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The combination of microbubbles and ultrasound has emerged as a promising method
for local drug delivery. Microbubbles can be locally activated by a targeted ultrasound
beam, which can result in several bio-effects. For drug delivery, microbubble-assisted
ultrasound is used to increase vascular- and plasma membrane permeability for
facilitating drug extravasation and the cellular uptake of drugs in the treated region,
respectively. In the case of drug-loaded microbubbles, these two mechanisms can
be combined with local release of the drug following destruction of the microbubble.
The use of microbubble-assisted ultrasound to deliver chemotherapeutic agents
is also referred to as sonochemotherapy. In this review, the basic principles of
sonochemotherapy are discussed, including aspects such as the type of (drug-
loaded) microbubbles used, the routes of administration used in vivo, ultrasound
devices and parameters, treatment schedules and safety issues. Finally, the clinical
translation of sonochemotherapy is discussed, including the first clinical study using
sonochemotherapy.

Keywords: ultrasound, microbubble, sonoporation, chemotherapeutic drug, drug delivery, sonochemotherapy

Introduction

Cancer presents the second leading cause of death in the European Union with 3.45 million new
cases of cancer and 1.75 million deaths from cancer in 2012 (Ferlay et al., 2013). Although a lot of
progress has been made in the treatment of several cancers, many types of cancer are still lacking
effective treatment options. Surgery, radiotherapy, and chemotherapy are the standard treatment
possibilities and they are often combined to improve patient outcome.

While for most advanced cancers, chemotherapy remains the treatment of choice, it is
rarely curative for solid tumors (Qin et al., 2015). To be successful, sufficient quantities of
chemotherapeutic drugs have to reach the interior of tumor cells. Most small molecular weight
chemotherapeutics (<4 kDa) are rapidly cleared from the circulation (e.g., t1/2 < 15 min for 5-
fluorouracil, 5-FU), which is a limiting factor for drug accumulation in the tumor. In addition
to challenges related to the physicochemical properties of drugs, tumors also possess physiological
barriers (Jain, 2001). Contrary to healthy tissues, tumor tissues have a high interstitial fluid pressure
(IFP), which is related to the lack of functional lymphatics and the leaky tumor vasculature
(Boucher et al., 1990). These high pressures establish an outward fluid motion from the core of
the solid tumor to the periphery and reduce fluid infiltration across the vascular wall. Thus, even
if the leaky vasculature permits drug extravasation, diffusion-driven drug penetration deeper into
the tumor tissue is severely restricted due to the high IFP. The increase in mean distance between
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vessels and tumor cells following tumor growth is another
constraint for sufficient delivery of drugs. High tumor cell
proliferation results in tumor cells forcing vessels apart, leading
to a decrease in vascular density and a limitation in the access of
drugs to distant tumor cells (Minchinton and Tannock, 2006). In
addition, the presence of high levels of extracellular matrix limits
the interstitial transport of drugs (Weinberg, 2014). Altogether
these barriers oppose sufficient and uniform distribution of drugs
in solid tumors, thereby limiting the therapeutic success of
chemotherapy.

In addition, reaching the target site is not a guarantee that
a drug will be effective. As most chemotherapeutic drugs need
to enter the cell to become active, they need to pass the cell
membrane. For several hydrophilic and charged drugs, e.g.,
bleomycin, this is a serious challenge and requires active uptake
through plasma membrane transporters, which are not always
present in the target cells (Pron et al., 1999).

In order to improve the efficiency of anti-cancer
chemotherapeutics, physical methods including electroporation,
laser, and magnetic fields have been developed (Sersa et al., 2008;
Podaru et al., 2014; Sklar et al., 2014). The general principle
of physical methods is based on the transient disruption of
endothelial barrier and tumor cell membrane in order to
facilitate the drug extravasation and the drug uptake into
the endothelial and tumor cells. In recent years, research in
the field of microbubble-assisted ultrasound (also known as
sonoporation) aimed at delivering therapeutic molecules in vitro
and in vivo has grown rapidly (Aryal et al., 2014; Azagury et al.,
2014; Kiessling et al., 2014; Rychak and Klibanov, 2014; Unga
and Hashida, 2014; Unger et al., 2014). Microbubble-assisted
ultrasound transiently increases the permeability of biological
barriers, such as blood vessel walls (i.e., drug extravasation)
and cellular membranes (i.e., cellular uptake of drugs), thus
enhancing the local delivery of therapeutic molecules across
these barriers in the targeted region (Lentacker et al., 2014).
Nowadays, the great potential of this modality for cancer therapy
is clearly shown in an increasing number of publications on
in vitro and in vivo drug delivery using microbubble-assisted
ultrasound (Tables 1 and 2, respectively). This method is
a non-invasive, easy to apply, and cost-effective treatment
modality, that can be used to deliver a wide range of anticancer
molecules including low molecular weight chemotherapeutic
agents (sonochemotherapy), nucleic acids and monoclonal
antibodies to a target site, e.g., tumor (Escoffre et al., 2013c; Ibsen
et al., 2013; Unga and Hashida, 2014). In addition, this method
offers the possibility to treat superficial (e.g., skin) as well as deep
organs (e.g., brain, liver, prostate), under the guidance of medical
imaging modalities (magnetic resonance imaging, ultrasound
imaging; Kinoshita et al., 2006; Deckers and Moonen, 2010;
Lammers et al., 2015).

This review first focuses on the biological effects of
microbubble-assisted ultrasound (i.e., increasing plasma
membrane- and vascular endothelium permeability) and
subsequently on in vitro and in vivo chemotherapeutic drug
delivery studies using microbubble-assisted ultrasound for
cancer treatment. The limitations and future developments of
sonochemotherapy will be further discussed. TA
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Microbubble-Assisted Ultrasound

