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ABSTRACT The emergence of Old and New World arenaviruses from rodent reser-
voirs persistently threatens human health. The GP1 subunit of the envelope-
displayed arenaviral glycoprotein spike complex (GPC) mediates host cell recognition
and is an important determinant of cross-species transmission. Previous structural
analyses of Old World arenaviral GP1 glycoproteins, alone and in complex with a
cognate GP2 subunit, have revealed that GP1 adopts two distinct conformational
states distinguished by differences in the orientations of helical regions of the mole-
cule. Here, through comparative study of the GP1 glycoprotein architectures of Old
World Loei River virus and New World Whitewater Arroyo virus, we show that these
rearrangements are restricted to Old World arenaviruses and are not induced solely
by the pH change that is associated with virus endosomal trafficking. Our structure-
based phylogenetic analysis of arenaviral GP1s provides a blueprint for understand-
ing the discrete structural classes adopted by these therapeutically important tar-
gets.

IMPORTANCE The genetically and geographically diverse group of viruses within
the family Arenaviridae includes a number of zoonotic pathogens capable of causing
fatal hemorrhagic fever. The multisubunit GPC glycoprotein spike complex displayed
on the arenavirus envelope is a key determinant of species tropism and a primary
target of the host humoral immune response. Here, we show that the receptor-
binding GP1 subcomponent of the GPC spike from Old World but not New World
arenaviruses adopts a distinct, pH-independent conformation in the absence of the
cognate GP2. Our analysis provides a structure-based approach to understanding
the discrete conformational classes sampled by these therapeutically important tar-
gets, informing strategies to develop arenaviral glycoprotein immunogens that re-
semble GPC as presented on the mature virion surface.
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Although pathobiologically diverse, arenaviruses share a genomic structure com-
prising a bisegmented, ambisense RNA genome. The tripartite glycoprotein com-

plex (GPC) is encoded by the small (S) segment of the arenaviral genome and is
responsible for orchestrating host cell recognition and entry (1, 2). Maturation of the
GPC precursor involves proteolytic cleavage of the polyprotein into a retained and
myristoylated stable signal peptide (SSP), a GP1 attachment glycoprotein, and a
membrane-anchored GP2 fusion glycoprotein (1–5). Noncovalently associated protom-
ers of SSP-GP1-GP2 are highly glycosylated and displayed as trimers on the mature
virion surface (6, 7). Over the past decade, Old World (OW) and New World (NW)
arenaviral glycoproteins have been subjected to numerous structural studies (6, 8–19).
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These analyses have revealed that both GP1 and GP2 adopt unique �/� folds, with GP2
exhibiting structural features observed in other class I fusion proteins. Fitting of the
crystal structure of the Lassa virus (LASV) GP1-GP2 ectodomain into an electron
cryomicroscopy-derived reconstruction of the GPC has revealed the higher-order as-
sembly of the glycoprotein spike in a pH-neutral prefusion state and places the globular
domain of GP1 in the membrane-distal region of the spike complex (6, 19).

The specificity of GP1 for a cognate host cell receptor is a key determinant of cellular
and species tropism (1, 2). While most OW arenaviruses interact with the O-mannose
glycans presented on the extracellular receptor, �-dystroglycan (�-DG) (20), LASV is also
known to recognize the C-type lectin DC-SIGN (dendritic cell-specific intercellular
adhesion molecule-3-grabbing nonintegrin) (21, 22) and an endosomal receptor,
LAMP1 (lysosomal-associated membrane protein 1) (23, 24). Furthermore, Lujo virus, an
emergent OW arenavirus, has been shown to interact with the cell surface receptor
neuropilin 2 and to require tetraspanin (CD63) during host cell entry (25). NW arena-
viruses belonging to clades B and D (previously referred to as clade A/B or A/rec), on
the other hand, utilize the transferrin receptor 1 (TfR1) orthologues of their respective
rodent hosts (26–30), and clade C arenaviruses interact with �-DG (31). The ability of
NW arenaviruses, such as Machupo virus (MACV) and Junín virus (JUNV), to also utilize
human TfR1 is the principal determinant of zoonosis and pathogenicity in humans (30).

