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Introduction
In the past years, the reconstruction of phylogenetic data sets 
has changed from using a single or few genes toward phylog-
enomic analyses exploiting hundreds of genes in a single study. 
To deal with the sequence data of so many genes, automatic 
process pipelines are required. There are two divergent views 
of the consequence of such vast data sets. First, it has been 
proposed that congruence between phylogenetic analyses is 
increasing as random noise in the data sets is strongly reduced.1 
Second, it has been concluded that because of increased arti-
ficial signal, which is not canceled out like random noise, true 
and strong cases of incongruence will now be detected more 
often.2 In this case, two different kinds of artificial signal can 
be distinguished.

First, a crucial step in phylogenomic studies is the deter-
mination of orthologous genes across the different species pres-
ent in the analysis. Usually, automated orthology prediction 
methods are used at this step.3–7 However, these prediction 

methods can erroneously group paralogous sequences as sets 
of orthologous sequences. As a consequence, this can result in 
the reconstruction of gene trees rather than species trees.8–14  
For example, Philippe et  al.10 reanalyzed the data sets of 
Schierwater et al.15 and Dunn et al.16 with respect to artificial 
signal, including the use of manual means to detect paralo-
gous genes in supposed sets of orthologous genes. They were 
able to detect several cases of paralogy in the first data set. 
Pruning these sequences from the first data set substantially 
reduced the very strong support (ie, bootstrap value of 100) for 
the monophyletic group of Porifera, Ctenophora, Cnidaria, 
and Placozoa present in the original data set. Owing to the 
pruning, Porifera was instead placed as sister to all other 
metazoans, and Cnidaria as sister to Bilateria.10 An improve-
ment of the Dunn et al.16 data set also revealed a sister group 
relationship of Porifera to all other metazoan taxa, instead of 
Ctenophora being sister to all other metazoan taxa.10 Similarly, 
for an annelid data set eight sets of orthologous genes could be 
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found containing paralogous sequences.11 In two of these eight 
sets, the paralogous sequences included had a strong impact 
on the reconstruction of the concatenated data. Specifically, 
the taxa affected by the presence of a paralogous sequence—ie 
Scoloplos armiger, Sthenelais boa, and Eurythoe complanata (all 
three Annelida) as well as Owenia fusiformis (Annelida) and 
Cerebratulus lacteus (Nemertea)—were grouped together with 
strong nodal support.11 Thus, the gene tree rather than the 
species tree drove the phylogenetic placement of these five 
taxa. Pruning the paralogous sequences of S. armiger, S. boa, 
and E. complanata or O. fusiformis and C. lacteus resulted in 
different placements of the taxa, more in line with their tradi-
tional placement. For example, the annelid O. fusiformis was 
now placed within Annelida and not with Nemertea as in the 
original data set. All other paralogous sequences present in 
the other six partitions had no or only minimal influence on 
the analysis of the concatenated data set. Thus, even in phy-
logenomic studies of several hundreds of genes the artificial 
signal present only in a few wrongly compiled sets of ortholo-
gous genes might mislead the analysis of the entire data set.11 
Unfortunately, the discovery of such cases has so far relied at 
best on semi-automated detection means, including manual 
curating of data sets.

Second, numerous studies in the past decades using both 
real and simulated data sets have shown that systematic biases 
like increased substitution rates or saturation can positively 
mislead phylogenetic reconstructions resulting, for instance, 
in long-branch attraction artifacts.17–33 Recently, evidence is 
accumulating that this is also the case for phylogenomic stud-
ies. For example, the reconstruction of the eukaryotic tree 
of life is affected by the presence of both rapidly evolving 
species8 and saturation at fast-evolving sites across all taxa.34 
It could also be shown that the placement of Ctenophora as 
sister to all other metazoan taxa is most likely a long-branch 
artifact because of increased substitution rates in some spe-
cies.9,10 Moreover, this position of Ctenophora is likewise 
affected by saturation at fast-evolving sites across all taxa.10,33 
Similar analyses revealed that the support for the monophyly 
of Tardigrada and Nematoda also stemmed from both long-
branch attraction and fast-evolving sites across all taxa.35 
Finally, Salichos and Rokas36 explored the effects of different 
parameters such as rapidly evolving species, slowly evolving 
genes, or phylogenetic signal on the reconstruction of the yeast 
phylogeny using phylogenomic data. They found that select-
ing genes based on strong phylogenetic signal would decrease 
incongruence within the final concatenated data set.

Finally, different methods have been proposed to detect 
conflict in the phylogenetic reconstruction between different 
partitions of a data set without any a priori assumption of the 
source of conflict.36–57 Hence, these investigations are driven 
by the data and not a general hypothesis like saturation or 
long-branch attraction. This has the advantage that unexpected 
conflicts can be detected. Such methods are  the ILD (incon-
gruence length difference) test, reciprocal Shimodaira and 

Hasegawa tests, PBS (partitioned Bremer support), or PABA 
(partition addition bootstrap alteration).41,44,47–49,51–53,58–61 
Partition-by-partition and node-by-node approaches like 
PABA proved hereby to be the most powerful.47,54–56 For 
example, in a study addressing the phylogeny of salamanders 
using morphological and molecular data the PABA approach 
could show that the morphological data of pedomorphic spe-
cies introduced strong conflict regarding their placements as 
larval or juvenile characters in these species had been com-
pared with adult characters in the other species.56 The PABA 
approach could also aid in the decision about the best strategy 
to ameliorate this problem. Surprisingly, the PABA approach 
also revealed that over all nodes, the partition of mitochon-
drial data introduced much more conflict than the morpho-
logical data.56 When the phylogeny of Urostylida (Ciliophora) 
was investigated using three partitions, the PABA approach 
revealed that the 18S partition was mainly driving the recon-
struction of the concatenated dataset, while alpha-tubulin 
introduced conflicts at several nodes.62 In a study address-
ing the evolutionary history of enterobacterial plant patho-
gens, the PABA approach substantiated the conclusion that 
the observed incongruences stemmed from horizontal gene 
transfer.63