The combination of high frequency ultrasound (1–10 MHz) and
ultrasound contrast agents (i.e., consisting of gas microbubbles)
was introduced as a promising method in improving the
therapeutic efficacy of drugs by increasing local delivery, while
minimizing side effects to healthy tissues (Price et al., 1998).
In this paper, we refer to this combination as microbubble-
assisted ultrasound. The first generation of microbubbles was
composed of air encapsulated by albumin (Albunex R©) or
galactose/palmitic acid (Levovist R©) shells. However, such air-
filled microbubbles dissolve in the bloodstream within a few
seconds after intravenous (i.v.) administration because of the
high solubility of air in blood and their low resistance to
arterial pressure gradients. To overcome these issues, a second
generation of microbubbles was developed, which were filled
with heavy-weight hydrophobic gas (e.g., perfluorocarbon, sulfur
hexafluoride) encapsulated by a biocompatible shell (e.g., lipids,
polymer; Hernot and Klibanov, 2008; Sirsi and Borden, 2014;
Figure 1A). In studies on drug delivery by microbubble-assisted
ultrasound, the bubbles are mixed with cells in vitro or injected
in vivo intravascularly or directly into the tissue of interest.
Microbubble behavior in an ultrasound field has been widely
studied, which led tomore understanding and subsequent control
of the induced bio-effects that can be used for drug delivery
(Kooiman et al., 2014). The response of a microbubble to
ultrasound waves depends on the acoustic parameters used,
such as frequency, pressure levels, and pulse duration. In
short, microbubbles stably oscillate over time upon exposure
to a low acoustic pressure, a process termed stable cavitation
(Figures 1B and 2). These oscillations generate fluid flows

surrounding the bubble, known as acoustic micro-streaming,
and when in close contact with cells, result in shear stress
on the cell membrane, leading to cellular uptake of drugs
(Leighton, 1994; Wu, 2002; Doinikov and Bouakaz, 2010).
At higher acoustic pressures, microbubbles oscillate more
rigorously, leading to their violent collapse and destruction,
i.e., inertial cavitation (Figure 2). Microbubble disruption can
be accompanied by generation of shock waves in the medium
close to the microbubbles (Junge et al., 2003; Ohl and Wolfrum,
2003). The ultrasound-induced collapse of the microbubble can
be asymmetrical, leading to the formation of high velocity jets
(Postema et al., 2005; Ohl et al., 2006). While shock waves
induce shear stress to cells in close proximity, resulting in
membrane permeability, the high velocity jets can pierce the
cell membrane, and thereby create permeability. Stable and
inertial cavitation are both exploited to transiently increase
the permeability of biological barriers, including the vascular
endothelium and plasma membrane, and therefore enhance the
extravasation and the cellular uptake of drugs (Lentacker et al.,
2014; Figure 2).

Extravasation of Drugs
Microbubbles are intravascular contrast agents, which do not
cross the vascular endothelium (Wilson and Burns, 2010).
Cavitating microbubbles close to the endothelial wall can
result in several bio-effects including vascular disruption,
vasoconstriction, or even shutdown of the vessels (Goertz, 2015).
Several studies observed that microbubble-assisted ultrasound
increased (model-) drug extravasation by stimulating paracellular
(i.e., disruption of tight junctions) and transcellular pathways
(i.e., transcytosis), both in vitro as well as in vivo (Figure 2;

FIGURE 1 | Microbubbles and ultrasound. (A) Different options for drug-loading or targeting of microbubbles. (B) Microbubble oscillations under ultrasound
exposure.

Frontiers in Pharmacology | www.frontiersin.org 4 July 2015 | Volume 6 | Article 138

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Lammertink et al. Sonochemotherapy: from bench to bedside

FIGURE 2 | Extravasation and cellular uptake of drug using microbubble-assisted ultrasound.

Price et al., 1998; Sheikov et al., 2008; Juffermans et al.,
2009; Kooiman et al., 2010). In an in vitro endothelial barrier
model, Kooiman et al. (2010) showed that microbubble-assisted
ultrasound induced a 40% decrease in transendothelial electric
resistance showing a loss of endothelial barrier integrity. In
addition, Juffermans et al. (2009) showed that microbubble-
assisted ultrasound significantly affected the integrity of in vitro
endothelial monolayers by the destabilization of the tight
junctions. At low acoustic pressures (1 MHz, 0.1 MPa), the
integrity of the in vitro endothelial barrier was restored within
30 min. In vivo, an acoustical pressure threshold ranging from
0.1 to 0.75 MPa was required to enhance the extravasation
of intravascular agents (e.g., red blood cells, imaging tracers,
fluorescent dyes, or drugs) in skeletal muscle (Price et al.,
1998), brain (Raymond et al., 2007; Sheikov et al., 2008), liver
(Gao et al., 2012), and tumor (Bohmer et al., 2010; Hu et al.,
2012) tissues. This extravasation occurs through tight junctions
between endothelial cells (0.2–200 μm; Price et al., 1998; Song
et al., 2002; Stieger et al., 2007). In vivo, the integrity of
the blood–brain barrier was restored within 1–4 h following
ultrasound exposure (Sheikov et al., 2008; Ting et al., 2012).
However, Marty et al. (2012) showed that the duration of
extravasation after ultrasound exposure depends on the particle
size. The microbubble-assisted ultrasound enhanced transcellular
pathways (e.g., transcytosis) have been mainly investigated on
the brain vasculature (Raymond et al., 2007; Sheikov et al., 2008;
Deng et al., 2012). They reported that low (1 MHz, 0.2 MPa)
and high (1.63 MHz, 1-3 MPa) acoustic pressures increased
the number of transcytotic vesicles on both the luminal and

abluminal surface of the endothelium. Sheikov et al. (2004)
hypothesized that the transient vasoconstriction constitutes a
potential cause for the increased transcytosis in vivo. In addition,
Hu et al. (2012) showed that the destruction of microbubbles with
a high acoustic pressure (5 MHz, 2 MPa) decreased the tumor
blood flow for 30 min before it returned back to normal, without
an increase in hemorrhage. Whereas it was demonstrated that
the extravasation of fluorescent dextrans was enhanced during
this period, the authors did not investigate whether transcytosis
was involved. Transient vasoconstriction has been only reported
in mice, which exhibit higher vasomotor excitability than other
rodents and animal species.

