme complexes
involved in complete nitrification (i.e., ammonia mono-
oxygenase (AMO), hydroxylamine dehydrogenase (HAO)
and nitrite oxidoreductase (NXR); Fig. 3, Dataset S3).
Similar to most comammox Nitrospira, the “Ca. N. kreftii”
genome contained one gene cluster encoding the structural
AMO subunits (amoCAB), the hydroylamine:ubiquinone
reduction module (HURM; consisting of haoAB for the
HAO structural subunits and cycAB, encoding the cyto-
chromes c554 and cM552) as well as genes for the type I
cytochrome c biosynthesis system. In addition, “Ca. N.
kreftii” harbors four non-operonal amoC copies and an
additional haoA (Dataset S3). For nitrite oxidation, the
genome contains two nxrAB gene clusters encoding the
alpha and beta subunit of the periplasmic NXR and four
non-operonal genes for putative gamma subunits (nxrC;
Fig. S5). One of these nxrC is clustered with a TorD-like
chaperone probably involved in insertion of the molyb-
dopterin cofactor into the catalytic NxrA subunits, and a
NapG-like ferredoxin as has been described for other
Nitrospira [50–52]. As found in all Nitrospira [53, 54], also
“Ca. N. kreftii” encodes a copper-containing nitrite reduc-
tase (NirK; Dataset S3), the exact function of which how-
ever still is unclear [16].

In addition to the enzyme systems for ammonia and nitrite
oxidation, “Ca. N. kreftii” encodes all complexes of the
respiratory chain, the reductive tricarboxylic acid cycle for CO2

fixation, and the complete gene repertoire for glycolysis/glu-
coneogenesis and the oxidative and non-oxidative phases of the
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pentose phosphate pathway, which all belong to the core
metabolism of the genus Nitrospira. Notably, the genome of
“Ca. N. kreftii” encoded an alternate F1Fo-type ATPase (also
referred to as Na+-translocating N-ATPase; [55]), and an
alternative sodium-pumping complex I (Na+-NQR; Data-
set S3) [56]. These features have been identified in other
aerobic and anaerobic ammonia oxidizers, as well as in the
nitrite-oxidizing “Ca. Nitrospira alkalitolerans”, where
they were linked to an adaptation to haloalkaline environments
[57–59].

Similar to other clade A comammox Nitrospira
[3, 16, 60], “Ca. N. kreftii” featured a low-affinity Rh-type
transporter for ammonium uptake, and possessed a com-
plete operon encoding the structural and accessory urease
subunits and a high-affinity urea transporter. This indicates
that besides ammonia also urea can be used as source of
ammonium for assimilation and to fuel ammonia oxidation

under ammonium-limited conditions [3]. While canonical
Nitrospira including those identified in this study can use
nitrite as nitrogen source for assimilation (Fig. S4), no
assimilatory nitrite reduction system was identified in the
complete genome of “Ca. N. kreftii” (Dataset S3), as is the
case in all other available comammox genomes [13].

Kinetic characterization of the enrichment culture

Both FISH and metagenomic sequencing indicated the
absence of known canonical ammonia oxidizers in the
enrichment culture, and demonstrated “Ca. N. kreftii” to be
the dominant nitrifier and only comammox Nitrospira in the
system. Thus, the enrichment culture was used to determine
the apparent kinetic parameters of the nitrification reaction
by measuring the substrate-dependent oxygen (O2) uptake
rates using microrespirometry.

O2 consumption immediately increased upon substrate
addition and ammonium and O2 were consumed in a
1:2 stoichiometry (1:1.96 ± 0.13 mean ± s.d., n= 4), as
expected for complete nitrification, while only a transient
accumulation of low concentrations of nitrite (1–5 µM) was
observed. From this data we estimated a mean apparent
half-saturation constant (Km(app)) of 2.25 ± 0.56 µM total
ammonium (NH4

+ + NH3), corresponding to Km(app) ≈
0.040 ± 0.010 µΜ ammonia (n= 3; Fig. 4). The mean
maximum total ammonium oxidation rate (Vmax) of 83.0 ±
15.2 µmol NH4

+ + NH3 (mg protein)−1 h−1 (n= 3) was
reached at concentrations as low as 25 µM. Surprisingly,
ammonia oxidation by the enrichment culture did not follow
typical Michaelis–Menten kinetics and ammonium con-
centrations >25 µM caused a reduction in Vmax. Conse-
quently, ammonia oxidation in “Ca. N. kreftii” was better
described using the Haldane substrate inhibition model,
which yielded a mean apparent inhibition constant (Ki(app))
of 245.7 ± 98.7 µM total ammonium, corresponding to
Ki(app) ≈ 4.37 ± 1.76 µM ammonia (n= 3; Fig. 4). However,
it should be noted that “Ca. N. kreftii” was not completely
inhibited by elevated ammonium concentrations, but
retained ~50% of Vmax also at ammonium concentrations up
to 450 µM, thus impeding accurate estimations of Ki.