Following host cell attachment, virions are internalized, and the low-pH environ-
ment within endosomes destabilizes the prefusion arenaviral GPC, which results in
release of GP1 and fusogenic rearrangements of GP2 (2, 6, 32). Structural studies of OW
arenaviruses have revealed significant conformational differences in GP1 when ex-
pressed alone or in association with GP2 (16, 19). In contrast, NW arenaviral GP1s are
unlikely to exhibit such structural differences, given that both neutralizing monoclonal
antibodies and TfR1 recognize NW arenaviral GP1s in their GP2-free state (8, 10–13, 33).

Here, we sought to delineate the roles of detachment and acidification in deter-
mining the conformation of OW and NW arenaviral GP1s. We solved the crystal
structures of the GP1 glycoproteins from Loei River virus (LORV), an Asiatic rodent-
borne OW arenavirus of unknown pathogenicity in humans (34), and Whitewater
Arroyo virus (WWAV), an NW arenavirus associated with spillover into human popula-
tions in North America (35). Both WWAV and LORV GP1s were solved at neutral pH (7.5
to 8.0) and acidic pH (5.6 to 5.0), permitting the first direct analysis of the effect of pH
on the structure of GP1 in the absence of cognate GP2. These data reveal that isolated
OW and NW arenaviral GP1s are structurally unaltered by pH change and demonstrate
that only OW arenaviral GP1s form a distinct GP2-free state. On a broader level, this
work allows us to define the discrete conformational classes assumed by arenaviral GP1
glycoproteins.

RESULTS
WWAV GP1 adopts a pH-independent conformation. Crystals of WWAV GP1 were

generated under two conditions, buffered to pH 7.5 and 5.6, and X-ray diffraction data
were collected to 2.4- and 2.0-Å resolution, respectively (Table 1). As phase determi-
nation by molecular replacement with existing arenaviral GP1 structures failed to yield
a solution, the single-wavelength anomalous-dispersion (SAD) method was used for
structure elucidation (Table 1). Crystallographic analysis of WWAV GP1 revealed the
characteristic �/� fold that has been observed for other NW arenavirus GP1 structures,
as well as in OW arenaviral GP1 glycoproteins in GP2-associated states, comprising a
seven-stranded �-sheet with three �-helices positioned on the convex side of the
molecule (Fig. 1A). WWAV GP1 structures determined at both neutral and acidic pHs are
nearly identical (0.4-Å root mean square deviation [RMSD]) (Fig. 1B), indicating that
exposure to acidic endosomal pH, and subsequent shedding of GP1 from the GPC, is
unlikely to induce conformational rearrangements to the molecule.

Another structure of WWAV GP1 has recently been reported by Shimon et al. (18).
Overlay analysis revealed that while the independently reported WWAV GP1 structures
were essentially identical and exhibited an RMSD of 0.9 Å, minor structural differences
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were observed in loop 5 of the glycoprotein, indicating inherent flexibility in the region
or a requirement for the quaternary architecture of the GPC for stabilization (Fig. 1C).

Despite utilizing a common receptor, WWAV exhibits a low level of sequence
conservation with other NW arenaviral GP1 glycoproteins with known structures (e.g.,
24% and 25% identity to clade B JUNV and MACV, respectively), reflective of its
classification as a clade D NW arenavirus. Consistent with a low level of sequence
conservation with JUNV and MACV, WWAV GP1 exhibits significant structural variation
throughout the �/� fold (2.3- to 2.5-Å RMSD) (Fig. 1C). These structural differences may
have arisen from coevolution with individual rodent TfR1 orthologues (36) combined
with immunological pressure from the host.