Heating and Acoustic Radiation Force
Besides cavitation, ultrasound can also induce heating and
acoustic radiation force (ARF) to improve the extravasation of
drugs (Deckers and Moonen, 2010). Heating can result from the
absorbance of acoustic energy as the ultrasound beam propagates
through tissue. Mild heating of a tumor (41 – 43◦C for 10 –
60 min) may improve the therapeutic efficacy of drugs by acting
on tumor hemodynamics (Figure 3): (i) by increasing tumor
perfusion, thus enhancing drug bioavailability in tumor tissue
(Song, 1984); (ii) by increasing vascular permeability (Lefor
et al., 1985; Kong et al., 2001) and reducing tumor interstitial
pressure (Vaupel and Kelleher, 2012), leading to better drug
penetration within tumor tissue. In addition, local heating can
act as an external trigger for drug release from a carrier, e.g.,
thermosensitive nanoparticles (Yatvin et al., 1978; Lindner et al.,
2004; Manzoor et al., 2012; Hijnen et al., 2014; Al Sabbagh
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FIGURE 3 | Acoustic radiation forces and ultrasound-induced hyperthermia.

et al., 2015). Ultrasound can also generate directional ARF on
molecules along its propagation path (Sarvazyan et al., 2010;
Figure 3). This enhances the extravasation of free drug or drug-
loaded nanoparticles into tumor tissue by causing tissue shear
stress and opening of endothelial tight junctions (Seidl et al.,
1994; Mesiwala et al., 2002). ARF induces fluid streaming through
the interstitium, thus improving biodistribution of intravascular
dyes and drugs in the target tissue (Lum et al., 2006; Hancock
et al., 2009). Using optical imaging, Shortencarier et al. (2004)
showed that the application of ARF induced visible aggregates
of fluorescent dye-loaded gas lipospheres in the direction of
the beam on the far vessel wall. The lipospheres disappeared
when the ARF pulses were turned off (Shortencarier et al.,
2004). In addition to lipospheres, ARFs can push circulating
microbubbles toward the endothelial wall, thereby improving
microbubble–cell contact, which might enhance cavitation-
mediated extravasation of intravascular compounds (Rychak
et al., 2005; Wang et al., 2014). Using ultrasound imaging,
Frinking et al. (2012) reported that ARF (38 kPa PNP, 95% DC)
induced a sevenfold increase in the binding of VEGFR2-targeted
microbubbles (also known as BR-55) on the endothelial wall in a
prostate adenocarcinoma rat model compared with the binding
without ARF.

Cellular Uptake of Drugs
Cavitating microbubbles in the vicinity of the plasma membrane
can result in cell permeabilization by creating membrane pores

and stimulating the endocytosis pathways, thereby facilitating
intracellular drug uptake. Based on the uptake or release of
non-permeant dyes (Meijering et al., 2009; Kaddur et al., 2010)
and by measuring changes in membrane electrophysiology
(Tran et al., 2007; Juffermans et al., 2008), previous studies
showed that microbubble-assisted ultrasound induced a transient
increase in membrane permeability through the generation
of transient hydrophilic pores. The intracellular delivery of
molecules through membrane pores is likely governed by
passive diffusion or by ultrasound-mediated propulsion (i.e.,
microstreaming, ARF; Shortencarier et al., 2004; Lum et al.,
2006). The size of these ultrasound induced pores depend on
the acoustic parameters used, ranging from 1 to 94 nm at
0.19 MPa PSP and from 2 to 4 μm at 0.48 MPa PSP (Yang et al.,
2008).

In addition to hydrophilic pore formation, enhancement
of endocytosis has also been demonstrated following
microbubble-assisted ultrasound exposure (Meijering et al.,
2009). Electrophysiological studies reported that microbubble-
assisted ultrasound induced an influx of Ca2+, followed by an
activation of BKCa channels that results in local hyperpolarization
of the cell membrane (Tran et al., 2007; Juffermans et al., 2008).
At moderate ultrasound conditions (1 MHz, 0.15–0.3 MPa),
the membrane hyperpolarization facilitates the molecular
uptake through endocytosis and macropinocytosis. Similar
to pore formation, the contribution of endocytosis processes
depends strongly on the marker size and the acoustic pressures.
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Meijering et al. (2009) reported that low acoustic pressures
(1 MHz, 0.22 MPa PNP) resulted in the cellular uptake of 4.4
and 70 kDa fluorescent dextrans through membrane pores
while the entrance of 155 and 500 kDa fluorescent dextrans is
dominated by endocytosis pathways. It should be mentioned
that little is known about the faith of the agents in the endocytic
vesicles, if they are degraded in the lysosome or escape from
the endosome. However, De Cock et al. (2015) showed that
increasing the acoustic pressures (1 MHz, 0.5 MPa, PNP)
induced the intracellular delivery of large fluorescent dextrans
(2 MDa) to shift from uptake by endocytosis to uptake via
the membrane pores. Regardless of the mechanism of uptake,
the duration of microbubble-assisted ultrasound-mediated
uptake is dependent on the plasma membrane recovery time,
which is a few seconds to a few hours (van Wamel et al., 2006;
Lammertink et al., 2015). The different kinetics depends on
the ultrasound conditions, the model drug size and the cell
physiology.

Anti-Cancer Drug Delivery Protocols

As any drug delivery technique, microbubble-assisted ultrasound
treatments aim to deliver optimal quantities of chemotherapeutic
drugs in targeted tumor cells and tissues. The efficiency of
this delivery method depends on (i) sufficient accumulation of
microbubbles and drugs near tumor cells or tissues, which is
directly influenced by the properties of microbubbles, drugs (i.e.,
plasma circulation lifetime), and tumor (i.e., vascularization,
localization), as well as administration routes (i.e., intratumoral,
intravenous, intraperitoneal); (ii) the acoustic conditions
including ultrasound parameters (i.e., central frequency, acoustic
pressure, exposure time, etc.) and devices (i.e., home-made,
commercial, medical systems); (iii) treatment schedule including
the time interval between the drug and/or microbubbles
administration and ultrasound treatment as well as the number
of microbubble-assisted ultrasound drug delivery treatments
and the time interval between them. Over the past decade,
the influence of these factors on drug delivery efficiency
has been investigated in order to enhance the intratumoral
(i.t.) accumulation of drug, thereby increasing the treatment
effect, while minimizing side effects to healthy tissues. This
review shows that the drug delivery efficacy varied between
the tumor models used in vivo. It is commonly known in
the field that the tumor type is an important determinant for
successful drug delivery. This is due to the specific properties
of each tumor tissue, such as differences in tissue organization,
extracellular matrix, presence of necrosis and hypoxia, cell
density, and the endothelial lining of the tumor vasculature
(Chauhan et al., 2011). To the best of our knowledge, no
comparative study between tumor tissues with different
properties has been reported using microbubble-assisted
ultrasound for drug delivery. However, unlike many other
drug delivery strategies, sonochemotherapy does not depend
on the enhanced permeability and retention (EPR) effect,
which is very heterogeneous between or within tumors, and
often overestimated (Lammers et al., 2012). Interestingly, you

could argue that the largest effect of sonochemotherapy can be
expected in tissues with ‘non-leaky’ vessels, such as the brain
(Ting et al., 2012), since the potential of increasing extravasation
is highest. An overview of different drug delivery protocols and
outcomes in vitro and in vivo are shown in Tables 1 and 2,
respectively. It should be noted that this is not a complete
overview, but rather a selection of different drug delivery
protocols.