Contrastingly, nitrite oxidation in the enrichment culture
followed typical Michaelis–Menten kinetics. Nitrite was
oxidized to nitrate with the expected 2:1 nitrite:oxygen
stoichiometry (2:1.04 ± 0.04, n= 3) and we determined
mean Km(app) and Vmax values of 12.5 ± 4.0 µM nitrite and
59.0 ± 2.1 µM nitrite (mg protein)−1 h−1, respectively (n=
3; Fig. 5).

For non-planktonic microbial cultures, substrate uptake
kinetics are influenced by the size and shape of the micro-
colonies the microorganism forms, and the thickness of the
biofilm or, in case of suspended growth, floc size [61, 62].
The average floc size of the biomass during determination
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of the ammonia and nitrite oxidation kinetic parameters was
5.5 ± 10.4 µm2 and 4.4 ± 6.0 µm2, respectively (ranging
from 1.8 ± 2.7 to 8.4 ± 12.7 µm2). As expected, a positive
correlation was observed between the determined ammonia
(r (4)= 0.84, p= 0.038; n= 6) and nitrite (r (4)= 0.81,
p= 0.051; n= 6) Km(app) values and the degree of biomass
aggregation, with larger average floc sizes corresponding to
increased Km(app) values (Figs. 4–7).

To exclude that the observed inhibition pattern of
ammonia oxidation was due to a potential physiological
adaptation of the biomass to the continuous substrate-
limited culturing conditions, batch cultures at higher
ammonium concentrations (1 mM NH4

+) were initiated.
After one month of cultivation with substrate replenishment
when ammonium was fully consumed, ammonia and nitrite
oxidation kinetics were determined as before. However,
also with this high substrate-adapted biomass, a similar
inhibition pattern was observed upon addition of ammo-
nium concentrations >25 µM (Fig. 6), whereas the nitrite
oxidation kinetics again followed Michaelis–Menten type
kinetics (Fig. 7). Fitting of the converted oxygen uptake
data to Eqs. (1) and (2) (see Materials and Methods) yielded
mean Km(app) (2.32 ± 1.37 µM NH4

+ + NH3, corresponding
to 0.041 ± 0.024 µΜ NH3; 14.7 ± 6.1 µM NO2

−), Vmax

(134.2 ± 30.2 µmol NH4
+ + NH3 (mg protein)−1 h−1;

91.0 ± 3.1 µM NO2
− (mg protein)−1 h−1) and Ki(app)

(191.9 ± 68.5 µM NH4
+ + NH3) values for ammonia and

nitrite oxidation, respectively, that where comparable to
those obtained with the continuous bioreactor culture. Thus,
while the slight increment in Vmax for ammonia and nitrite
oxidation, and possibly also the slight reduction in the
degree of inhibition, might indicate an increase in cellular
enzyme concentrations as response to elevated substrate
concentrations, this adaptation did not abolish substrate
inhibition of “Ca. N. kreftii”.

Lastly, the inhibitory effect of elevated ammonium
concentrations on “Ca. N. kreftii” was verified in batch
incubations. Parallel incubations were inoculated with bio-
mass from the bioreactor system and amended with differ-
ent amounts of substrate. Also in this setup, addition of
elevated ammonium concentrations (>100 µM) decreased
the observed maximum activity of ammonia oxidation,
while nitrite oxidation rates continued to increase at higher
nitrite concentrations (Fig. S6).

Discussion

Recent metagenomic studies have demonstrated the abun-
dance of comammox Nitrospira in numerous natural and
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engineered ecosystems, hinting at their crucial role within
the biogeochemical nitrogen cycle [12]. However, the
ecological niche of these novel organisms is still unclear.
Theoretical kinetic modeling studies have predicted that
comammox organisms would thrive in environments that
select for low growth rates and high yields, as for instance
encountered in biofilm-like systems under substrate-limited
conditions [1, 2]. First physiological data of the pure culture
N. inopinata substantiated these predictions, as this
comammox Nitrospira was shown to have an extremely
high ammonia affinity and growth yield, which is compar-
able to or even surpasses those of freshwater and terrestrial
AOA [16, 63]. This indicates that in highly oligotrophic
environments comammox Nitrospira could be one of the
main drivers of nitrification. However, the limited avail-
ability of cultured representatives still hinders full appre-
ciation of the unique comammox ecophysiology and thus
additional cultures are urgently needed in order to fully
understand their contribution to nitrification in the envir-
onment and their potential biotechnological applicability.

