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Abstract
Great concerns have been raised about SARS-CoV-2 variants over the past six months. At the end of 2020, an increasing 
incidence of spike substitutions Q677H/P was described in the USA, which involved six independent lineages. We searched 
for changes to this amino acid in the sequence database of SARS-CoV-2 genomes obtained at the IHU Méditerranée Infection 
(Marseille, France) from 3634 patients sampled between February 2020 and April 2021. In seven genomes (0.2%), we found 
a deletion of five amino acids at spike positions 675–679 (QTQTN) including Q677, and in 76 genomes (2.3%) we found a 
Q677H substitution. The 83 genomes were classified in ten different Pangolin lineages. Genomes with a spike Q677 deletion 
were obtained from respiratory samples collected in six cases between 28 March 2020 and 12 October 2020 and in one case 
on 1 February 2021. The Q677H substitution was found in genomes all obtained from respiratory samples collected from 19 
January 2021 and were classified in seven different lineages. Most of these genomes (41 cases) were of UK variant. Two oth-
ers were classified in the B.1.160 Pangolin lineage (Marseille-4 variant) which was first detected in July 2020 in our institute 
but was devoid of this substitution until 19 January 2021. Also, eight genomes were classified in the A.27/Marseille-501 
lineage which was first detected in our institute in January 2021 and which either harboured or did not harbour the Q677H 
substitution. Thus, the spike Q677H substitution should be considered as another example of convergent evolution, as it is 
the case of spike substitutions L18F, E484K, L452R, and N501Y which also independently appeared in various lineages.
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Introduction

One year after SARS-CoV-2 was declared a pandemic by 
the WHO, some of its variants with various combinations 
of amino acid substitutions or deletions in the spike protein 
have taken centre stage [1]. This protein leads to virus entry 
into human respiratory cells [2, 3]. It is also the major target 
of neutralising antibodies which are elicited post-infection 

or vaccine immunisation, and is the target of most vaccine 
strategies implemented to date [4]. As a result of our surveil-
lance of genomic epidemiology, our institute has observed 
and described the emergence of a dozen SARS-CoV-2 vari-
ants since summer 2020, after the rate of diagnoses fell to 
almost zero for several weeks between May and June 2020. 
These included the Marseille-1 and Marseille-4 variants 
later assigned to Pangolin lineages B.1.416 and B.1.160, 
respectively, and the Marseille-501 variant corresponding 
to lineage A.27 [5–8]. The variants recently considered to 
be of greatest concern are those carrying amino acid sub-
stitutions N501Y and/or E484K within the spike protein [9, 
10], as they have increased affinity for the ACE2 cellular 
receptor, decreased sensitivity to neutralising antibodies, and 
may escape the immune responses elicited by the vaccines 
currently used in Western countries [2, 3, 11]. Nevertheless, 
various other SARS-CoV-2 variants have been reported as 
emerging worldwide.
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At the end of 2020, the incidence of variants carrying 
the Q677H, or Q677P substitutions in the spike increased, 
mainly in the USA, where the first sequences originated from 
Louisiana [12]. Interestingly, these strains were reported as 
belonging to six independent sublineages, including one, 
two, and three in Nextstrain clades 20A, 20B, and 20G, 
respectively. Amino acid 677 of the SARS-CoV-2 spike 
protein is only three codons upstream of the polybasic/
furin cleavage site of S1/S2 spike domains, which is critical 
for SARS-CoV-2 pathogenesis, as this cleavage induces a 
spike conformational change that favours the binding to the 
Angiotensin-Converting Enzyme 2 (ACE2) cellular SARS-
CoV-2 receptor and may enhance viral infection [12–16]. 
We looked in our SARS-CoV-2 genome sequence database 
which we have been contributing to since February 2020, 
in order to analyse the prevalence and genotypic patterns of 
viruses mutated at codon 677 of the spike.