LORV GP1 adopts a pH-independent GP2-free conformation. LORV GP1 crystals
were generated under both neutral (pH 8.0) and acidic (pH 5.0) conditions, and X-ray
diffraction data were collected to 2.5- and 2.0-Å resolution, respectively. Neutral- and
acidic-pH-derived LORV GP1 structures were solved by molecular replacement, using
the crystal structure of GP2-free LASV GP1 as a search model (16) (Table 1). Structural
overlay analysis revealed that the two LORV GP1 structures are highly similar (0.7-Å
RMSD), indicating that pH does not modulate the conformation of isolated GP1 (Fig. 1D
and E).

TABLE 1 Crystallographic data collection and refinement statistics

Data collection statistic

Value

WWAV GP1a LORV GP1a

pH 7.5 Cdb pH 7.5 pH 5.6 pH 8.0 pH 5.0

Beamline DLS I23 DLS I04 DLS I04 DLS I03 DLS I03
Wavelength (Å) 2.7552 0.9795 0.9795 0.9763 0.9763
Space group P6322 P6322 P6322 P41212 P43212
Cell dimensions a, b, c (Å) 106.9, 106.9, 74.9 106.7, 106.7, 74.8 109.0, 109.0, 70.8 60.5, 60.5, 96.4 57.3, 57.3, 113.2
�, �, � (°) 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 90 90, 90, 90
Resolution range (Å) 75–2.99 (3.04–2.99) 29–2.43 (2.49–2.43) 55–2.08 (2.13–2.08) 39–2.51 (2.55–2.51) 40–1.98 (2.01–1.98)
Rmerge 0.132 (�1) 0.068 (�1) 0.132 (�1) 0.112 (�1) 0.062 (�1)
I/�(I) 25.2 (2.0) 22.8 (1.2) 18.0 (1.6) 15.4 (1.4) 22.3 (1.5)
CC1/2 0.999 (0.723) 1.000 (0.638) 0.999 (0.588) 0.999 (0.522) 1.000 (0.585)
Completeness (%) 94.3 (85.0) 99.9 (100) 100 (100) 99.2 (94.9) 100 (97.9)
Multiplicity 28.3 (19.5) 18.8 (20.3) 19.2 (19.9) 11.8 (3.7) 15.2 (5.5)
Anomalous multiplicity 15.9 (4.8)

Refinement statistics
Resolution (Å) 29–2.43 55–2.08 39–2.51 33–1.98
No. of reflections 17,895 15,403 6,480 13,746
Rwork/Rfree 0.220/0.252 0.177/0.207 0.208/0.238 0.189/0.237

No. of atoms
Protein 1,160 1,170 1,260 1,268
Ligand/ion 5 0 6 6
Water 0 83 14 70
Glycan 42 42 56 70

B factors (Å2)
Protein 105.2 48.1 71.9 56.2
Ligand/ion 108.1 NA 103.1 87.2
Water NA 53.3 69.0 61.9
Glycan 140.1 75.0 103.2 87.1

Ramachandran (%)
Favored 97.9 96.6 96.8 98.7
Allowed 2.1 3.4 3.2 1.3
Outlier 0 0 0 0

RMSD
Bond length (Å) 0.002 0.007 0.002 0.010
Bond angle (°) 0.55 0.86 0.42 0.96

aThe value for the highest-resolution shell is shown in parentheses. NA, not applicable.
bCd denotes the cadmium-derived anomalous scattering data set used for phase determination.
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In contrast to the structural differences observed between WWAV GP1 and other NW
arenaviral GP1 glycoproteins (Fig. 1C), LORV GP1 exhibits a high level of structural
conservation with other OW arenaviral GP1 glycoproteins in GP2-free states (Fig. 1F),
where superimposition of LORV GP1 with LASV GP1 and Morogoro virus (MORV) GP1
resulted in a remarkably low overall RMSD (approximately 0.8 Å and 0.7 Å, respectively).
Overlay of LORV GP1 with LASV GP1 in the GP2-associated state, on the other hand,
revealed substantial differences between the molecules. Indeed, consistent with pre-
vious comparisons of LASV GP1 structures (37), more than 50% of C-� atoms failed to
align upon overlay of the two structures, suggesting that GP2 plays a role in stabilizing
GP1 in the GP2-associated conformation likely to exist on the mature virion.