Here, a novel comammox Nitrospira species was highly
enriched in a continuous substrate-limited bioreactor

system. The enrichment culture performed complete nitri-
fication without transient nitrite accumulation (Fig. S1).
Metagenomic sequencing after 17 months of bioreactor
operation revealed the presence of three canonical nitrite-
oxidizing and one clade A comammox Nitrospira species
(Fig. 2). Additional long-read sequencing facilitated the
reconstruction of the complete genome of this comammox
Nitrospira, which, based on pairwise ANI comparisons
(Fig. S3) and phylogenetic distance (Fig. 2), forms a novel
species tentatively named “Ca. N. kreftii”. Notably, this
genome represents only the second complete genome
available for comammox Nitrospira.

Genome analysis indicated high metabolic overlap with
the phylogenetically closely related “Ca. N. nitrificans”,
with which it also shares the highest genome identity
(77% ANI). Like all comammox Nitrospira, they share
the enzymatic machineries required for energy conserva-
tion by ammonia and nitrite oxidation. While the com-
plexes of the respiratory chain including the periplasmic
NXR are conserved among all Nitrospira [13], the key
enzymes for ammonia and hydroxylamine oxidation
are confined to comammox Nitrospira and have highest
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similarity to the respective enzymes in betaproteobacterial
AOB [3, 4, 54]. For these it has recently been proposed
that nitric oxide (NO) is an obligate intermediate of the
ammonia oxidation process [64]. In this revised model,
NO is produced by HAO and subsequently oxidized to
nitrite abiotically or, more likely, enzymatically. One of

the best candidates for NO oxidation is the NO-forming
nitrite reductase NirK, which would operate in reverse
during aerobic ammonia oxidation [64]. NirK is con-
served in all Nitrospira including “Ca. N. kreftii”, but its
function in the ammonia oxidation pathway remains to be
verified.
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The co-occurrence of canonical nitrite-oxidizing and
comammox Nitrospira in the enrichment culture (Figs. 2
and S2) indicates a functional relationship between the two
microorganisms in the system. Despite the fact that nitrite
remained always below the detection limit (<5 µM) in the
bioreactor, previous studies on N. inopinata have shown the
transient accumulation of nitrite in comammox batch cul-
tures [16]. Thus, comammox Nitrospira might always
excrete some nitrite during ammonia oxidation, which in
mixed culture systems might immediately be consumed by
canonical Nitrospira with higher nitrite affinities [16]. This
would explain the presence of canonical Nitrospira in the
enrichment and indicate an unexpected potential interplay
between the two functional types of Nitrospira similar to
the symbiotic interactions between canonical AOB and
NOB [65], with nitrite-oxidizing Nitrospira relying on
leakage of nitrite from comammox Nitrospira.

Besides canonical Nitrospira, metagenomic sequencing
furthermore indicated the presence of a complex microbial
community, consisting mainly of potential heterotrophic
microorganisms. Thus, despite the high degree of enrich-
ment of “Ca. N. kreftii” achieved, a combination of physical
separation and traditional microbiological techniques
appears necessary to obtain a pure culture from the bior-
eactor’s biomass. Several protocols, including label-free cell
sorting [66, 67], optical tweezers [68] and very recently an
automated Raman-based microfluidics platform [69] could
assist in the future isolation of “Ca. N. kreftii”. However,
while pure cultures are of undoubtful importance for a
thorough physiological characterization of an organism,
also enrichment cultures can provide invaluable insights
into their ecophysiology.

When we investigated the ammonia oxidation kinetics of
our “Ca. N. kreftii” enrichment, we determined a very high
ammonia affinity (mean Km(app) ≈ 0.040 ± 0.01 µM NH3).
However, this value must be considered as a conservative
approximation, as diffusion limitations due to the

flocculation of the biomass (average floc size 5.5 ±
10.4 µm2) are expected to have caused an underestimation
of the substrate affinity. Correspondingly, when performed
with less aggregated biomass (average floc size 3.0 ± 5.3
µm2), a higher substrate affinity was measured (Km(app) ≈
0.033 ± 0.012 µM NH3), and the opposite was observed an
experiment with larger flocs (average floc size 8.4 ±
12.7 µm2, Km(app) ≈ 0.051 ± 0.015 µM NH3; Fig. 4). These
values are very similar to the reported ammonia affinity of
N. inopinata, which however appears mostly in small cell
aggregates and as planktonic cells [16], and confirm that
comammox Nitrospira exhibit a substrate affinity orders of
magnitude higher than most characterized AOB and even
one order higher than many non-marine AOA (Fig. 8a). The
high ammonia affinity determined for “Ca. N. kreftii”
agrees well with previous theoretical predictions of the
comammox ecophysiology [1, 2] and further verifies an
adaptation of comammox bacteria to extremely oligotrophic
environments [16].