Microbubbles
In most studies, clinically approved microbubbles (i.e.,
SonoVue R©, Definity R©) for ultrasound imaging are employed
for drug delivery. The use of these microbubbles may facilitate
the clinical translation of sonochemotherapy, but any undesired
side effect might have a negative impact on the use of these
microbubbles in ultrasound-based diagnostics. Modification
of these microbubbles (e.g., drug-loaded microbubbles)
for therapeutic applications will delay clinical translation,
requiring new authorization from the regulatory and health
authorities.

Coadministration of Microbubbles and Drug
The simplest method for drug delivery using microbubble-
assisted ultrasound is to use coadministration (Heath et al.,
2012; Unga and Hashida, 2014). This approach includes drugs
that are administered in patients anyway in current clinical
practice, with the addition of an injection of (clinically approved)
microbubbles. Microbubbles and drugs can be mixed in solution
in vitro and the mixture is then injected in vivo. This
strategy offers two main advantages: (i) both constituents can
be handled completely separately until in vitro or in vivo
administration; (ii) instead of mixing microbubbles and drug
before injection, two separate injections of the constituents can
also be performed, thus allowing drugs to reach plasma peak
levels before injecting microbubbles (Escoffre et al., 2013b).
Microbubbles have a short circulation time and therefore need
to be exposed to ultrasound within minutes after injection,
otherwise they will be degraded and unable to induce bio-
effects. The coadministration approach seems to be the best
strategy for in vitro purposes (Escoffre et al., 2011; Sorace
et al., 2012) or, in vivo, i.t. injection of the mixture (Sasaki
et al., 2014), where similar spatio-temporal distribution of both
components will be ensured. Iwanaga et al. (2007) showed
that the in vitro delivery of bleomycin using microbubble-
assisted ultrasound induced twofold decrease in cell viability
compared to the bleomycin treatment alone (Table 1). In vivo,
they reported that the exposure of a tumor to ultrasound
following the i.t. co-injection of microbubbles and bleomycin also
resulted in a twofold decrease in tumor volume (Iwanaga et al.,
2007). Kotopoulis et al. (2014) coadministered commercially
available microbubbles and gemcitabine i.v. in a pancreatic
cancer model in mice. They showed that ultrasound exposure
(1 MHz, 0.2 MPa PNP) decreased the tumor volume twofold
compared to gemcitabine alone (Kotopoulis et al., 2014).
Opposed to the advantages of coadministration using clinically
approved microbubbles and drugs that allow clinical translation,
there are also disadvantages. The main limitations of the i.v.
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injection of microbubble/drug mixture compared to drug-loaded
microbubbles are: (i) differential distribution of both constituents
because of their physicochemical properties; (ii) fast degradation
of free drugs and microbubbles; (iii) unspecific accumulation of
free drugs in the healthy tissues.

Drug-Loaded Microbubbles
To overcome these limitations of i.v. coadministration,
microbubbles have been modified to function not only as
cavitation nuclei, but also as drug delivery carriers. For example,
lipophilic drugs can be incorporated into the lipid monolayer
shell of microbubbles or dissolved in an oil pocket between
the gas core and the microbubble’s shell (Ibsen et al., 2013).
By applying this approach, Burke et al. (2014) found that the
application of ultrasound (1 MHz, 1.2 MPa, every 5 s for 60 min)
on subcutaneous C6 glioma tumor following the i.v. injection
of 5-FU-loaded microbubbles (1 × 105 microbubbles/g body
weight) led to twofold decrease in tumor volume compared
to 5-FU treatment alone (Burke et al., 2014). While these
approaches seem to be promising, the low drug loading capacity
of microbubbles is a major drawback. Consequently, the use
of drug-loaded microbubbles requires either enhancement
of the drug loading efficiency, administration of high dose
of drug-loaded microbubbles, or application of consecutive
treatments.

The small size of microbubbles and their gaseous lumen
restricts the space for drug loading. Recent publications
reported that the binding of drug-loaded nanoparticles on the
microbubble’s surface could increase the amount of loaded
drug (Geers et al., 2011). The loading efficiency can be
further improved by applying multiple layers of drug-loaded
nanoparticles around themicrobubble shell. The binding of drug-
loaded nanoparticles on microbubbles may not be necessary for
polymer-based microbubbles, as significant amounts of (model)
drug can be loaded into the polymer-based shell (Fokong et al.,
2012). Cochran et al. (2011) showed that the loading capacity is
higher for hydrophobic drugs compared to hydrophilic drugs,
and that the acoustic properties of the microbubbles were
unaffected (Cochran et al., 2011).

Based on current studies, a high dose of drug-loaded
microbubbles, i.e., >1010 microbubbles, must be intravenously
injected to reach a therapeutic dose similar to the one used in
clinical chemotherapy. However, the recommended diagnostic
doses of microbubbles currently approved for contrast-enhanced
ultrasound imaging (e.g., SonoVue R©, Definity R©) are between
109 and 1010 microbubbles for an 80-kg adult (Wilson and
Burns, 2010). Nevertheless, preclinical and clinical studies have
reported a good tolerance with 100- and 1000-fold higher doses of
these microbubbles in non-human primates and patients (Grauer
et al., 1996; Bokor et al., 2001). Consequently, the injection
of a high dose of drug-loaded microbubbles may not be a
limitation for clinical use, but further preclinical studies might be
necessary to identify any potential toxicity of high concentrations
of liposome and shell’s components (i.e., lipid, polymer, and
albumin).

Finally, several preclinical studies reported the use of repeated
sonochemotherapy treatments (Kang et al., 2010; Tinkov et al.,

2010; Li et al., 2012; Ting et al., 2012). For example, Li et al.
(2012) reported that the repetitive treatment (i.e., once a day for
seven consecutive days) of subcutaneous hepatic tumor using 10-
hydroxycamptothecin-loaded microbubbles (4 mg/kg) induced
twofold stronger decrease in tumor volume in a subcutaneous
hepatic tumor model (1 MHz, 2 W/cm2, 6 min) compared to the
10-hydroxycamptothecin-based chemotherapy alone (Li et al.,
2012).