FIG 1 Structure and organization of the New World WWAV and Old World LORV GP1s. (A) Structure of WWAV GP1. (Top) WWAV GP1 (pH 5.6) shown as a cartoon
and colored as a rainbow ramped from blue (N terminus) to red (C terminus). (Bottom) Schematic organization of WWAV GPC (generated with DOG [64]). The
SSP, GP1 glycoprotein, subtilisin-like kexin protease 1–site 1 protease (SKI-1/S1P) cleavage site, GP2 glycoprotein, transmembrane region (TM), and intravirion
domain (IV) are annotated. Putative N-linked glycosylation sites are labeled as pins above the schematic, with sites observed to be occupied in either the pH
7.5 or pH 5.6 crystal structure colored yellow. (B) Structural comparison of WWAV GP1 at pH 7.5 and pH 5.6. RMSDs between equivalent C-� positions are
represented by both color (ramped from blue to red) and tube width (thin to thick). (C) Structure overlay of unliganded NW arenaviral GP1 structures. WWAV
GP1 (pH 5.6) is shown as a rainbow, WWAV GP1 (PDB no. 5NSJ) is shown in white, and MACV GP1 (PDB no. 2WFO) is shown in gray. (D) Structure of LORV GP1.
(Top) LORV GP1 (pH 5.0) is shown as a cartoon and colored as a rainbow ramped from blue (N terminus) to red (C terminus). (Bottom) Schematic organization
of LORV GPC (annotated as in panel A). (E) Structural comparison of LORV GP1 at pH 5.0 and pH 8.0, with RMSDs between equivalent C-� positions represented
as in panel B. (F) Structure overlay of all available OW arenaviral GP2-free GP1 structures. LORV GP1 (pH 5.0) is shown as a rainbow, LASV GP1 (PDB no. 4ZJF)
is shown in white, and MORV GP1 (PDB no. 5NFF) is shown in gray.
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We note that residues known to interact with �-DG (38) in LASV GP1 are fully
conserved in LORV GP1, indicative of shared receptor usage. Interestingly, structure-
based mapping revealed that these residues are spatially dispersed on LORV GP1. For
example, in contrast to the close spatial association of critical binding residues (H141,
N146, F147, and Y150) in the GP2-associated state of LASV GP1 (Fig. 2A), H139 from
LORV GP1 is displaced by more than 15 Å from the nearest other predicted binding site
residue (N144) (Fig. 2B). Similar to previous structural analyses of LASV GP1 and MORV
GP1 (16, 17), the spatial delocalization of these receptor-binding residues in LORV GP1
is consistent with the structure constituting an �-DG binding-incompetent conforma-
tion formed following detachment from GP2 during host cell entry.

Additional mapping analysis revealed that residues expected to be crucial for
LAMP1 recognition in LASV GP1 (17) were not well conserved in LORV GP1 (Fig. 2C),
indicating that LORV likely undergoes a LAMP1-independent host cell entry pathway.
Interestingly, however, we note that the presence and location of a histidine triad
reported to function as a pH sensor for LAMP1 binding on LASV GP1 (H92, H93, and
H230) (16) are conserved in LORV GP1 (H90, H91, and H231) (Fig. 2). In line with
previous studies of MORV GP1 (17), we suggest that the conservation of this multihis-
tidine motif among OW arenaviruses indicates the existence of a possible pH-sensing
functionality that is independent of LAMP1 recognition, such as modulating GP1
detachment from the GPC.