Although all these methods have been shown to aid 
the vindication of artificial signal in phylogenetic and phy-
logenomic studies, they were usually conducted at best in a 
semi-automated way, which still required several manual ana-
lytical steps during the analyses. Manual exploration of hun-
dreds of genes or trees in the course of phylogenomic studies 
is time-consuming, not very feasible, and likely to miss an 
instance. Tree-manipulation programs such as Phyutility64 or 
tools calculating systematic biases from alignment data such 
as BaCoCa65 exist and allow for the implementation in auto-
matic analysis pipelines. But there has not previously been any 
program that implements the different methods used in the 
above studies. These methods comprise a screening procedure 
for paralogous sequences based on single-gene trees,8–11 detec-
tion of conflict using partition-by-partition and node-by-node 
approaches utilizing nodal support values,56 or measurements 
for saturation and long-branch attraction based on patristic 
distances (PDs) in the tree.30,32,33,36 Because all these methods 
rely on tree-based information such as nodal support or PDs, 
the program TreSpEx (Tree Space Explorer) has been written 
in Perl and is presented herein. As it is command-line driven, 
it can be easily incorporated into automatic pipelines of, for 
example, phylogenomic studies.

Implementation of Different Methods in TreSpEx
Detection and pruning of paralogous sequences. 

The procedure to detect paralogous sequences implemented 
in TreSpEx8–11 is invoked after an initial determination of 
sets of supposedly orthologous genes using, for example, 
HaMStR, OrthoMCL, ReMark, MultiMSOAR 2.0, and 
PhyloTreePruner.4–7,66 As discussed above, these automated 
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orthology predictions have some chance of grouping paralogous 
genes together. Such misclassifications might subsequently 
mislead the analysis of the combined data to inferring a gene 
tree rather than the desired species tree. Thus, before further 
analyses, additional screening of the sets of supposedly orthol-
ogous genes for paralogous sequences should follow the first 
orthology prediction.8–11

To detect such paralogous sequences, TreSpEx imple-
ments a screening procedure based on the phylogenetic 
reconstruction of single partitions (eg, genes) of a phy-
logenomic data set8–11 (Fig.  1). For the best tree of each 
single-partition analysis, this screening identifies all clades 
possessing a bootstrap value equal to or larger than a cer-
tain threshold (eg, 95). These detected clades are regarded 
as potential indications of paralogy separating paralogs from 
each other within gene trees. However, strong bootstrap for 
a clade within a single-partition tree might also be because 
of true phylogenetic signal for a group of taxa (eg species 
from the same genus). To separate cases of most likely true 
signal from cases of paralogy, two different strategies have 
been proposed. First, clades congruent with clades present 
in the best tree obtained from the concatenated data set were 
regarded as exhibiting true phylogenetic signal and “masked” 
(ie eliminated from further analyses).8–10 Second, only clades 
congruent with clades for which independent a priori evi-
dence of monophyly from other sources of data can be shown 
were masked to avoid circularity11 (Fig. 1). If required, both 
masking strategies can be invoked with TreSpEx. However, 
it should be noted that this masking strategy is not a prereq-
uisite for the screening procedure, especially given the auto-
matic BLAST search option in TreSpEx (see below). One 
reason for using the masking in the previous studies was to 
scale down the number of cases requiring further manual 
inspections such as BLAST searches.

The next step is to decide if the clades so far identified 
are truly the results of paralogy (Fig. 1). The first criterion is 
that, in addition to the strong nodal support that first sug-
gested paralogy, a long-branch leads to the suspect clade8–10 
(Fig. 2A). The second is that taxa from a clade with indepen-
dent a priori evidence of monophyly are found along with taxa 
outside this clade both within and outside the suspect clade8–10 
(Fig. 2B). Finally, TreSpEx marks very short branches leading 
to one of the terminal taxa in a suspect clade as indicative of 
potential cross-contamination11 (Fig. 2C).

To gain further evidence for paralogy, BLAST searches 
can be applied using TreSpEx.8–11 For each partition contain-
ing a suspect clade, TreSpEx conducts BLAST searches of 
all sequences of the partition against two reference databases 
(Fig. 1). Although different pre-compiled reference databases 
(eg of Apis mellifera, Bos taurus, Branchiostoma floridae, or Helob-
della robusta) are provided along with the program, the users can 
provide their own databases as well. After the BLAST searches, 
TreSpEx examines whether the best hits of the sequences of the 
suspect clade are the same as for the other ones of the partition. 

Different best hits would indicate the presence of paralogy in 
this partition (ie, set of supposedly orthologous sequences).11 As 
part of this comparison, TreSpEx automatically sorts the sus-
pect clades into four different categories: no hits at all in both 
searches, certain paralogy, no paralogy, and uncertain cases. For 
the sorting into the latter three categories and for each sequence 

eg, RAxML Single-partition analyses
including bootstrap replicates

Screening of each tree
for clades with 

BS values ≥ threshold value

single-partition trees

detected clades

Filtering of clades:
1) a priori evidence of monophyly

or
2) clades of best tree
of concatenated data

(not essential)

suspected clades

Paralogy detection
based on criteria:

1) Long branch leading to clade,
2) Conflict with clade with

a priori evidence of monophyly
and/or

3) Short branch leading to
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(not essential) 
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Figure 1. Flow-chart of the implementation of TreSpEx in an analytical 
procedure conducting a screening for paralogy. Programs other than 
TreSpEx are only examples, and any other program for orthology 
prediction, phylogenetic reconstruction, and data concatenation  
can be used.
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of the suspect clade, the proportion of the non-suspect sequences 
with the same best hit (pident) is determined:

	
p

n
nident

ident

other
= 	 (1)

with nident the number of non-suspect sequences with the 
same best hit as the suspect sequence and nother the number of 

all non-suspect sequences (ie, not part of the suspect clade). 
If pident of each sequence of the suspect clade is smaller than 
or equal to a particular threshold value (eg, 0.1) in at least one 
of the two BLAST searches, this is regarded as a certain case 
of paralogy. For example, if the suspect clade contains three 
sequences and all three have a proportion of identical best hits 
pident of 0.1 or lower in one of the two BLAST searches, this 
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Figure 2. Theoretical examples of the sorting criteria in the paralogy screening of TreSpEx. Sorting based on (A) an additional long branch leading to 
the suspect clade (indicated by an arrow), (B) taxa from a clade with independent a priori evidence of monophyly are found along with taxa outside this 
clade both within and outside the suspect clade (indicated by arrows), and (C) very short branches leading to one of the terminal taxa in a suspect clade 
(indicated by an arrow).

http://www.la-press.com


TreSpEx—detection of misleading signal

55Evolutionary Bioinformatics 2014:10

is definitely a case of paralogy. On the other hand, if pident 
of each sequence of the suspect clade is higher than or equal 
to a particular threshold value (eg, 0.85) in both BLAST 
searches, this suspect clade is regarded as not being paralo-
gous. For example, if for all three sequences of a suspect clade 
pident is 0.85 or higher in both BLAST searches, the paralogy 
has been ruled out. All remaining clades with values between 
these two thresholds are regarded as uncertain.

Instead of considering, in principle, all possible clades for 
the paralogy screening, TreSpEx also provides the option to 
test if the support for a clade or clades in a given tree (eg, the 
best tree of the concatenated data set) stems from paralogous 
sequences rather than true phylogenetic signal.11 This is called 
a posteriori screening, as it is conducted after a phylogenetic 
reconstruction of some kind. In contrast, the other option 
described above considering all possible clades is named a pri-
ori screening, as it can be conducted before any phylogenetic 
reconstruction. Finally, TreSpEx allows for the pruning of 
affected sequences from the partitions of the data set (Fig. 1).

Case study I. To exemplify the potential of TreSpEx 
to detect paralogous sequences, I used the analysis and sin-
gle-partition trees of Struck,11 which are publically available. 
Struck11 found that 24 out of 229 partitions contained clades 
with bootstrap support of 95 or higher, which could not be 
attributed to clades with a priori evidence of monophyly 
(Table 1). The clades with a priori evidence of monophyly com-
prised only members of Clitellata, Sipuncula, Myzostomidae, 
Terebelliformia, Capitellidae/Echiura, or Serpulidae/Spionidae.  
Struck11 used the sequences of each suspect clade as well as 
those of Lottia gigantea, Capitella teleta, and Helobdella robusta 
for tblastn 2.2.26+ searches in NCBI against databases of  
B. taurus, B. floridae, or Homo sapiens to detect cases of para
logy. The sequences of L. gigantea, C. teleta, and H. robusta were 
part of both the core set for the orthology prediction using 
HaMStR and the final data set. These BLAST searches and 
other means showed that 8 out of the 24 partitions constituted 
sets of orthologous sequences containing paralogous sequences 
(Table 1). However, only the paralogous sequences present in 
two of the eight sets had a strong impact on the reconstruction 
using the concatenated data (see above).11

Using TreSpEx for the paralogy screening, only clades 
with bootstrap values of 95 or higher (Fig. 1) were detected 
and masked for the same clades with a priori evidence of 
monophyly as in Struck.11 This first screening returned all 
24 partitions found by the more or less manual screening 
of Struck11 and one additional partition (Table 1). The next 
step was to blast all sequences of the suspicious 25 partitions 
against the reference databases of B. taurus and B. floridae 
and to automatically sort the results. The parameters for the 
BLAST search and sorting in TreSpEx were an e value of 10, 
and a lower threshold value of pident of 0.1 and a higher one 
of 0.85. Thus, if for each sequence of a suspect clade the pro-
portion of the non-suspect sequences with the same best hit  
(ie, pident) was 10% or less in the search against the database of 
either B. taurus or B. floridae, it was assumed that this parti-
tion was affected by paralogy. On the other hand, if for each 
sequence of a suspect clade the proportion of the non-suspect 
sequences with the same best hit was 85% or higher in the 
searches against both databases of B. taurus and B. floridae, it 
was assumed that this partition was not affected by paralogy. 
For each partition, BLAST searches returned hits for both 
the suspect clade sequences and the remaining sequences (no 
hits = 0 in Table 1). TreSpEx indicated 5 of the 25 partitions 
as cases of paralogy and 14 as not affected by paralogy; only 6 
as could not be placed with certainty (Table 1). More impor-
tantly, all five cases of paralogy were also regarded as being 
affected by paralogy in Struck11 including the two partitions 
with strong impact on the analysis of the concatenated data. 
Similarly, the 14 cases of not being affected by paralogy con-
tained 13 cases already indicated as not being affected by par-
alogy by Struck11 as well as the one additional partition found 
by TreSpEx (Table 1). Thus, no case of paralogy has been erro-
neously indicated as unaffected by paralogy and vice versa.