Targeted Microbubbles
Microbubbles can be modified to target specific overexpressed
markers on tumor cells (i.e., PSMA, prostate specific membrane
antigen; LHR, luteinizing hormone receptor) or tumor
microvasculature (VEGF-R2, vascular endothelial growth
factor receptor -2) through attachment of targeting ligands
or antibodies onto the microbubble’s shell (Kiessling et al.,
2012, 2014; Novell et al., 2013). This may lead to enhanced
accumulation of the microbubbles in the target tumor cells
or tissues. For example, Fan et al. (2013) designed targeted
BCNU-loaded microbubbles, which bind the VEGF-R2
overexpressed on tumor microvasculature (VEGFR2-BCNU-
loaded microbubbles; Figure 4A). The exposure of orthotopic
glioma to ultrasound (1 MHz, 0.7 MPa, 1 min/sonication
site) following i.v. injection of VEGFR2-BCNU-loaded
microbubbles (1.25 mg BCNU) resulted in 1.75-fold decrease in
tumor volume compared to the untargeted BCNU-loaded
microbubbles (Figure 4B; Fan et al., 2013). The use of
microbubbles targeting overexpressed markers on the tumor
cells themselves is limited to in vitro drug delivery, i.t. or
intraperitoneal (i.p.) injection of microbubbles and drugs,
primarily because the microbubbles, when administrated
intravenously, cannot extravasate due to the size (Cavalieri
et al., 2010). For imaging, several groups have reported on
the in vivo accumulation of targeted microbubbles in the
tumor microvasculature by binding inflammation markers
overexpressed on tumor endothelial cells (Deshpande et al.,
2010). Although these microbubbles were designed as
ultrasound contrast agents for molecular imaging, it might
be possible to develop optimal tissue- or organ-selective drug
delivery agents by combining targeting capacities and drug
loading of microbubbles (Kiessling et al., 2012). However,
no evidence of their use for drug delivery has been reported
yet.

To summarize, the coadministration of drugs/microbubbles
and drug-loaded microbubbles can both be used for drug
delivery. The coadministration approach is likely to be
the fastest way into the clinic, as it combines clinically
approved drugs and microbubbles. However, the drug-
loaded microbubbles may hold the greatest therapeutic
potential, as it locally releases the drug upon ultrasound
exposure. Since this approach represents new therapeutic
entities, such ‘therapeutic microbubbles’ require extensive
testing for safety and efficacy before they can be approved for
clinical use. To the best of our knowledge, no study has been
published that directly compares drug-loaded microbubbles with
coadministration of free drugs and microbubbles at equal dosing
schemes.
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FIGURE 4 | Intracerebral BCNU delivery using VEGFR2-targeted and
BCNU-loaded microbubbles with focused ultrasound for the glioma
treatment (Adapted with permission from Fan et al., 2013 – Copyright ©
2012 Elsevier Ltd.). (A) Antiangiogenic-targeting BCNU-loaded microbubbles
combined with focused ultrasound for glioma treatment. (B) Tumor growth

curve. BCNU, Carmustine; VEGF-R2, anti-angiogenic antibody; VEGF-MB,
VEGF-targeting microbubbles; BCNU-MB, BCNU-loaded microbubbles;
VEGF-BCNU-MB, VEGF-targeting BCNU-loaded microbubbles; FUS, focused
ultrasound. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Solid triangle, less than 3 rats
were presented.

Administration Routes
The most direct administration route for drug delivery is
i.t. injection (Sonoda et al., 2007; Sasaki et al., 2014). The
advantages of i.t. administration over systemic injection include
the circumvention of the transvascular barrier and the generation
of transient interstitial pressure gradients. The latter can induce
convection and tissue deformation, which can decrease the
connectedness of the extracellular matrix and size of pores
in the tumor interstitial space (Frenkel, 2008). By using i.t.
administration, a high drug dose can be directly delivered into
the target tumor while minimizing its side effects toward healthy
tissues. This administration route overcomes the drawback
related to the short plasma half-life of drugs and microbubbles
after i.v. injection. In addition, this route is most interesting for
hydrophilic small chemotherapeutic drugs that have difficulties
to enter tumor cells. By applying i.t. injection, microbubbles
and drugs are distributed within the tumor by diffusion and
convection, and subsequent US exposure will result in drug
uptake in tumor cells. However, in i.t injection, there are some

limitations such as the injected volume and the accessibility of
the tumor site, which restrict the application of microbubble-
assisted ultrasound to superficial tumors such as melanoma, and
cutaneous and subcutaneous tumors.

For deep-seated tumors, most protocols recommend injection
of drugs and microbubbles via blood flow, providing better
access to deeper tumors (Treat et al., 2012; Yan et al., 2013;
Burke et al., 2014). The i.v. route is a relatively easy and
safe way to be used in the clinic for the administration of
therapeutics and microbubbles. As previously described, the
main limitation of this administration route is the rapid clearance
of drug from plasma and the unspecific accumulation of this
drug in healthy tissues. Therefore, drugs can be loaded on
microbubbles to overcome these shortcomings (Ting et al.,
2012; Sirsi and Borden, 2014). The success of i.v. drug delivery
relies on sufficient tumor vascularization, thus restricting the
application of this administration route to hypervascularized
tumors. Next to extravasation, microbubble-assisted ultrasound
can also increase the penetration of drugs into the tissue.
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In addition, it can “homogenize” drug uptake, since drug
distribution tends to be very heterogeneous throughout the
tumor. Since microbubble-assisted ultrasound will mostly affect
the vascular endothelium, the i.v. route is most suitable for
drugs that can benefit from ultrasound-induced extravasation
and penetration or intracellular delivery in endothelial cells.

Recent studies reported that the i.p. injection may be useful
for drug delivery using microbubble-assisted ultrasound for
the treatments of primary peritoneal cancers or cancers with
i.p. metastases. Pu et al. (2014) investigated the i.p. delivery
of paclitaxel (PTX) for the treatment of ovarian cancer using
luteinizing hormone-releasing hormone analog (LHRHa) -
targeted and PTX-loaded microbubbles (20 mg/kg PTX) and
ultrasound (0.3MHz, 1W/cm2, 3min). This therapeutic protocol
led to a twofold increase in apoptotic index and a 2.5-fold
decrease in vessel number compared to the single injection of
free PTX or PTX delivery using ultrasound alone (Pu et al., 2014).
Due to the microbubble size, penetration of the microbubbles by
convection throughout the tumor is hindered, thereby limiting
the tumor cell binding to the peripheral rim of the tumor.
Nevertheless, the targeted microbubbles in this study showed
superior efficacy compared to the untargeted bubbles.