LORV GP1 is highly glycosylated. LORV GP1 encodes nine N-linked glycosylation
sequons (NXT/S, where X is not P), seven of which are present in our crystallized
construct. Electron density corresponding to well-ordered asparagine-linked N-acetyl-
glucosamine moieties was observed at five of the seven sequons in LORV GP1 (Asn87,
Asn107, Asn159, Asn165, and Asn225), and no clear density was observed at the
remaining sites (Asn97 and Asn117), supportive of these sites being either disordered
in the crystal or not glycosylated during protein folding. Additional glycosylation sites,
Asn65 and Asn77, are located outside the boundaries of our LORV GP1 expression
construct (residues 80 to 238), and mapping of these residues onto the crystal structure
of the trimeric LASV GPC indicates that they are likely located in a membrane-proximal
region of the glycoprotein spike (Fig. 3).

Glycosylation on the arenaviral GPC has been shown to promote evasion of the
humoral immune response (39). We note that LORV GP1 contains two putative N-linked
glycosylation sites (Asn65 and Asn159) that are not observed on most OW arenaviruses,
including LASV. When mapped, these sites are proximal to areas that have been
observed to present underprocessed, high-mannose-type glycans on the LASV GPC (7),
indicating that glycosylation at Asn65 and Asn159 may contribute to an expanded
glycan patch (Fig. 3). Such high glycan density on the LORV GPC suggests that LORV
may also be an “evasion strong” virus (7, 40) with heightened resistance to antibody-
mediated neutralization. Additionally, given the established role of high-mannose
glycans in DC-SIGN-mediated entry of LASV into monocyte-derived dendritic cells (21),
it is possible that the high glycan density presented on the LORV GPC may also facilitate
a C-type lectin-mediated host cell entry pathway.

Structure-based classification of arenaviral GP1 glycoproteins. Structure-based
phylogenetic analysis has been successfully utilized to demonstrate the functional and
evolutionary relationships of both cellular and viral proteins (41–45). We used the
Structural Homology Program (SHP) (46) to delineate the molecular features of arena-
viral GP1 glycoproteins and to relate them to their functionalities and genetic lineages.

Concomitant with sequence-based phylogenetic analysis of arenaviral glycopro-
teins, our structure-based approach divides arenaviral GP1s according to Old and New
World origins (Fig. 4). At a finer level, OW arenaviral GP1 glycoproteins bifurcate into
GP2-associated and free structural states. Indeed, we observed that the structural
similarity between the GP1 glycoproteins of LASV and lymphocytic choriomeningitis
virus (LCMV) in their GP2-associated states was greater than that observed between the
two known conformations of LASV GP1. The pronounced conformational variation of
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FIG 2 Comparison of the GP2-associated state of LASV GP1 and the GP2-free state of LORV GP1. (A) Crystal
structure of LASV GP1 in the GP2-associated state (PDB no. 5VK2) is shown in cartoon representation colored as a
rainbow from the N terminus (blue) to the C terminus (red). The structure of LASV GP1 was truncated to display
only residues L84 to S237 to aid comparison with LORV GP1. Unresolved regions of the polypeptide are displayed
as dashed lines. Residues implicated in �-DG binding are displayed as black sticks, and residues comprising the
pH-sensing histidine triad are shown as white sticks, with constituent nitrogen and oxygen atoms colored blue and
red, respectively. Highlighted residues are labeled according to the LASV GP1 numbering. (B) Crystal structure of
LORV GP1 (pH 5.0) in the GP2-free state is shown in cartoon representation and presented as in panel A.
Highlighted residues are labeled according to LORV GP1 numbering. (C) Sequence alignment of the structurally
resolved region of LORV GP1 with LASV GP1. Identical residues are shaded in red, and nonidentical residues are
colored red. Residues constituting the histidine triad (16) are annotated beneath the sequence with white boxes.
Residues critical for �-DG (38) and LAMP1 (17) binding are annotated beneath the sequence with black and gray
boxes, respectively. Secondary-structure elements of the LORV GP1 and LASV GP1 crystal structures are annotated
above and below the alignment, respectively, with helices shown as coils and �-strands as arrows. LASV GP1
secondary-structure labels were assigned based on the GP2-associated LASV GP1 structure (PDB no. 5VK2).
Sequences are labeled according to LORV GP1 numbering. Sequence alignments were determined with MultAlin
(65) and plotted with ESPript (66).
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LASV GP1 structures underscores the utility of the structure-based phylogenetic ap-
proach in distinguishing discrete functional states of proteins that possess identical
primary sequences.