However, six partitions could not be assigned with cer-
tainty. Three of these partitions were indicated as paralogous 
by Struck11. Struck11 differentiated two classes of paralogy. 
In one class, taxa of the core set of the orthology prediction 
(ie, L. gigantea, C. teleta, and H. robusta) were present within 
and outside the suspect clade instead of being only outside. 
Thus, for this partition the core set of the prediction was 
already a mixture of paralogous sequences, and hence, the 
hidden Markov model used for the orthology determination 
was a mixture as well. This resulted already in the analyses 
of Struck11 in less clear-cut BLAST results than the results 
obtained for the other class of paralogy. In the other class, all 
core-set taxa were placed outside the suspect clade. For the 
cases with core-set taxa present within and outside the sus-
pect clade, additional evidence of paralogy such as signature 
amino acids or differences in e values had to be used to deter-
mine paralogy.11 Moreover, Struck11 usually pruned only the 
paralogous sequences of the suspect clade from the partition, 
retaining all other sequences for further analyses. But when 
core-set taxa were present within and outside the suspect 
clade, the entire partition was excluded from further analyses 

Table 1. Comparison of the paralogy screening based on the BLAST 
search of TreSpEx using the data set of Struck11 to the original 
results of the study of Struck.11 The numbers in the brackets provide 
the number of partitions found by TreSpEx regarded as cases of 
paralogy (first position) or non-paralogy (second position) by Struck.11

Struck11 TreSpEx

Suspect partitions 24 25

Paralogy 8 5 (5/0)

Uncertain cases na 6 (3/3)

No paralogy 16 14 (0/13)

No hits na 0
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as already the core set of the orthology prediction was affected 
by paralogy.11 Interestingly, all three partitions indicated as 
uncertain by TreSpEx and as cases of paralogy by Struck11 
were the ones in which the taxa of the core set were pres-
ent within and outside the suspect clade, and where the entire 
partition had been excluded.11 In contrast, the five partitions 
indicated as paralogous by both studies were those in which 
the taxa of the core set were placed outside the suspect clade 
and where only affected sequences were pruned.11 TreSpEx 
had thereby indirectly separated the cases of paralogy requir-
ing different kinds of data exclusion.

However, this separation was not perfect as also three 
partitions indicated as non-paralogous by Struck11 were 
marked as uncertain by TreSpEx. In these three cases, in one 
of the two searches pident was below 0.85, whereas it was above 
0.85 in the other one. In the searches with the low pident, two 
highly similar hits were returned by the BLAST searches 
against the database of either B. taurus or B. floridae, most 
likely indicating inparalogs within this reference database. 
For example, for the suspect sequences of partition 23680, 
the BLAST searches against B. floridae returned the gene ID 
43208 as the best hit and 25071 as the second best with e val-
ues of, e.g., 1 × e−62 and 3 × e−62, respectively. Both are prob-
ably NM23/nucleoside diphosphate kinase subunits. The blast 
results of the non-suspect sequences also returned these two 
gene IDs as the two best hits, and in some cases, 25071 was 
slightly better than 43208. The maximal difference between 
the two was an e value of 6 × e−54 for 25071 and 2 × e−53 for 
43208. Using different reference databases might circumvent 
the problem of inparalogs to a certain degree. However, even 
using very closely related reference taxa the chance of, for 
example, species-specific inparalogs will still be present. As 
for the uncertain cases of paralogy above, in these cases addi-
tional evidence is required. Therefore, TreSpEx not only sorts 
the partition into different categories but also provides addi-
tional results related to the BLAST searches such as the actual 
result of the BLAST searches and compilations in the results 
for each partition comprising gene IDs, max scores, and e val-
ues for both the best hit and a confidence set of best hits. With 
this information, it is easier to assess whether uncertain cases 
are cases of paralogy or not. Moreover, instead of screening 
229 partitions manually for paralogy, only 6 partitions would 
have to be analyzed with more scrutiny based on the results 
of TreSpEx.

Detection of conflict. TreSpEx in combination with a 
program for phylogenetic reconstruction such as RAxML67 or 
PhyloBayes68 can also be used to detect conflicts in data sets 
based on the PABA principle.55,56 Using this principle, conflict 
is detected on a node-by-node and partition-by-partition basis 
utilizing nodal support values. The PABA principle was first 
proposed using bootstrap values,55 and can also be employed 
with any other nodal support values such as Bremer support 
(PABSA, partition addition Bremer support alteration) or 
posterior probabilities (PAPPA, partition addition posterior 

probability alteration).56 For reasons of simplicity, it will be 
referred to as PABA herein. For each node and partition, the 
alteration of nodal support is determined as partitions are 
added to the data set. During this process, as each partition is 
added the order of addition is also taken into account, that is 
if a partition is added as first, second, or third partition and so 
on. To condense the results, the mean values of alteration are 
calculated for each partition and position of addition. These 
results then allow the alteration of support values to be exam-
ined for indications of conflicts. For example, if a partition 
always decreases the support for a node regardless of its posi-
tion of addition, this would indicate a conflict between this 
partition and the other partitions in this data set concerning 
this particular node (for more details, refer to Struck56).

Except for the phylogenetic reconstructions, TreSpEx 
provides the first implementation of the other three steps 
of the PABA approach. First, TreSpEx generates all pos-
sible combinations of partitions of a data set as Phylip files 
for phylogenetic reconstructions in the second step (Fig.  3). 
For example, if a data set comprises six partitions, TreSpEx 
will generate all possible data sets comprising only one, two, 
three, four, five, or six of the six partitions. An option at this 
step is to generate only a range of possible combinations. For 
example, instead of generating all possible data sets containing 
one to six of the six partitions, only all possible data sets with 
four or five of the six partitions can be generated. Second, after 
the phylogenetic reconstructions of the data sets with the dif-
ferent combinations of partitions, TreSpEx summarizes boot-
strap support values or posterior probabilities across all data 
sets for each of the nodes that can be found in at least one of 
the trees. Third, for each node, partition, and position of addi-
tion, TreSpEx calculates the alteration in nodal support and 
averages the results in accordance with the position of addi-
tion (eg, added as fourth or fifth partition).