Results and discussion

SARS-CoV-2 genome sequences analysed here were 
obtained by next-generation sequencing from viral RNA 
extracted from 200 µL of nasopharyngeal swab fluid col-
lected from patients for the diagnosis of SARS-CoV-2 
infection, using the EZ1 Virus Mini Kit v2.0 on an EZ1 
Advanced XL instrument (Qiagen, Courtaboeuf, France) 
or the KingFisher Flex system (Thermo Fisher Scientific, 
Waltham, MA, USA) following the manufacturer's recom-
mendations [17]. Extracted viral RNA was reverse-tran-
scribed using SuperScript IV (ThermoFisher Scientific) 
prior to cDNA second strand synthesis with Klenow Frag-
ment DNA polymerase (New England Biolabs, Beverly, MA, 
USA), with the LunaScript RT SuperMix kit (New England 
Biolabs), or according to the COVIDSeq protocol (Illumina 
Inc.). Next-generation sequencing was performed as previ-
ously described [17] using either the Illumina Nextera XT 
paired-end procedure on a MiSeq instrument (Illumina Inc., 
San Diego, CA, USA), until mid-March 2021; the Oxford 
Nanopore technology (ONT) on a GridION instrument 
(Oxford Nanopore Technologies Ltd., Oxford, UK) with 
cDNA amplification using a multiplex PCR protocol with 
the ARTIC nCoV-2019 V3 Panel primers (Integrated DNA 
technologies, Coralville, IA, USA) according to the ARTIC 
procedure (https:// artic. netwo rk/), between mid-March and 
mid-April 2021; or the Illumina COVIDSeq protocol on a 
NovaSeq 6000 instrument (Illumina Inc), since mid-April. 
Genome consensus sequences were obtained as previously 
described [17] by mapping on the SARS-CoV-2 genome 
GenBank accession no. NC_045512.2 (Wuhan-Hu-1 iso-
late) with the CLC Genomics workbench v.7 (https:// 
digit alins ights. qiagen. com/) or the Minimap2 software 
[18]. Sequences described in the present study have been 

deposited on the GISAID sequence database (https:// www. 
gisaid. org/) [19] (Supplementary Table S1). The phyloge-
netic tree was based on the SARS-CoV-2 genomes obtained 
in our laboratory and on the 67 genomes the most similar to 
them retrieved using the GISAID BLAST tool (https:// www. 
epicov. org/ epi3/ front end# 4ee9c) from the GISAID database 
[18], and on additional reference genomes corresponding to 
major SARS-CoV-2 variants or to the Wuhan-Hu-1 isolate. 
The tree was built using the Nextstrain tool (https:// docs. 
nexts train. org/ proje cts/ ncov/ en/ latest/ index. html) [20] that 
performs maximum-likelihood phylogeny using IQ-TREE 
[21] then visualised with Auspice (https:// docs. nexts train. 
org/ proje cts/ auspi ce/ en/ stable/). The nature and number 
of nucleotide changes in the SARS-CoV-2 genomes and 
of amino acid changes in the SARS-CoV-2 proteins were 
obtained using the Nextclade tool (https:// clades. nexts 
train. org/ resul ts). Classification into Marseille variants 
was performed using an in house Python script based on 
sets of mutations. Classification into Nextstrain clades was 
performed with the Nextclade online tool at URL: https:// 
clades. nexts train. org/) and classification into Pangolin line-
ages was performed using the Pangolin online tool at URL: 
https:// cov- linea ges. org/ pango lin. html [22].

A codon change or deletion was detected in 83 (2.5%) 
of 3364 SARS-CoV-2 genomes obtained from respiratory 
samples collected from different patients between Febru-
ary 2020 and April 2021. These 83 genomes were classified 
in ten different Pangolin lineages, namely A, A.27 (Mar-
seille-501), B.1, B.1.1, B.1.1.10, B.1.1.241 (Marseille-9), 
B.1.1.7, B.1.160 (Marseille-4), B.1.416 (Marseille-1), 
B.1.525 (Marseille-484 K.v3) in three, six, four, three, three, 
one, 38, three, one, and 21 cases, respectively (Fig. 1; Sup-
plementary Table S1).