Another striking feature of our structure-based phylogeny is that although the GP1s
from WWAV, MACV, and JUNV all utilize TfR1 as a receptor, WWAV is approximately
equidistant from MACV/JUNV and GP2-associated OW arenaviral GP1 structures (Fig. 4A).

FIG 3 Mapping of LORV N-linked glycosylation sites onto the structure of trimeric LASV GP1-GP2. LASV GP1 and
GP2 are shown as white and gray surfaces (PDB no. 5VK2), respectively. Glycans are modeled as sticks and colored
according to the oligomannose content defined for the LASV GPC (7). For clarity, only glycans from a single
GP1-GP2 protomer are labeled. LORV GP1 contains two additional N-linked glycosylation sites, N65 and N159,
which are not found in LASV GP1 (shown as blue surfaces). A schematic representation of the viral membrane, the
TM region of GP2, and the SSP is shown.

FIG 4 Phylogenetic analysis of arenaviral glycoproteins. (A) Structure-based phylogenetic analysis classified arenaviral GP1 glycoproteins according to genetic
relatedness and structural states. Pairwise distance matrices were calculated with SHP (46) and plotted with PHYLIP (61). The LORV and WWAV GP1 structures
solved in this study are annotated with asterisks. (B) Maximum-likelihood phylogeny of 34 arenaviral GPC sequences dividing the family into Old World and
New World (clades A to D) groupings.
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The marked structural variation of the NW arenaviral GP1 glycoprotein scaffold within
TfR1-tropic viruses likely reflects sequence diversification in the GP1-interacting apical
domain of rodent TfR1 orthologues, as well as the varied residues capable of mediating
the GP1-TfR1 interaction (18).

DISCUSSION

The arenaviral GP1 is responsible for host cell attachment and is a major determi-
nant of cell-type and species tropism (1). In this study of WWAV GP1 and LORV GP1, we
provide a blueprint for understanding the discrete structural classes formed by the
arenaviral GP1 (Fig. 4). Importantly, this constitutes the first comparison of NW and OW
arenaviral GP1s at both neutral and acidic pHs (Fig. 1). This investigation expands our
appreciation of the structural landscape covered by arenaviral glycoproteins and
provides evidence that pH change does not directly modulate the conformation of
isolated GP1.

Comparison of our WWAV GP1 with other NW arenaviral GP1 structures revealed
that while the NW arenaviral GP1 scaffold is structurally diverse, especially in loop
regions, it adopts a single conformation that is independent of pH or the presence of
ligand (Fig. 1A to C). We suggest that this conformation closely resembles that
presented on the mature NW arenaviral GPC, a theory supported by previously reported
crystal structures of NW arenaviral GP1-ligand complexes determined at neutral and
acidic pHs, which showed that the conformation of the NW arenaviral GP1 does not
change upon receptor or antibody recognition (8, 10–13), and solution state experi-
ments, which demonstrated the ability of isolated NW arenaviral GP1s to recognize
both TfR1 (8, 13, 18) and vaccine-elicited monoclonal antibodies (8, 10–13). Structural
determination of an intact NW arenaviral GP1-GP2 complex will be required to confirm
the equivalence of GP1 in the presence and absence of GP2.