Two different statistical tests proposed by Struck56 can 
also be conducted by TreSpEx (Fig. 3). To assess whether the 
positive contribution of a partition outweighs, if present, its 
negative impact on a given set of nodes, a Wilcoxon-Signed-
Rank test69–73 is conducted. A given set of nodes can, for 
example, be all nodes of the best or an alternative tree. The 
results of this test can be used to guide the decision if an entire 
partition should be excluded from the analysis instead of just 
a few sequences. To test the significance of the results of each 
partition at each node and position of addition, a permuta-
tion test similar to ILD or LILD (localized ILD) tests41,49 is 
implemented in TreSpEx. For this permutation test, TreSpEx 
randomly assigns positions to partitions of the same sizes 
as the predefined partitions used for the calculation of the 
original values. Then the same analyses are conducted as for 
the original partitions. Thus, the test can reveal if the value 
found for a partition at a node and position of addition can be 
obtained just by chance because of randomly partitioning the 
data set. Such tests were lacking in the first proposal of this 
approach.55
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Case study II. Herein I exemplified the potential of 
TreSpEx to detect conflict based on the PABA principle using 
the data set of Struck et al.55. By manual inspection of trends 
in alteration of nodal support, Struck et al.55 highlighted three 
cases in the COI (cytochrome oxidase I) partition and three 
in the 28S partition as interesting (Table 10 in Struck et al.55, 
Figure 4). The COI partition introduced a strong conflict at 
node 4 and a slight conflict at node 13. Hidden support was 

revealed at node 1255 (Fig. 4). The 28S partition introduced 
the strongest conflict at node 9 and a slight conflict at node 13. 
Again, hidden support was revealed at node 855 (Fig. 4). For 
the present demonstration, I generated all 15 possible combi-
nations of the four partitions 16S, 18S, 28S, and COI using 
TreSpEx. In addition, the 15 possible combinations for each of 
the 100 permutated data sets were also created with TreSpEx, 
resulting in an additional 1,500 datasets. In the second step, 
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Figure 3. Flow-chart of the implementation of TreSpEx in an analytical procedure conducting a detection of conflict using the PABA, PAPPA, or PABSA 
approach. Programs other than TreSpEx are only examples, and any other program for data concatenation and phylogenetic reconstruction can be used.

http://www.la-press.com


Struck

58 Evolutionary Bioinformatics 2014:10

phylogenetic analyses were conducted for each of the 1,515 
datasets using RAxML 7.3.167 with the GTR + Γ +  I sub-
stitution model and 100 bootstrap replicates.74 For the origi-
nal as well as the 100 permutated data, the bootstrap values 
were individually summarized in the third step. In the fourth 
and final step, the PABA results were calculated, and both a 
permutation test and a Wilcoxon-Signed-Rank test were con-
ducted to test the significance of the individual PABA results 
and the overall contribution of a partition to given sets of 
nodes, respectively. Therefore, two sets of nodes were tested. 
The first set comprised all nodes of the ML (maximum likeli-
hood) tree of the concatenated data set of all four partitions 
and the second all nodes of the ML tree of the data set with 
only the 28S data.

Although a different ML algorithm was used herein 
than by Struck et al.,55 of the six instances discussed by Struck 
et  al.55 five were indicated here as showing significant con-
flicts. Especially, the nodes 4, 9, and 13 were affected (Fig. 4). 
Only node 8, which was regarded as revealing hidden sup-

port55, was not indicated. Interestingly, as in Struck et al.55 the 
28S partition was not able to overwhelm the support for node 
9 present in the other three partitions, when added as fourth 
(see black box in Figure 4). Furthermore, the permutation test 
of TreSpEx revealed partitions that contributed significantly 
more to a node than would have been expected given their 
size. The value obtained by the original data was significantly 
higher than the values obtained by just randomly assigning 
positions to a partition of the same size, for example, 18S and 
28S contributed strongly to node 3 when added as second and 
similarly, 16S, 18S, and 28S to node 10. Thus, using the per-
mutation test of TreSpEx allowed also the detection of strong 
support for a particular node by a partition. For example, given 
its size COI was significantly contributing to the bootstrap 
support of node 8  independent of the position of addition. 
The 18S partition was also positively contributing to this node 
as bootstrap support increased by an amount of 33–47%; but 
given the size of the 18S partition, this contribution was not 
significant. For the other two partitions, the contribution was 
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also generally positive, but close to zero. Therefore, support for 
this node did stem from COI and 18S, but considering its size 
COI contributed more to the support.

The Wilcoxon-Signed-Rank test showed that over all 
nodes all partitions contributed positively to the ML tree of 
the concatenated data set. For each partition, its contribution 
significantly outweighed its negative impact at least at one 
position of addition (Table 2). Interestingly, although the 28S 
partition introduced a strong conflict at node 955 (Fig. 4) over 
all nodes, its contribution significantly outweighed its nega-
tive impact when added, for example, as second. Its contribu-
tion was even stronger than that of the 18S partition when 
added as second, despite the fact that the 18S partition did 
not introduce any conflict. Only when COI was added as 
fourth partition, its negative impact at two nodes outweighed 
its positive contribution, but this was still not significant. The 
stronger negative impact of COI when added as fourth was 
because of two reasons. First, because of the other three parti-
tions most nodes were already maximally or nearly maximally 
supported and the COI partition could not add any more 
measurable bootstrap support to these nodes when added as 
fourth. On the other hand, the conflicts at nodes 4 and 13 
persisted. However, this was also the case for the 28S partition 
and node 9. This led to the second reason. While other parti-
tions (namely 16S and 18S) significantly contributed to node 9 
and to a certain degree 13, this was less prominent at node 4.  
More specifically, maximal bootstrap support was already 
achieved at node 9 by the concatenation of 16S, 18S, and COI, 
and the conflict introduced by the 28S partition when added 
as fourth was not strong enough to decrease the bootstrap 
value below maximal support (see black box in Figure  4 at 
node 9). Hence, the Wilcoxon-Signed-Rank test can help to 
reveal very strong conflicts in a partition when nodal support 
values with a maximal support value like bootstrap values or 
posterior probabilities are used.56 This is different when, for 
example, Bremer support values are used, which do not have 
a maximum value.56

In contrast to the nodes of the ML tree of the concat-
enated data set, the 28S partition was not surprisingly the 
only partition that over all nodes contributed positively to the 
nodes of the ML tree of the 28S data set (Table  2). When 
added as third partition, this contribution was significant. The 
16S partition was also contributing to this set of nodes to a 
certain degree, but the 18S and COI partitions clearly had an 
overall negative impact, which was significant when they were 
added as fourth.