Ultrasound Devices, Transducer, and
Parameters
Several investigations showed extensive optimization of the
acoustic parameters to result in an efficient and safe in vitro and
in vivo drug delivery. Among these studies, clinical ultrasound
scanners have been used to deliver drugs using microbubble-
assisted ultrasound (Tinkov et al., 2010; Sasaki et al., 2014), which
has the advantage of enabling both imaging of- and drug delivery
to the targeted tumor. However, the ultrasound settings that are
allowed on such equipment are limited for safety reasons. Specific
ultrasound parameters [low cycles and mechanical index (MI)
0.5 < MI < 1.9] are used to destroy microbubbles during a
diagnostic tissue perfusion study (Szabo, 2013). However, such
parameters might not be efficient for drug delivery. In addition,
clinical ultrasound probes are unfocused and thus the ultrasound
energy will have substantial effects in the regions surrounding
the target tissue. Clinical ultrasound scanners are “black-boxes”
which do not allow controlling all ultrasound parameters. Hence,
home-made and commercial therapeutic ultrasound devices have
been designed to control many ultrasound parameters, which can
subsequently be optimized for drug delivery (Zhao et al., 2011;
Lin et al., 2012; Escoffre et al., 2013a). Ultrasound transducers
used in the literature can be focused or unfocused (Sanches
et al., 2011). Focused beams are created using spherically curved
transducers, which greatly increase the ultrasound intensity
in a small region of interest, e.g., a tumor. Due to a lack
of standardized calibration methods concerning the applied
ultrasound parameters and the heterogeneity in equipment used,
it is not straightforward to compare the results of most studies
directly (ter Haar et al., 2011).

The transmission center frequency used for in vivo drug
delivery studies listed inTable 2 ranges from 0.3 to 2.25MHz. The
choice of frequency to be used can depend on the microbubble’s
size and its resonance frequency, but also on the depth of

the tissue to be reached, as higher frequencies suffer from
increased attenuation. The resonance frequency of microbubble
decreases as their size increases (Minnaert, 1933). When using a
low frequency range, the acoustic pressure threshold to initiate
microbubble cavitation can be reduced, thereby limiting putative
tissue damage. In most of the reported investigations, 1 MHz was
used as a frequency to achieve drug delivery using microbubble-
assisted ultrasound (Tables 1 and 2).

The ultrasound dose is usually expressed in different units
depending on whether a medical ultrasound scanner, commercial
or laboratory-made device is used for drug delivery (Table 2).
With home-made or commercial therapeutic ultrasound devices,
ultrasound exposure is usually expressed either in acoustic
pressure amplitude (kPa) or in intensity (W/cm2) while for
medical ultrasound scanners, the dose is usually expressed in the
terms of MI (expressed as the ratio of the peak negative pressure
in MPa to the square root of the frequency in MHz). Among
the published studies, it is not clearly stated whether ultrasound
intensity are spatial averaged, temporal averaged intensity (ISATA)
or spatial peak, temporal averaged intensity (ISPTA). ISATA is
frequently used when non-focused transducer is employed for
drug delivery. Ultrasound intensities ranging from 0.064 to
3 W/cm2 (n.b., ISPTA 0.0003 – 0.9 W/cm2 for ultrasound-based
diagnostics) have been applied in recent studies to deliver drugs
in tumor tissue without injuries (Kang et al., 2010; Lu et al., 2011).
The MI used for in vivo drug delivery ranges from 0.2 to 2 (n.b.,
MI threshold for clinical diagnosis is 1.9). Drug delivery requires
a minimum MI known as the permeabilization threshold, which
is typically lower than 1 (Choi et al., 2007). Exposure of tumor
tissues above, but near the cavitation threshold has so far yielded
the most promising results of drug delivery without significant
side effects. Increasing the ultrasound dose further enhanced
drug delivery in the target tissue but was also accompanied by
hemorrhage and tissue injuries (Kang et al., 2010; Lu et al., 2011).

The duty cycle is the percentage of time that an ultrasound
device is transmitting acoustic waves. The duty cycle ranges
from 0.25 to 50% for drug delivery into tumors (Table 2). To
prevent thermal tissue damage, low duty cycles are used when
high ultrasound intensities are applied and vice versa (Lin et al.,
2012; Wei et al., 2013).

Ultrasound exposure time plays a major role in drug
delivery using microbubble-assisted ultrasound. During this
time, ultrasound pulses are emitted repeatedly at a pulsing
interval to induce the complete destruction of microbubbles
in the targeted tumor. Ultrasound exposure times from 2 s to
10 min have been reported (Table 2). However, exposure times
of 1–5 min are recommended to prevent tissue injuries (e.g.,
hemorrhages; Mei et al., 2009; Yan et al., 2013).

Treatment Schedule
The therapeutic protocol depends on the duration of
microbubble-assisted ultrasound-mediated permeability of
tumor tissues and the pharmacokinetics of chemotherapeutic
drugs. Some studies reported drug administration at different
time points following the exposure of tumor to microbubble-
assisted ultrasound to assess the duration of enhanced
permeability (few seconds – few hours, depending on the particle
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size; Marty et al., 2012; Tzu-Yin et al., 2014; Lammertink et al.,
2015). Other investigations recommend waiting for the peak
concentration of drug in the blood before the administration
of microbubbles and the subsequent exposure of tumors to
ultrasound. For example, Escoffre et al. (2013b) succeeded to
optimize therapeutic efficacy of irinotecan using microbubble-
assisted ultrasound in subcutaneous glioblastoma. In this study,
the protocol consisted of an i.v. injection of irinotecan followed
1 h later by an i.v. administration of microbubbles (Escoffre et al.,
2013b). This delay is required to reach the maximal systemic
concentration of SN-38, the active metabolite of irinotecan, in the
blood. This strategy induced a twofold decrease in tumor volume
and perfusion compared to irinotecan without subsequent
ultrasound exposure.

In most therapeutic protocols using the coadministration
approach or drug-loaded microbubbles, ultrasound was applied
to the tumors immediately (5–10 s) after microbubble injection
(Sonoda et al., 2007; Matsuo et al., 2011). This strategy supposes
that drugs and microbubbles are sufficiently accumulated in
the target tissue during the few seconds following their
administration. However, no real evidence has been reported
whether this is actually the case. In addition, monitoring of
microbubble arrival at the target tissue using contrast-enhanced
ultrasound prior to ultrasound therapy is rarely performed. At
present, all investigations show that at least several consecutive
treatments (2–20 times) at optimal time intervals (1 day – 1 week)
are required to achieve significant decrease in tumor growth or
even tumor eradication (Table 2).