Similar to NW WWAV GP1, structural analysis of OW LORV GP1 revealed that pH does
not modulate the conformation of isolated GP1s (Fig. 1E). In contrast to WWAV GP1,
however, the structure of LORV GP1 is distinct from that likely presented on the trimeric
GPC (19) and equivalent to previously reported acidic pH structures of LASV GP1 (16)
and MORV GP1 (17) in GP2-free states, which present �-DG-incompetent binding
surfaces (Fig. 1F and Fig. 2 and 4). The biological importance of a GP2-free structural
state has to date remained unresolved. Previous binding studies, for example, have
shown that the formation of a GP2-free state and possession of the histidine triad are
not the sole prerequisites for binding the intracellular receptor LAMP1 (17). We propose
that the large structural-phylogenetic distance of this class from GP2-associated GP1s
(Fig. 4) indicates the functional importance of the GP2-free state. Indeed, it is likely that
GP2-free GP1 is antigenically distinct from GP2-associated GP1 and resembles the shed
OW arenaviral GP1 detected in patient sera during acute LASV infection (32). The
presentation of dramatically different epitopes by shed GP1, with respect to virion-
displayed GP1, may thus contribute to the absence of neutralizing antibodies early in
LASV infection (47).

The abundance of N-linked glycosylation on the arenaviral GPC further rationalizes
the difficulty of raising an effective antibody-mediated immune response to OW
arenaviruses, such as LASV (48, 49). Indeed, by analogy to human immunodeficiency
virus type 1 (HIV-1) (50), N-linked glycosylation encompasses much of the trimeric LASV
GPC, shielding the antigenic protein surface (7, 51). Interestingly, our mapping analysis
revealed that glycan-mediated masking of the LORV GPC is likely to be even more
pronounced than that of the LASV GPC (Fig. 3) and indicated the existence of arena-
viruses with potentially greater glycan-mediated immune-evasive properties.

The continued threat that pathogenic arenaviruses pose to human health is exac-
erbated by a paucity of approved vaccines and therapeutics. We suggest that consid-
eration of the distinct structural classes formed by arenaviral GP1 glycoproteins is of
critical importance for the design of immunogens capable of eliciting neutralizing
antibodies against the GPC, as displayed on the mature arenavirus surface.
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MATERIALS AND METHODS
Protein expression and purification. Constructs encoding the GP1 glycoprotein subunits of

WWAV GP1 (residues 74 to 226; NCBI reference sequence YP001911113.1) and LORV GP1 (residues
80 to 238; GenBank accession number AHE76159.1) were PCR amplified from codon-optimized cDNA
(GeneArt, Life Technologies) and cloned into the pHLsec mammalian expression vector (52).

Human embryonic kidney (HEK) 293T cells (ATCC CRL-1573) were transiently transfected with the
desired protein constructs in the presence of the class 1 �-mannosidase inhibitor kifunensine (53).
Cell supernatants were harvested 72 h after transfection and diafiltered against a buffer containing
10 mM Tris (pH 8.0) and 150 mM NaCl (ÄKTA Flux diafiltration system; GE Healthcare). Glycoproteins
were purified by immobilized nickel affinity chromatography followed by size exclusion chroma-
tography (SEC) using a Superdex 200 10/300 Increase column (GE Healthcare) and equilibrated in
10 mM Tris, pH 8.0, 150 mM NaCl buffer. Similar to previous solution state analyses of arenaviral GP1
glycoproteins (30, 31), both LORV GP1 and WWAV GP1 formed putative monomers in solution at
both neutral and acidic pHs, consistent with the observation that the expression of arenaviral
ectodomains alone is not sufficient to form the higher-order trimers observed on the virion surface.
To aid crystallogenesis, LORV GP1 and WWAV GP1 were partially deglycosylated with endoglycosi-
dase F1 (25°C for 18 h).