Detection of long-branched taxa and partitions. To 
assess long-branch attraction based on tree-specific proper-
ties, two means have been mainly used. Average evolutionary 
rates of complete data sets or their partitions have been calcu-
lated as a proxy for long-branch attraction, and faster evolv-
ing partitions were excluded in favor of slower evolving ones.75 
This is also called the slow-fast method. However, the problem 
of long-branch attraction stems from heterogeneous branch 
length and, hence, evolutionary rates between taxa within a 
data set or partition.30,32 Therefore, distances from the root 
of the tree to each taxon (ie, tip-to-root distances) are used 
as a taxon-specific measurement for long-branch attraction.8 
However, the recognition of long-branched taxa by tip-to-root 
distances heavily depends on the root of the tree by definition. 
For automatic process pipelines, this can pose severe problems 
in the recognition of long-branched taxa or data sets severely 
affected by long-branch attraction. When the root of the tree 
cannot be objectively placed as different outgroup taxa root 
the tree differently, it cannot assess which root-based distance 
would be trustworthy. Therefore, TreSpEx also calculates a 
new long-branch score, the LB (long branch) score76 (Fig. 5). 
The score utilizes PDs, ie, the distance between two taxa 
based on the connecting branches, and is based on the mean 
pairwise PD of a taxon i to all other taxa in the tree relative to 
the average pairwise PD across all taxa (a):

	
LB

PD
PDi

i

a
= −







×1 100 	 (2)

In particular, the score measures for each taxon the percentage 
deviation from the average PD. Moreover, it is independent 
of the root of the tree. As both tip-to-root distances and LB 
scores are taxon specific, direct comparisons between different 
data sets are not possible. To facilitate comparisons between  
data sets or partitions, TreSpEx provides two values for each data  
set or partition. First, the standard deviation of either the tip-
to-root distances or the LB scores is calculated as a measure 
of heterogeneity. Second, the average of the upper quartile 
of either the tip-to-root distances or the LB scores is deter-
mined as a representative value for the taxa with the longest 
branches.

Case study III. The annelid taxon Myzostomidae is well 
known for its long-branch problem.77–80 In many molecular phy-
logenetic studies, it is attracted to the longest outgroup taxon. 
In the analyses of Struck,11 Myzostomidae was also placed 

Table 2. Results of the Wilcoxon-Signed-Rank test for the analyses 
of the data of Struck et al.55 as well as the nodes of the best ML 
tree of all four partitions and only the 28S partition (Figs. 3 and 4 in 
Struck et al.55). Significant results of the test at α = 0.05 are indicated 
by a star (*). − = over all considered nodes, the impact of the partition 
was negative; + = over all considered nodes, the impact of the 
partition was positive.

Set of  
nodes

Partition

18S 16S COI 28S

Added as

2nd 3rd 4th 2nd 3rd 4th 2nd 3rd 4th 2nd 3rd 4th

28S only - - -* + - + - - -* + +* +

All four  
genes

+ + +* + +* + +* + - +* +* +
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with the longest outgroup taxon, the ectoproct Bugula. There-
fore, the capability of TreSpEx to detect long-branched taxa 
is shown using the tree in Figure 9 of Struck.11 Taxon-specific 
LB scores and tip-to-root distances were calculated with 
TreSpEx and density plots were generated with R. The values 
of the LB score or tip-to-root distances generally followed a 
normal distribution, but the curve was slightly skewed toward 
higher values and additional smaller optima could be observed 
(Fig. 6A, B, and D). Irrespective of the index, the two myzos-
tomid species were the taxa with the highest values (Fig. 6A, 
B, and D). However, these analyses also showed the power of 
the LB score; the ectoproct Bugula exhibited the highest LB 
score of all other taxa (Fig. 6A), so that the long-branch attrac-
tion of Myzostomidae toward the ectoproct Bugula is clearly 
indicated. Using tip-to-root distances with the original root 
(the brachiopod Terebratalia and the nemertean Cerebratulus), 
this attraction is not quite as obvious. The ectoproct Bugula 
is part of the skewed right part of the distribution, but not 
clearly set apart (Fig. 6B). Second, rerooting the tree with the 
ectoproct Bugula did not alter the results of the LB score, but 
those of the tip-to-root distances. Now the ectoproct Bugula 
is not part of the skewed right part of the distribution, but is 
placed in close vicinity to the global optimum of the distribu-
tion (Fig. 6D), so that in this case the long-branch attraction 
between Myzostomidae and the ectoproct Bugula would be 
concealed. Recently, Ryan et al.81 proposed that Ctenophora 
is the sister group to all other Metazoa, instead of the tradi-
tional view that Porifera is the sister group to all other Meta-
zoa including Ctenophora. Such a position of Ctenophora had 
been suggested before,16 but on the other hand, it had been 
shown that Ctenophora was affected by long-branch attrac-
tion9,10,33 (see above). Thus, to assess if Ctenophora was affected 