Therapeutic Efficacy vs. Safety: from
In Vitro to Preclinical Studies

As described above, the therapeutic benefit of drug delivery
using microbubble-assisted ultrasound relies on enhancing
accumulation of drugs in tumor cells or tissues and on
decreasing their deposition in healthy tissues, thus reducing
their side effects (Tinkov et al., 2010; Li et al., 2012; Fan

et al., 2013; Burke et al., 2014). Using the coadministration
approach or drug-loaded microbubbles, microbubble-assisted
ultrasound enhances in vitro the therapeutic efficacy of
clinically approved chemotherapeutics including doxorubicin
(Dox), cisplatin, bleomycin, PTX, and docetaxel (Table 1). Most
in vitro studies only monitor drug effectiveness with or without
microbubble-assisted ultrasound. However, some studies also
investigated the underlying mechanism. For example, Deng et al.
(2014) showed enhanced intracellular Dox levels (Figure 5A) and
increased retention due to a down-regulation of P-glycoprotein
following ultrasound exposure in the presence of Dox-liposome
loaded microbubbles. This resulted in a significant increase
of double-stranded DNA breaks and reduced cell viability
(Figure 5B). The exposure of tumor cells to microbubble-assisted
ultrasound without any drugs had no or few effects on cell
viability (>85% cell viability).

In in vivo studies it was clearly observed that microbubble-
assisted ultrasound improves the therapeutic efficacy of drugs
for different tumor animal models. However, most studies only
monitor outcomes like survival and tumor size. Unfortunately,
i.t. drug accumulation and distribution is often not investigated.
Regardless of the administration route, only 40% of preclinical
studies showed that an enhanced therapeutic efficacy could be
attributed to increased i.t. drug levels. For example, Tinkov et al.
(2010) demonstrated that the exposure of pancreas carcinoma
in rats to ultrasound (1.3 MHz, 1.2 MPa PNP, four frames
of ultrasound every four cardiac cycles) after i.v. injection of
DOX-loaded microbubbles (140 μg – 3.14 × 109 microbubbles)
induced a 10-fold increase in i.t. DOX accumulation compared to
DOX-loaded microbubble injection alone (Tinkov et al., 2010).
This therapeutic protocol led to a twofold decrease in tumor
volume.

Next to increased drug concentration in the target tissue,
one of the expected consequences of i.t. drug delivery using
microbubble-assisted ultrasound is the reduction of drug
deposition in healthy tissues. However, this effect is expected
to be only significant for local release from drug-loaded
microbubbles compared to the coadministration approach,

FIGURE 5 | (A) Intracellular doxorubicin (DOX) concentration in MCF-7/ADR cells 15 and 30 min post treatment. (B) Cell cytotoxicity after several treatments with or
without US. DLMC, DOX-liposome-microbubble complexes; DL, DOX-liposomes; ver, verapamil; US, Ultrasound. ∗p < 0.05, ∗∗p < 0.01 (Adapted with permission
from Deng et al., 2014 – Copyright © 2014 Elsevier Ltd.).
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where free drugs can enter healthy tissue anyway, without
ultrasound exposure. Less than 10% of preclinical studies
reported on drug distribution toward healthy tissues. Among
the studies that do measure this, Yan et al. (2013) reported
that the application of ultrasound (2.25 MHz, 1.9 MPa,
10 min, three treatments: one treatment every 3 days) on
subcutaneous breast tumor following the i.v. injection of PTX-
loaded microbubbles (120 μg – 1 × 109 microbubbles) resulted
in fourfold increase in i.t. accumulation of PTX (Figure 6A)
and 2.5-fold decrease in tumor volume compared to PTX-
loaded microbubbles treatment alone (Figure 6B). The authors
also investigated the drug biodistribution in healthy organs
including heart, liver, spleen, lung, and kidney 1 h after i.v.
administration of the PTX-loaded microbubbles and ultrasound
exposure (Yan et al., 2013). The PTX biodistribution in heart,
spleen, and lung was not significantly different between mice
that received PTX-loaded microbubbles treatment alone or
combined with ultrasound (Figure 6A). However, the PTX
delivery using microbubble-assisted ultrasound led to a slight
but significant decrease in PTX concentration in liver and
kidney compared to PTX-loaded microbubbles injection alone
(Figure 6A). No significant loss of body weight and other
adverse effects were observed during the therapeutic procedure.
Moreover, Ting et al. (2012) designed a therapeutic protocol
based on BCNU-loaded microbubbles (0.8 mg – 1 × 1010)
with focused ultrasound (1 MHz, 0.5–0.7 MPa, 2 sonications,
1 min/sonication) to improve BCNU-based chemotherapy for
glioblastoma treatment. They showed that the encapsulation of
BCNU inmicrobubbles prolonged its circulatory half-life fivefold
and intrahepatic accumulation of BCNU was reduced fivefold
due to the slow reticuloendothelial system uptake of BCNU-
loaded microbubbles (Ting et al., 2012). These microbubbles
alone or in combination with focused ultrasound were associated
with lower levels of aspartate- and alanine-aminotransferases

compared to free BCNU, suggesting that these microbubbles may
effectively reduce liver toxicity and damage. In glioblastoma-
bearing rats, BCNU-loaded microbubbles with ultrasound led to
13-fold decrease in tumor volume. However, median survival was
extended by only 12% compared to BCNU and control.

However, for all microbubble-based ultrasound therapies, the
effect on the vasculature should be closely monitored. There
is a ‘fine line’ between stimulating vascular permeability and
inducing vascular damage, which can result in inhibition of
tumor perfusion. Although this may be a desired effect in some
studies, for drug delivery from the vasculature, a reduced tumor
perfusion might limit the i.t. drug supply. For example, Burke
et al. (2011) demonstrated that the mechanical effect of low
duty cycle ultrasound (1 MHz, 1 MPa PNP) in combination
with microbubbles could inhibit glioma growth by blocking
tumor perfusion. The anti-vascular action of microbubble-
assisted ultrasound (1 MHz, 1.6 MPa PNP) was also adopted
by Todorova et al. (2013) who subsequently injected an anti-
angiogenic agent to prevent the formation of new vessels. In the
light of these results, animal studies conducted with ultrasound
pressures >1.0 MPa should always include a control group with
microbubble-assisted ultrasound only, and preferably monitor
the perfusion of the exposed tissue (e.g., by Doppler or contrast-
enhanced ultrasound imaging).