In seven of the 3634 patients (0.2%), a deletion of five 
amino acids was observed at spike protein positions 675–679 
(QTQTN) which include amino acid 677 (Supplementary 
Table S1). These sequences were obtained from respira-
tory samples collected in six cases between 28 March 2020 
and 12 October 2020 and in one case on 1 February 2021. 
They involved three, one, and three viral strains classified in 
Nextstrain clades 20A, 20B, and 20G, respectively. Pango-
lin lineages were B.1 (n = 4 cases), B.1.416 (1), B.1.1.241 
(1), and B.1.160 (1). The genome obtained in 2021 was 
a Marseille-4 variant/B.1.160 [7]. This deletion of spike 
amino acids 675–679 (QTQTN) was reported to abrogate 
the enzymatic cleavage of the S protein and the efficiency of 
both TMPRSS2 and TMPRSS13 for facilitating this cleav-
age, and to possibly restrict late-phase viral replication in 
Vero E6 cells [23–25]. In addition, it was reported to be 
present at a greater frequency from culture supernatant, in 
12 (50%) out of 24 isolated viruses, than from respiratory 
samples, in three (4%) of 68 cases [24]. This suggests that 
selection pressures on SARS-CoV-2 regarding infection and/
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or replication differ in vitro and in vivo. In addition, the rare 
identification of this deletion in the clinical samples in this 
latter study and in the present work further suggests that 
this QTQTN sequence is under strong purifying selection 
in vivo. It is also worthy to note that the SARS-CoV-2-like 
bat strain RmYN02 was reported to exhibit a similar QTQT 
deletion in the spike protein [26].

In 76 patients (2.3%), a spike Q677H substitution was 
observed in the 3634 SARS-CoV-2 genomes obtained in 
our institute. These changes involved viral genomes that 
were all obtained from respiratory samples collected from 
19 January 2021, and were classified as belonging to seven 
different Pangolin lineages (Supplementary Table S1). A 
majority of these genomes were of Pangolin lineage B.1.1.7, 
in 41 cases (54% of the 76 genomes and 7.2% of all B.1.1.7 
genomes in our database of 3364 SARS-CoV-2 genomes). 
In addition, two were classified in the Marseille-4/B.1.160 
lineage that was first detected in our institute in July 2020 
[7] and accounted for 573 (17%) genomes in our database, 
although its members did not harbour this spike Q677H 
substitution before 19 January 2021. Also, eight genomes 
were classified in the Marseille-501/A.27 lineage that was 
first detected in our institute in January 2021, accounted for 
18 genomes in our database and which may or may not har-
bour Q677H substitution [8]. Codon changes from CAG to 

CAT or CAC leading to this Q677H substitution deoptimise 
the viral codon usage relative to that of the human genome. 
Indeed, in the human genome, CAG, CAT, and CAC usage 
frequencies are 34.2, 10.9, and 15.1, respectively (https:// 
www. kazusa. or. jp/ codon/ cgi- bin/ showc odon. cgi? speci es= 
9606), which represent 3.1-fold and 2.3-fold decreases. 
Worldwide, 13659 SARS-CoV-2 genomes were found to 
encode this amino acid substitution Q677H according to the 
CoV-GLUE online tool (http:// cov- glue. cvr. gla. ac. uk/) [27] 
(Fig. 2). They were classified in 229 different Pangolin line-
ages, the majority (77%) being classified in lineages B.1.2 
(n = 5537), B.1.1.7 (1434), B.1.525 (952), B.1.170 (818), 
B.1.234 (714), B.1.1.316 (560), and B.1.1.284 (512). These 
genomes were obtained from clinical samples collected in 
84 countries, mostly in the USA (89%; n = 7801), England 
(1866), Japan (610), Denmark (497), Canada (379), Swit-
zerland (314), Germany (309), India (194), and Egypt (122).

Therefore, the spike Q677H substitution should be con-
sidered as another example of convergent evolution, in addi-
tion to spike amino acid substitutions N501Y [28], L452R 
[29], and L18F [30] which also independently appeared 
in various lineages. Q677H is notably part of the substitu-
tions that emerged in strains of the B.1.1.7 [31] and B.1.351 
[32] variants of concern. Here, we report the presence of 
this substitution in SARS-CoV-2 of B.1.146/Marseille-1, 

Fig. 1  Phylogenetic tree of SARS-CoV-2 genomes harbouring a dele-
tion or substitution from Q to H of spike amino acid 677 and obtained 
from patients diagnosed with SARS-CoV-2 in our institute. The phy-
logenetic tree was built using the Nextstrain tool (https:// docs. nexts 
train. org/ proje cts/ ncov/ en/ latest/ index. html) [20] that performs maxi-
mum-likelihood phylogeny using IQ-TREE [21], and was visualised 
with Auspice (https:// docs. nexts train. org/ proje cts/ auspi ce/ en/ stable/). 
The tree incorporated 69 of the SARS-CoV-2 genomes described 
here and obtained in our laboratory; 67 genomes corresponding to the 