again by long-branch attraction, the LB scores were calculated 
in TreSpEx using the tree shown in Figure 3 of Ryan et al.81 
Again the distribution generally appeared normal (Fig. 6C), 
but also had a shoulder starting at about 7 and two smaller 
optima at higher values. Whereas the values of most Porifera 
species were part of the normal distribution, the values of all 
outgroup and ctenophore species were placed in the skewed 
part of the distribution starting at the shoulder. Although this 
is not as clear-cut as in the myzostomid example, this result 
might indicate that the position of Ctenophora in the study of 
Ryan et al.81 could again be affected by long-branch attraction. 
This is further substantiated by the fact that support for the 
position of Ctenophora as sister group to the other metazoan 
taxa substantially decreased from posterior probabilities of  
0.71 to 0.02 as distantly related outgroup taxa were excluded 
from the data set (Table 1 in Ryan et al.81). The tendency of 
long-branch attraction to increase support with the addition 
of distant outgroups is well known and has been suggested 
as an indication of possible long-branch attraction.9,10,30 On 
the other hand, support for the traditional position of Porifera 
as sister group to all other metazoan taxa strongly increased 
from 0.29 to 0.98 with the removal of outgroup taxa (again 
Table 1 in Ryan et al.81).

In addition to taxa genes, data sets or partitions can be 
analyzed with respect to long-branch attraction as well. For 
example, the 229 genes of the data set of Struck11 were ana-
lyzed using TreSpEx, and density plots were generated with 
the aid of R. All five indices calculated by TreSpEx showed 
a normal distribution with a skewed and ragged right tail 
(Fig.  7). For example, the distribution of the values of the 
standard deviation of LB scores showed a small shoulder close 
to the global optimum and a clear shoulder at a value of 58.1 
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(Fig. 7A). This was followed by five small local optima. Start-
ing at the 58.1 shoulder, the distribution comprised 24 of the 
229  genes. Similar results were obtained for the other four 
indices, with a maximum of 41 genes being part of the skewed 
and ragged right tail (Fig. 7). Even more detailed insights can 
be gained by analyzing taxa versus gene matrices, for example, 
of LB scores with the aid of heat-map analyses in combina-
tion with hierarchical clustering (Fig.  8). For example, the 
heat map showed that Myzostomidae was long branched 
more or less across all genes. On the other hand, the mollusks 
Crassostrea and Lottia were long branched only in a few genes. 
Thus, the results of TreSpEx allow very thorough investiga-
tions of the long-branch problem even using phylogenomic 
data sets. By this latter approach, affected sequences can be 
specifically pruned from the data set instead of either entire 
partitions or taxa.

Detection of saturation and phylogenetic signal. Satu-
ration is known to influence phylogenetic reconstructions even 
using phylogenomic data sets.10,33 Assessment of the degree of 
saturation can be determined either by the visual inspection 
of saturation plots or based on specific values measuring the 
degree of saturation.10,23,31,33 These values are either the slopes 
or the R2 values of linear regressions of PDs against uncor-
rected distances p for each gene, data set, or partition.10,33 

These specific values have the advantage that their calcula-
tion can be automated and, thus, implemented into process-
ing pipelines. This is not possible for the visual inspection of 
plots.23 Therefore, TreSpEx calculates the slope of and the R2 
fit of the linear regression of PDs against uncorrected distances p 
for each gene, data set, or partition (Fig. 5).

Finally, it has been proposed to assess the resolution 
power of partitions or genes within a larger phylogenomic data 
set using the average bootstrap support of each partition.36 
Moreover, average bootstrap support has also been used to 
determine whether alterations to the data sets like exclusion 
of data or taxa were beneficial or detrimental to the phyloge-
netic reconstruction.80 Hence, TreSpEx also calculates aver-
age bootstrap values across all nodes of a given tree (Fig. 5).

Case study IV. To exemplify these two features of 
TreSpEx, the 229 genes of the data set of Struck11 have been 
used again in combination with density plots generated with R. 
The rationale for both saturation indices is that the lower the 
value, the higher is the degree of saturation.33 The slope of the 
linear regression was generally in a range of 0.1–0.4 (Fig. 9A). 
Only very few genes showed higher slope values, and 32 genes 
possessed a slope value of less than 0.089. At 0.089, a slight 
shoulder could be detected at the left-hand side of the dis-
tribution. The distribution of the R2 values showed more 
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pronounced shoulders than that of slope values (Fig. 9B). A 
total of 91 genes had an R2 value of less than 0.469. On the 
other hand, this also meant that more than 100  genes had 
an R2 value above 0.5 and, hence, a relatively good fit to a 
linear regression. Without saturation the expectation is that 
PDs and uncorrected distances p show a perfect linear cor-

relation, as no adjustment for multiple substitutions along the 
branches is necessary. On the other hand, in case of satura-
tion with multiple substitutions convergence of the curve is 
expected and thus, a deviation from the linear regression.33 
Therefore, the better the fit to a linear regression, the less 
saturated the data. Analysis of the average bootstrap support 
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shows that most genes had very low average bootstrap support 
values in the range from 20 to 60% with a global optimum 
at 32% (Fig.  9C). Only 20  genes had an average bootstrap 
support of 60% or higher. This number is relatively low, but 
not surprising as it had been shown before that single genes 
will not be able to resolve the annelid phylogeny, but that sub-
stantially increased numbers of genes are necessary.31,82,83

Run-time Statistics of TreSpEx
For each data point, the calculation of the run-time statistics 
was repeated 10 times to assess the variability of the run time. 
For all steps of the paralogy screening, the run time shows a 
linear increase with an increasing number of trees or data sets 
(Fig. 10A). The pruning and a priori screening options are the 
fastest, requiring less than 0.5 seconds even for 200 data sets or 
trees, respectively. The a posteriori screening takes about three 
times longer than the a priori screening, but still needs less than 
1.5 seconds. Interestingly, the masking option has no substan-
tial influence on the run time of the screening (Fig. 10A). By far 
and not surprisingly, the longest time is taken by the BLAST 
searches of the sequences of the partitions with suspect clades 
against the two reference databases. When the screening pro-
cedure started with 200 trees, this step took about 140 seconds. 
Thus, a complete paralogy screening procedure starting with 

200 trees and, thus, 200 data sets requires a total time of less 
than three minutes to finish, including the BLAST searches 
and cleaning of the data sets.