Surprisingly, already very low ammonium concentra-
tions (>25 µM) were found to partly inhibit ammonia
oxidation by the “Ca. N. kreftii” enrichment. Although
ammonium inhibition was not observed for N. inopinata
[16], ammonium-sensitive AOA [17, 70] as well as
canonical AOB affiliated with the genus Nitrosomonas
[71–73] have been isolated previously, which however
were only inhibited by ammonia concentrations in the low
mM range. Moreover, ammonium-induced inhibition of
nitrifying microorganisms in activated sludge and soil has
been described as well [74, 75]. The inhibition of these
ammonia-oxidizing microorganisms is thought to be a
consequence of their adaptation to substrate-limited
environments, or, alternatively, to be caused by a sensi-
tivity to the toxic effects of free ammonia itself or to
intermediates of the ammonia oxidation pathway [72, 75].
However, it was not possible to adapt the “Ca. N. kreftii”
enrichment culture, as even after pre-incubation at higher
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ammonium concentrations (1 mM) for one month we still
observed an inhibitory effect of ammonium concentra-
tions >20–25 µM (Fig. 6). Moreover, in batch incubations
with biomass from the enrichment culture, a lower
ammonium oxidation rate was observed in the presence of
>100 µM ammonium (Fig. S6), suggesting that this
adaptation of “Ca. N. kreftii” to extremely low substrate
concentrations was independent of the method used to
study its ammonia oxidation kinetics and could not be
attributed to continuous culturing under substrate-limited
conditions. However, if there was any influence on the
observed ammonia-oxidation kinetics from any hetero-
trophic microorganism still present in the enrichment
culture will require further investigation, for instance
when a pure culture of “Ca. N. kreftii” is obtained.

Nitrite oxidation in the “Ca. N. kreftii” enrichment fol-
lowed canonical Michaelis–Menten kinetics and a substrate
affinity consistent with canonical nitrite-oxidizing Nitros-
pira was obtained (mean Km(app)= 12.5 ± 4.0 µM NO2

−,
n= 3; average floc size 4.4 ± 6.0 µm2; Fig. 5). As this value
was determined in a system containing comammox and
canonical nitrite-oxidizing Nitrospira, this represents the
combined affinity of the two functionally distinct Nitrospira
types. However, the low relative abundance of canonical
nitrite-oxidizing Nitrospira at the time these experiments
were conducted (3.1% of the total Nitrospira population;

Fig. S2) suggests that also “Ca. N. kreftii” exhibits this
high nitrite affinity, which is in stark contrast to N. inopi-
nata (Km(app)= 449.2 ± 65.8 µM NO2

−) [16]. These phy-
siological differences between comammox species
emphasize the need for the investigation of several repre-
sentatives of a microbial guild in order to obtain a complete
picture of its ecophysiological potential.

In conclusion, the obtained enrichment culture enabled
the genomic and physiological characterization of the novel
comammox species “Ca. N. kreftii”. While there were only
few metabolic differences predicted by genomic analyses
compared to other clade A comammox Nitrospira, clear
deviations were observed to N. inopinata regarding their
ammonia and nitrite oxidation kinetics. The apparently
higher substrate affinities of “Ca. N. kreftii” for ammonia
compared to canonical AOB and many terrestrial AOA, and
to nitrite compared to N. inopinata, indicate a physiological
advantage in highly oligotrophic environments. Further-
more, the observed inhibition by ammonium implies dif-
ferences in substrate tolerance of comammox Nitrospira
that could play a crucial role in their interspecies competi-
tion and ecological niche partitioning. These novel insights
into the physiology of comammox Nitrospira further
expand our understanding of these unique microorganisms
and can have significant implications on process design for
their biotechnological application.
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Fig. 8 Comparison of the ammonia and nitrite affinities between
canonical and complete nitrifying microorganisms. Apparent affi-
nity constants for (a) ammonia and (b) nitrite of the “Ca. N. kreftii”
enrichment culture (red symbols) in comparison to the reported values
of N. inopinata (orange) and canonical AOA (blue), AOB (green) and

NOB (purple) [16, 17, 72, 76–84]. When ammonia affinity values
were not given in the respective studies, these were calculated from the
reported total ammonium concentrations, pH and temperature pro-
vided. The asterisk indicates that the highly enriched “Ca. N. kreftii”
culture contains also canonical, nitrite-oxidizing Nitrospira.
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Taxonomic consideration of “Candidatus Nitrospira
kreftii” sp. nov

N.L. gen. n. kreftii, of Kreft, in honor of Jan-Ulrich Kreft, a
German computational biologist, for his leading contribu-
tion to the theoretical prediction of comammox bacteria.
Phylogenetically affiliated with sublineage II of the genus
Nitrospira. Belongs to comammox clade A; capable of
complete nitrification.

Data availability

Sequencing data obtained in this study have been deposited
in the National Center for Biotechnology Information
(NCBI) database under Bioproject accession number
PRJNA575653.
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