best hits of those obtained in the present study, retrieved using the 
GISAID BLAST tool (https:// www. epicov. org/ epi3/ front end# 4ee9c) 
from the GISAID database [18]; and additional reference genomes 
corresponding to major SARS-CoV-2 variants or to the Wuhan-Hu-1 
isolate. SARS-CoV-2 genomes harbouring a Q677 deletion are indi-
cated by a black asterisk. This figure is  adapted from screenshots of 
an output of the Nextstrain tool (https:// docs. nexts train. org/ proje cts/ 
ncov/ en/ latest/ index. html) [20]. Sequences described in the present 
study are labelled with the light grey colour
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B.1.160/Marseille-4, B.1.1.241/Marseille-9, and B.1.525/
Marseille-484 K.v3 lineages, which are different bona fide 
variants [17] although all B.1-derived lineages. In addition, 
we report the presence of the spike Q677H substitution in 
the A.27/Marseille-501 variant, which is a A-like lineage 
[8]. Therefore, we found this substitution in lineages that 
separated at different stages, including early, in the pan-
demic. Congruently, Hodcroft et al. reported the emergence 
late 2020 of variants harbouring substitutions Q677H/P in 
the spike of viruses that were classified into sublineages of 
Nextstrain clades 20B and 20G as well as into Nextstrain 
clade 20A [12], and the Q677H substitution has been iden-
tified in the B.1.525 lineage first described in Nigeria [33] 
and as a fast growing mutation in variants of concern [31].

Such convergent evolution is deemed to be the result of 
positive selection, and suggests that these amino acid substi-
tutions at spike position 677 confer an evolutionary advan-
tage to the virus [28]. The Q677H substitution in the SARS-
CoV-2 spike protein is in the close vicinity of the polybasic 
RRAR furin-cleavage site of the spike S1/S2 boundary, pos-
sibly impacting binding between the spike receptor binding 
domain and ACE2 [12, 15, 16]. It has been hypothesised 
that histidine protonation in Q677H could induce a confor-
mational switch that may affect the accessibility to protease 
of this site, which may enhance the cleavage at the S1/S2 
junction and viral entry efficiency [12, 15, 16]. Structural 
analyses demonstrated that the spike amino acid 677 was 
located in subdomain SD2 of each of the protomers forming 
the homotrimeric spike protein, at the beginning of a very 

flexible loop (residues 675–690) and in the very vicinity of 
two experimentally observed O-glycosylation sites at T676 
and T678 [34–36]. Zeng et al. used a luciferase-bearing len-
tiviral pseudotype-based neutralisation assay to assess the 
effect of this spike Q677H substitution [37]. They did not 
evidence a significant effect on the cleavage of the spike 
protein. In contrast, they reported that this amino acid substi-
tution increased viral infectivity and syncytium formation. In 
addition, they reported that when present in variants of con-
cern of the B.1.1.7 and P1 lineages, it increased viral infec-
tivity by 150 and 26%, respectively, and it decreased suscep-
tibility to neutralisation by serum samples from recipients of 
the Moderna mRNA-1273 and Pfizer BNT162b2 vaccines of 
22 and 29%, respectively. Finally, viral neutralisation in the 
presence of a monoclonal conformation-dependent antibody 
targeting the spike receptor binding domain led to a 50% 
reduction in neutralisation of 677H-harbouring spike rela-
tive to 677Q-harbouring spike (wild type), and of Q677H/
D614G-harbouring spike relative to D614G only-harbouring 
spike. This suggested an alteration of the conformation of 
the spike receptor binding domain. Thus, overall, the func-
tional consequences of the spike Q677H substitution and 
its epistatic interactions with other amino acid substitutions 
located inside or outside the receptor binding domain of the 
spike protein are currently not precisely deciphered. Tak-
ing into account the growing prevalence of this substitution 
in distinct SARS-CoV-2 variants of interest or of concern 
worldwide and its possible impact on viral infectivity and 
immune escape, previous data justify carrying out more 

Fig. 2  Numbers of SARS-CoV-2 genomes harbouring the spike Q677H mutation worldwide according to timeline. Data were collected from the 
Cov-Glue online tool (http:// cov- glue. cvr. gla. ac. uk/) [27]
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investigations and monitoring its evolution through genomic 
surveillance.

Combined with previous findings, present data highlight 
the great genetic variability of SARS-CoV-2 and warrant 
broader genomic surveillance of SARS-CoV-2 in order to 
gain a better insight of the epidemiology and evolution of 
this virus at the global, national, and local scales.
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