Similarly, the run times of the determination of the 
average bootstrap support, long-branch, or saturation indices 
also increase more or less linearly with the number of trees and 
data sets (Fig. 10C). Calculation of the long-branch indices 
of 200 trees requires less than a quarter second, and the aver-
age bootstrap supports only about 0.3 seconds. The calculation 
of the saturation indices takes substantially longer, but is still 
achieved in about 1.5 minutes for 200 trees and data sets. This 
is because of the fact that for this index, the pairwise PDs have 
to be calculated from the trees as well as in parallel the uncor-
rected pairwise distances p from the alignments.

Finally, the run times of the three PABA options follow 
an exponential growth as the number of partitions increases 
(Fig. 10B). This is because of the exponential growth of the 
number of possible combinations of data sets with an increas-
ing number of partitions56 (Fig. 10B), so that the correlation of 
the run time and the number of data sets is linear for the gen-
eration of all possible combinations as well as the compilation 
of bootstrap summaries (data not shown). However, for the 
calculation of the PABA results itself, the correlation between 
run time and number of data sets is still exponential. This 
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results is much steeper (Fig. 10B). The difference is because of 
the fact that with an increasing number of data sets, the num-
ber of possible additions of a partition to data sets without the 
partition also increases exponentially. However, even given 
this exponential growth the calculation of the PABA results 
for eight partitions takes less than 12 seconds, only about 50% 
longer than the generation of all possible combinations of 
eight partitions in the first step (Fig.  10B). For eight parti-
tions, the longest time in performing the steps of the PABA 
analysis in TreSpEx is used for the summary and compilation 
of the bootstrap results of all data sets. This step requires a 
little less than two minutes. However, given the double expo-
nential correlation of the calculations of the PABA results to 
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Figure 9. Density plots generated with R of different gene-specific 
saturation indices (A and B) as well as phylogenetic signal (C) for the 
229 genes present in the data set of Struck.11  
Notes: (A) Slope of the linear regression between patristic and 
uncorrected pairwise distances; (B) R2 of the linear regression between 
patristic and uncorrected pairwise distances; and (C) average bootstrap 
support across all nodes of the best ML tree of each gene. Red and 
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difference can also be observed in the plot against the number 
of partitions. While the generation of all possible combina-
tions as well as the compilation of bootstrap summaries show 
similar curves, the curve for the calculation of the PABA 
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the number of partitions at a certain number of partitions, this 
calculation will take the longest. For example, with only up to 
seven partitions the generation of the possible data sets takes 
longer than the calculation of the PABA results, but after that 
it is vice versa (Fig. 10B). Regarding run-time requirements, 
though, the bottleneck in the PABA analysis will be none of 
the three steps, but the actual phylogenetic reconstruction 
including, for example, a bootstrap analysis.56 For instance, 
even performing a parallel RAxML analysis on 15 threads 
with 100 bootstrap replicates, the shortest phylogenetic recon-
struction took about 0.5 minutes, so that with 8 partitions and 
254 data sets this would be at best about 2 hours. The three 
steps of the PABA analysis performed by TreSpEx together 
took less than two minutes for eight partitions and, thus, only 
about one-sixtieth of the time of the phylogenetic reconstruc-
tions. In case of a permutation test, the time for the generation 
of all possible combinations, the phylogenetic reconstructions, 
as well as the compilation of bootstrap summaries multiplies 
by the number of the permutated data sets plus one as the 
three steps have to be conducted for each permutated data 
set and the original data set. However, the calculation of the 
PABA results increases only slightly.

Conclusion
TreSpEx allows the detection of artificial signal because of 
paralogy, long-branch attraction, or saturation, as well as 
conflict between different data sets, by utilizing tree-based 
information like nodal support or PDs. TreSpEx enables 
the parallel analysis of hundreds of trees and/or predefined 
gene partitions in very short to reasonable amounts of time. 
For example, the analysis of the sister group relationship of 
Ctenophora to all other Metazoa81 using TreSpEx indicated 
that the support for this relationship might stem from long-
branch attraction of Ctenophora toward the outgroup taxa 
in the analysis. Hence, more thorough analyses in how far 
this affects the position of Ctenophora are still necessary 
and to this end, taxon sampling of Ctenophora should also 
be substantially increased in future phylogenomic studies. 
Moreover, after increasing the number of taxa the analyses 
should be complemented by thorough investigations of the 
individual genes of the data set with respect to biases such 
as saturation and heterogeneous substitution rates. TreSpEx 
could be a useful tool in such analyses.

Generally, the results of TreSpEx provide the foundation 
and raw data for further analyses of different properties of the 
data set and the influence of these properties on the phylogenetic 
reconstructions. The partitions of a data set or different data sets 
can be ranked or grouped together. Additionally, taxa can be 
excluded based on the results of TreSpEx. The influence of indi-
vidual properties like long-branch or saturation indices on the 
phylogenetic reconstruction can be assessed in combination with 
additional phylogenetic analyses. Hence, regardless of whether 
the studies are based on single, a few, or hundreds of genes the 
reliability of phylogenetic reconstructions can be increased using 

TreSpEx. This will improve the robustness of phylogenies and 
therefore also the conclusions drawn in many areas of compara-
tive biological studies that rely on robust phylogenies.

TreSpEx will be kept up to date in the next years if changes 
in the Perl environment occur, and new tree-based methods will 
be incorporated. Moreover, on request different input and output 
formats can be added. The program is open source and released 
under the terms of GNU General Public License (GPL) 3.0.
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