To summarize, a growing number of preclinical investigations
show promising results for future clinical applications. Future
studies will have to confirm that the increase in therapeutic
efficacy of sonochemotherapy is correlated with enhanced i.t.
accumulation and penetration of drugs. To demonstrate the
safety of this method, drug biodistribution toward healthy organs
and tissues should be monitored and physiological functions of
healthy organs should be examined using imaging, histological
analysis, and blood biochemistry analysis. Information on in vivo
biodistribution and pharmacokinetics of intact and destroyed

FIGURE 6 | Paclitaxel (PTX) delivery by PTX-loaded microbubble with
ultrasound for breast cancer treatment (Adapted with permission from
Yan et al., 2013 – Copyright © 2013 Elsevier Ltd.). (A) Paclitaxel in vivo
distribution in heart, liver, spleen, lung, kidney and tumors 1 h after injection of
paclitaxel-loaded microbubble complexes (PLMC) alone, paclitaxel liposomes

(PL) + US or PLMC + US; (B) In vivo growth inhibition in 4T1-tumor bearing
mice within 22 days. Mice were treated with PBS (squares), unloaded
microbubbles + US (circles), PLMC without US (upward triangles), PL + US
(downward triangles) or PLMC + US (diamonds) on days 10, 13 and 16 after
tumor cell injection. Results represent mean ± SD, n = 6. ∗p < 0.05; ∗∗p < 0.01.
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microbubbles as well as an evaluation of their systemic side effects
are still absent in most available publications. These aspects
need to be integrated in future studies. It must be noted that
the sonochemotherapy approach has mainly been evaluated in
small animals. Studies in large animals are still lacking and
might face challenging and unexpected physical (e.g., ultrasound
penetration depth, ultrasound attenuation) and biological (e.g.,
plasma life time of drug and microbubbles) limitations.

Translation to the Clinics

Despite the novelty of the field of ultrasound-mediated drug
delivery, a first clinical case study has been conducted in five
patients with locally advanced pancreatic cancer (Kotopoulis
et al., 2013, 2015). In this study, gemcitabine was administrated
by i.v. infusion at a dose of 1000 mg/m2 over 30 min (Figure 7A).
During the last 10 min of chemotherapy, ultrasound imaging was
performed in standard abdominal imaging mode to locate the
position of the tumor (Figure 7B). At the end of gemcitabine
infusion, when drug plasma level peaked, 0.5 mL of clinically
approved SonoVue R© contrast agents followed by 5mL saline were
intravenously injected every 3.5 min to ensure their presence
throughout the whole treatment. Tumors were exposed to
ultrasound (1.9 MHz, 0.49 MI, 1% DC) using an ultrasound
diagnostic scanner. The cumulative ultrasound exposure was
only 18.9 s (Figure 7A). All five patients tolerated an increased

number of treatment cycles compared to gemcitabine treatment
without ultrasound (16 ± 7 vs. 9 ± 6 cycles), reflecting an
improved physical state as well as an increased survival. In two
out of five patients, the maximum tumor diameter was either
transiently or permanently reduced, while the other patients
exhibited reduced tumor growth compared to a historical control
group of 80 patients (Figure 7C; Kotopoulis et al., 2013).
Compared to this historical data, survival increased with 60%
(Kotopoulis et al., 2015). The authors did not report side
effects related to this therapeutic protocol. Nevertheless, the
true clinical benefit was not clearly established because of the
low number of patients studied. The therapeutic protocol (i.e.,
ultrasound parameters, doses of drug, type and concentrations of
microbubbles) should be optimized and long-term safety aspects
have to be addressed in future investigations in a larger number
of patients.

Moreover, we are referring to a safety study of combining
ultrasound microbubbles and chemotherapy to treat liver
metastases from gastrointestinal tumors and pancreatic
carcinoma conducted by the Profs. K. Yan and L. Shen at
Beijing Cancer Hospital (Yan and Shen, 2014). This study is
currently recruiting patients. In this clinical trial, gemcitabine
will be intravenously injected to patients with pancreatic
carcinoma while oxaliplatin and taxol based chemotherapy
will be administrated by i.v. perfusion to patients with liver
metastases. Thirty min after chemotherapy, 1 mL of SonoVue R©

contrast agents will be intravenously injected during six times

FIGURE 7 | Treatment of human pancreatic adenocarcinoma using
gemcitabine using microbubble-assisted ultrasound (Adapted with
permission from Kotopoulis et al., 2013 – Copyright © 2013 Am.
Assoc. Phys. Med.). (A) Timeframe of each sonochemotherapy
treatment schedule, arrows indicate intravenous injection of 0.5 ml

SonoVue followed by a 5-ml injection of saline, δt represents the time
between each injection; (B) Photo of the probe and custom-made
probe holder during patient treatment; (C) Changes in tumor diameter
over time measured from CT images in patients with pancreatic
malignancy.
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in 20min. In addition to the safety of the therapeutic protocol, the
authors will explore the largest MI and ultrasound treatment time
patients can tolerate. The secondary objectives of this clinical trial
are to observe the tumor clinical benefit rate and to evaluate the
preliminary effects including time to failure and time to death.

Conclusion

Targeted drug delivery using microbubble-assisted ultrasound
has the potential to become a clinically accepted way of
improving local anticancer chemotherapy. Although the co-
administration approach, using clinically approved microbubbles
and free chemotherapeutic drugs, can be seen as the fast-
track toward the clinic, the greatest therapeutic potential may
lie in the custom-made drug-loaded microbubbles. The latter
combines the enhanced vascular permeability and cellular
uptake following microbubble-assisted ultrasound with a
local release of the drug. However, this implies that new
therapeutic particles are to be developed, which require thorough

pre-clinical testing for efficacy and safety. A growing number
of preclinical experiments have successfully reported the
therapeutic benefits of microbubble-assisted ultrasound in the
delivery of (anti-cancer) drugs in several animal models. Clinical
translation of this method requires further improvements
on: (i) the design, characterization, and GMP production
of therapeutic microbubbles with prolonged plasma half-life
and high drug-loading capacity; (ii) the optimization and
standardization of ultrasound parameters used in the field; (iii)
the insertion of a medical imaging modality (MRI, ultrasound)
to monitor the in vivo effects of ultrasound and (iv) the
evaluation of drug biodistribution, therapeutic efficacy, and
side effects in orthotopic tumor models in small and large
animals.
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