Structure determination. Crystallization experiments were performed at room temperature using
the sitting-drop vapor diffusion method (54). Crystals of WWAV GP1 were obtained under two conditions:
(i) 10.1 mg/ml protein, 0.2 M potassium sodium tartrate, 2 M ammonium sulfate, and 0.1 M trisodium
citrate, pH 5.6, and (ii) 11 mg/ml protein, 1 M sodium acetate, 0.1 M HEPES-Na, pH 7.5, and 0.05 M
cadmium sulfate. Crystals of LORV GP1 grew under two conditions: (i) 4.5 mg/ml protein, 30% (wt/vol)
polyethylene glycol (PEG) 6000, and 0.1 M citrate, pH 5.0, and (ii) 5.3 mg/ml protein, 10% (wt/vol) ethanol,
and 1.5 M NaCl (buffered with 10 mM Tris, pH 8.0, from the protein solution). In all instances, crystals were
cryoprotected by transfer into a solution of the respective precipitant supplemented with 25% (vol/vol)
glycerol prior to flash cooling in liquid nitrogen.

X-ray diffraction data were recorded at Diamond Light Source, United Kingdom. Crystal data
were indexed, integrated, and scaled with XIA2 (55). The structures of LORV GP1 were solved by
molecular replacement with PHASER (56), using LASV GP1 (Protein Data Bank [PDB] accession no.
4ZJF) as a search model. Phases for WWAV GP1 (pH 7.5 crystal) were obtained experimentally using the
single-wavelength anomalous dispersion (SAD) method in vacuo at beamline I23 (57), utilizing the
anomalous signal derived from uniformly bound cadmium atoms originating from the precipitant.
Heavy-atom sites and an initial trace model were generated with SHELXC/D/E using the HKL2map
interface (58). For all structures, iterative rounds of model building and refinement were performed
using COOT (59) and PHENIX (60), respectively. Data collection and refinement statistics are presented in
Table 1.

Structure-based phylogenetic analysis. The structures of available arenavirus GP1 glycoproteins
used for phylogenetic analysis were as follows: LORV (pH 5.0), LASV (PDB accession no. 4ZJF), MORV
(5NFF), LASV (5VK2), LCMV (5INE), WWAV (pH 5.6), MACV (2WFO), and JUNV (5NUZ). For 5NUZ, 5VK2, and
5INE, all the chains not comprising GP1 molecules (e.g., GP2 and antibody fragments) were removed
prior to structure alignment. A pairwise evolutionary distance matrix was created using SHP (46) and
displayed as an unrooted phylogenetic tree generated using PHYLIP (61).

Phylogenetic analysis of arenavirus GPC sequences. An evolutionary history was inferred using
the maximum-likelihood method based on the model of Le and Gascuel (62). The percentage of trees
in which the associated taxa clustered together is shown next to the branches. The initial tree(s) for
the heuristic search was obtained automatically by applying neighbor-joining and BioNJ algorithms
(67) to a matrix of pairwise distances estimated using a Jones-Taylor-Thornton (JTT) model (68) and
then selecting the topology with a superior log-likelihood value. A discrete gamma distribution was
used to model evolutionary rate differences among sites. The rate variation model allowed some
sites to be evolutionarily invariable. The tree is drawn to scale, with branch lengths measured in the
number of substitutions per site. The analysis involved 34 arenavirus GPC amino acid sequences,
classified as Old World and New World. New World arenaviruses are further categorized into four
clades (A, B, C, and D). All positions containing gaps and missing data were eliminated. There were
a total of 426 positions in the final data set. Evolutionary analyses were conducted in MEGA7 (63).

Accession number(s). Coordinates and structure factors of WWAV GP1 and LORV GP1, crystallized
at neutral and acidic pHs, have been deposited in the Protein Data Bank with the accession codes 6HJ4,
6HJ5, 6HJC, and 6HJ6.
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